CN109579747A - 基于二维光学点阵的漫反射型表面形貌测量方法 - Google Patents

基于二维光学点阵的漫反射型表面形貌测量方法 Download PDF

Info

Publication number
CN109579747A
CN109579747A CN201811173059.5A CN201811173059A CN109579747A CN 109579747 A CN109579747 A CN 109579747A CN 201811173059 A CN201811173059 A CN 201811173059A CN 109579747 A CN109579747 A CN 109579747A
Authority
CN
China
Prior art keywords
dot matrix
dimension optical
optical dot
image
testee
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811173059.5A
Other languages
English (en)
Other versions
CN109579747B (zh
Inventor
胡春光
曲正
查日东
凌秋雨
胡晓东
胡小唐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201811173059.5A priority Critical patent/CN109579747B/zh
Publication of CN109579747A publication Critical patent/CN109579747A/zh
Application granted granted Critical
Publication of CN109579747B publication Critical patent/CN109579747B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明涉及一种基于二维光学点阵的漫反射型表面形貌测量方法,包括:搭建生成二维光学点阵的光路系统,由此光路系统生成的二维光学点阵被整体放大后照射到被测物体表面,经由充当“小孔成像”的“小孔”的漫反射成像透镜后由相机完成图像采集,保存的图像用于后续的表面形貌解算;将标准平面样品放置在被测物体位置上,二维光学点阵会投射到其表面并进行漫反射成像,利用相机采集成像结果;采集完标准平面的点阵图像后,将被测物体放在同样位置,利用相同方法对被测物体表面进行测量;经过图像处理提取出二维光学点阵中各个点元素的位置偏移量;求解出被测形貌。

Description

基于二维光学点阵的漫反射型表面形貌测量方法
技术领域
本发明涉及光学表面形貌测量领域,特别是针对漫反射表面的高精度形貌检测。
背景技术
表面形貌是指物体与周围介质分界面处呈现出的几何形态,由表面的基本形状和波纹 度、纹理、表面粗糙度等表面缺陷参数共同构成了物体表面形貌的特征。RichardLeach也 在《表面轮廓的光学测量方法》一书中提到:10%的元件损伤都是由于表面效应造成的,表 面轮廓信息可以对一个国家的GDP做出巨大贡献。表面形貌测量技术的研究具有重要意义, 而漫反射型表面在生产中较为常见,是表面形貌测量的重要领域。
现有表面形貌测量方法主要可分为接触式测量与非接触式测量。人们最先是利用触针扫 描的接触式测量方法实现了面形测量,凭借触针的位移追迹解算出表面形貌。但由于非接触 式测量的高效性、无损伤等优势,非接触式测量很快得到了更广泛的应用。目前主流的非接 触式测量方法主要有激光共聚焦法、显微干涉法、结构光法等,这些方法对表面形貌测量的 发展具有重要影响,但每种测量方法仍有不足。
激光共聚焦法分辨力高,具有抗杂散光等能力,但是测量时间长、光学结构复杂。显微 干涉法优点在于精度高,技术成熟,缺点在于光路调试难度大,系统受环境影响较大,且需 要至少三幅图像才能获取足够的测量信息。线结构光法具有信息量大、测量快速等优点,但 也存在提取图像时受阴影影响、测量效率低等不足。
基于结构光测量优势,又因点、线、多线结构光的性能限制,国内外专家学者一直致力 于新型结构光场的研究。例如利用光栅产生的正弦结构光场等,但大部分新型光场测量时仍 需处理相位信息,相位展开受面形不连续、噪声等影响严重。目前也有利用结构光投影法测 量面形的研究,避免了相位的复杂处理,但多数无法实现结构光的高度细分,只能应用于较 大尺度测量,无法进行高分辨力的微观测量。
与此同时,二维光学点阵技术早已有所发展。由于二维光学点阵严密的空间周期、规则 的图案等空间特性,使其广泛应用于如原子的捕获和冷却、超高分辨显微技术、光通信、微 流体筛选以及三维形貌测量等多个领域。
考虑到面结构光的潜能以及二维光学点阵的性质,让人意识到将二维光学点阵作为一种 新型结构光场的可能。二维光学点阵针对表面形貌测量问题具有以下优势:具有高精度的空 间周期,且空间周期灵活可调,可针对多种测量情况;在离焦平面一定范围内电场分布不变, 点阵的图案规则简单,方便利用几何光学解算。
目前在表面形貌测量领域,已有利用二维光学点阵针对反射性表面的研究,本发明拓展 了二维光学点阵对漫反射型表面的测量,提供了一种高效率、稳定性强、高精度、较大范围、 可应对多种测量情况的表面形貌测量方法。
发明内容
本发明的目的在于提供一种高效率、稳定性强、高精度、较大范围、可应对多种测量情 况的漫反射型表面形貌测量方法。技术方案如下:
一种基于二维光学点阵的漫反射型表面形貌测量方法,包括下列步骤:
(1)搭建生成二维光学点阵的光路系统,由此光路系统生成的二维光学点阵被整体 放大后照射到被测物体表面,经由充当“小孔成像”的“小孔”的漫反射成像透镜后由相机 完成图像采集,保存的图像用于后续的表面形貌解算;
(2)将标准平面样品放置在被测物体位置上,二维光学点阵会投射到其表面并进行 漫反射成像,利用相机采集成像结果;
(3)采集完标准平面的点阵图像后,将被测物体放在同样位置,利用相同方法对被测物体表面进行测量;
(4)经过图像处理提取出二维光学点阵中各个点元素的位置偏移量Δx;
(5)设u为物距,v为像距,θ为预先标定的相机的观测角度,利用激光三角法对 被测形貌进行解算,将各点的偏移量带入到下式中的位置偏移量Δx之中,求解出各点 的高度变化量h,再利用插值拟合求解出被测形貌:
从上述技术方案可以看出,本发明基于二维光学点阵的漫反射型表面形貌测量方法至少 具有以下有益效果:
(1)本发明是利用激光三角法针对漫反射型表面形貌的测量方法,是根据几何光学原 理对表面形貌进行结算,解算过程中应用的数学模型较为简单,不涉及处理复杂相位信息。 且数学模型仅需一幅图像就可解得表面形貌,提高了测量效率,可以实现快速测量。
(2)同样,本发明由于不涉及到相位解算,测量过程受环境的影响较小,系统具有一 定的稳定性。
(3)本发明所采用的二维光学点阵具有高精度空间周期排列,使得测量具有较高的分 辨力,甚至可达微米级,保证了测量精度。
(4)本发明可归属为面结构光测量方法,相较于点、线、多线具有更大的测量范围,不需扫描机构就可以应对毫米甚至厘米尺度的测量范围。
(5)本发明所采用的二维光学点阵还具有空间周期可调的优势,改变空间光调制器的 内置参数或者调整透镜焦距等硬件参数,都可实现二维光学点阵空间周期的调整,从而应对 多种测量情况。
附图说明
图1基于二维光学点阵的漫反射型表面形貌测量方法的流程图
图2基于二维光学点阵的漫反射型表面形貌测量方法的数学模型原理图
图3基于二维光学点阵的漫反射型表面形貌测量系统输入到空间光调制器中的二维光 学晶格相位图
图4基于二维光学点阵的漫反射型表面形貌测量系统的光路示意图
图5基于二维光学点阵的漫反射型表面形貌测量系统的使用流程
图6基于二维光学点阵的漫反射型表面形貌测量系统所采用的二维光学点阵:(a)为相 机采集原图;(b)标记图中点元素的质心位置
图7基于二维光学点阵的漫反射型表面形貌测量系统测量时采集到的图像:(a)标准平 面图像;(b)被测面图像。
图8基于二维光学点阵的漫反射型表面形貌测量系统中所得图像经图像处理后的效果图
图9基于二维光学点阵的漫反射型表面形貌测量方法所得标准平面图像经图像处理后的结果
图10基于二维光学点阵的漫反射型表面形貌测量方法所得被测圆柱体平面图像经图像 处理后的结果
图11基于二维光学点阵的漫反射型表面形貌测量系统恢复的被测形貌:(a)观察角度一;(b)观察角度二
图12被测圆柱体的实际尺寸图示
附图标记说明如下:扩束透镜L1、扩束透镜L2、扩束透镜L3、扩束透镜L4、傅里叶
具体实施方式
基于二维光学点阵的漫反射型表面形貌测量方法的发明思路在于:目前已具备成熟的二 维光学点阵制备技术,本发明利用基于空间光调制器的光场调控方法来制得二维光学点阵。 由于被测物体表面的高度变化会对二维光学点阵的漫反射成像产生调制,首先将二维光学点 阵投射到没有高度变化的标准平面,进行漫反射成像,完成标定。再将二维光学点阵投射到 被测物体表面,进行同样的漫反射成像。比较被测物体表面的图像和标准平面的图像,会发 现被测物体表面的二维光学点阵图案相较于标准平面发生了变形,利用激光三角法对变形进 行解算,便可得到被测物体表面的高度变化,再经插值拟合之后便可恢复被测形貌。
本发明在进行表面形貌解算时采用激光三角法,其原理如下:
图1为激光三角法的几何模型图,其中h为被测点物体表面相较于标准平面的高度变化 量,u为物距,v为像距,θ为预先标定的相机的观测角度,Δx为相机探测器上二维光学点 阵中点元素因高度调制产生的位置偏移量。根据图1中的几何关系可以很容易推导出:
上式为激光三角法的计算公式,其中,物距u、像距v、角度θ都为已知量,位置偏移量 Δx的具体数值可通过图像处理得出。二维光学点阵的点元素在被测物体表面的投射位置即 为物体被测点,因此根据式(1)利用对应的Δx便可解算出该被测点的高度变化量h。通过 此方法,可以一次计算出二维光学点阵中各个点元素投射位置的高度变化量。二维光学点阵 中点元素间的距离即为空间周期,是严格相等的,在各点元素之间的高度进行插值拟合就可 以复原出这个被测物体的形貌。需要提出的是,对二维光学点阵中各个点元素同时使用激光 三角法,会使得测量结果存在一定误差,越远离光轴中心的点元素误差越大,但在本发明的 测量范围之内误差是可接受的。
为使本发明的目的、方案以及优点更加清楚明白,以下结合具体实施例并参照附图,对 本发明进一步详细说明。
本发明利用二维光学点阵实现漫反射型表面形貌的测量,系统装置包含如图2所示的测 量光路,首先对该测量光路作具体说明。基于二维光学点阵的漫反射型表面形貌测量系统主 要由激光光源1、扩束透镜2/3/4/5、分光棱镜6、半波片7、空间光调制器8、傅里叶变换 透镜9/12、掩膜板10、转折反射镜11、放大透镜13/14、漫反射成像透镜16、相机17共同组成。激光光源1出射激光,为了在测量时获得更大的测量范围,需要对该激光进行扩束处理。扩束透镜2/3和扩束透镜4/5为两组4f系统,激光光束经过这两组4f系统之后实现扩 束放大。从扩束透镜5出射的激光束经过分光棱镜6,保证只有水平方向的偏振光可以经过,然后再经过半波片7变成竖直方向的偏振光,照射到空间调制器8上。空间光调制器8预先设置好了参数,其中烧入了二维光学点阵对应的相位图,对光束进行相位调制,使其具有二维光学点阵的图案,并将光束反射回分光棱镜6,光束又被分光棱镜6反射到后面的光路之中。此时二维光学点阵的图案虽然已经被调制到光束中,但是由于高频杂散信息的影响,此时二维光学点阵并不清晰,还需要后面光路进行滤波处理。光束继续经过傅里叶变换透镜9, 在掩膜板10处完成从空间域变换到空间频域的傅里叶变换,此时掩膜板10处存在着各个级 次的频域信息。掩膜板10将其他级次频域信息过滤,只保留基频信息进入后面的光路,完 成滤波。光束到达反射镜11处由于空间的问题,利用反射镜11对其进行光路转折。之后利 用傅里叶变换透镜12对基频信息进行反傅里叶变换,将光束由空间频域变回空间域,此时 便可得到清晰规则的二维光学点阵。此时虽然得到二维光学点阵,但是其空间周期过小,进 行漫反射测量时图像质量差,并不适用于漫反射测量,所以后面的光路还要对二维光学点阵 进行整体放大。放大透镜13/14构成了一组4f放大系统,当二维光学点阵光束经过时实现 有效的整体放大。漫反射成像透镜16是根据漫反射成像的需要,放置这一透镜来充当“小孔 成像”的“小孔”。相机17完成最后的图像采集,保存的图像用于后续的表面形貌解算过程中。
基于上述基于二维光学点阵的漫反射型表面形貌测量系统,本发明提供了基于二维光学 点阵的漫反射型表面形貌测量方法,以下进行详细说明。图3为本发明实施例的基于二维光 学点阵的漫反射型表面形貌测量方法的流程图,包括以下步骤:
步骤A:首先将已经仿真好的二维光学点阵相位图烧入到空间光调制器8中,完成空间 光调制器的设置。启动激光器1,发射的激光经扩束照射到空间光调制器8上,再经傅里叶 滤波与4f系统放大得到测量所需的二维光学点阵。为了后续的测量计算需要,首先需要获 知二维光学点阵的空间周期大小。将相机摆放到二维光学点阵可以直射的位置上,采集图像。 利用MATLAB计算出二维光学点阵中各个点元素之间的平均距离,即为二维光学点阵的空 间周期,如图4所示。本实施例中计算的空间周期289.31微米。
步骤B:将标准平面样品放于图2中被测物体15位置上,二维光学点阵会投射到其表 面并进行漫反射成像,利用相机17采集成像结果。本实施例将一平面反射镜作为标准平面, 利用相机17采集到的图像如图5(a)所示。
步骤C:采集完标准平面的点阵图像后,将被测物体放在同样位置,利用相同方法对被 测物体表面进行测量。本实施例采用的被测样品为中性笔笔杆的一部分,其表面可进行有效 的漫反射,采集图像质量较好,如图5(b)所示。与上图5(a)进行对比,仔细观察会发现图像中二维光学点阵的图案发生了改变。
步骤D:由于漫反射采集到的图像质量较差,在进行数据计算前需进行图像处理的工作, 经过图像处理提取出二维光学点阵中各个点元素的位置偏移量Δx。
步骤E:得到点元素的位置偏移量Δx之后,就可以利用激光三角法对被测形貌进行解 算。将各点的偏移量带入到下式(1)中的位置偏移量Δx之中,求解出各点的高度变化量h, 再利用插值拟合便可求解出被测形貌,恢复效果如图6所示。

Claims (1)

1.一种基于二维光学点阵的漫反射型表面形貌测量方法,包括下列步骤:
(1)搭建生成二维光学点阵的光路系统,由此光路系统生成的二维光学点阵被整体放大后照射到被测物体表面,经由充当“小孔成像”的“小孔”的漫反射成像透镜后由相机完成图像采集,保存的图像用于后续的表面形貌解算。
(2)将标准平面样品放置在被测物体位置上,二维光学点阵会投射到其表面并进行漫反射成像,利用相机采集成像结果;
(3)采集完标准平面的点阵图像后,将被测物体放在同样位置,利用相同方法对被测物体表面进行测量;
(4)经过图像处理提取出二维光学点阵中各个点元素的位置偏移量△x;
(5)设u为物距,v为像距,θ为预先标定的相机的观测角度,利用激光三角法对被测形貌进行解算,将各点的偏移量带入到下式中的位置偏移量△x之中,求解出各点的高度变化量h,再利用插值拟合求解出被测形貌:
CN201811173059.5A 2018-10-09 2018-10-09 基于二维光学点阵的漫反射型表面形貌测量方法 Active CN109579747B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811173059.5A CN109579747B (zh) 2018-10-09 2018-10-09 基于二维光学点阵的漫反射型表面形貌测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811173059.5A CN109579747B (zh) 2018-10-09 2018-10-09 基于二维光学点阵的漫反射型表面形貌测量方法

Publications (2)

Publication Number Publication Date
CN109579747A true CN109579747A (zh) 2019-04-05
CN109579747B CN109579747B (zh) 2020-10-30

Family

ID=65919967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811173059.5A Active CN109579747B (zh) 2018-10-09 2018-10-09 基于二维光学点阵的漫反射型表面形貌测量方法

Country Status (1)

Country Link
CN (1) CN109579747B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110376754A (zh) * 2019-07-26 2019-10-25 业成科技(成都)有限公司 光学系统偏振结构
CN111060038A (zh) * 2020-01-02 2020-04-24 云谷(固安)科技有限公司 一种膜表面平整度的检测装置及方法
CN116485918A (zh) * 2023-06-25 2023-07-25 天府兴隆湖实验室 一种标定方法、系统及计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080186512A1 (en) * 2005-08-01 2008-08-07 Bong Kee Apparatus and Method for Measuring Curvature Using Multiple Beams
CN202533046U (zh) * 2012-04-01 2012-11-14 长安大学 一种道路路面构造深度的激光路面检测装置
CN106197322A (zh) * 2016-09-20 2016-12-07 电子科技大学 一种面结构光三维测量系统
CN106705898A (zh) * 2017-01-24 2017-05-24 浙江四点灵机器人股份有限公司 一种点阵结构光测量平面度的方法
CN107631699A (zh) * 2017-08-18 2018-01-26 中北大学 基于网格结构激光的焊缝三维形貌构建方法
CN108303038A (zh) * 2017-12-21 2018-07-20 天津大学 基于二维光学点阵的反射型面形测量方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080186512A1 (en) * 2005-08-01 2008-08-07 Bong Kee Apparatus and Method for Measuring Curvature Using Multiple Beams
CN202533046U (zh) * 2012-04-01 2012-11-14 长安大学 一种道路路面构造深度的激光路面检测装置
CN106197322A (zh) * 2016-09-20 2016-12-07 电子科技大学 一种面结构光三维测量系统
CN106705898A (zh) * 2017-01-24 2017-05-24 浙江四点灵机器人股份有限公司 一种点阵结构光测量平面度的方法
CN107631699A (zh) * 2017-08-18 2018-01-26 中北大学 基于网格结构激光的焊缝三维形貌构建方法
CN108303038A (zh) * 2017-12-21 2018-07-20 天津大学 基于二维光学点阵的反射型面形测量方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
凌秋雨 等: "基于二维光学点阵形变的面形测量", 《光学精密工程》 *
高春甫 等: "粗糙表面精度测量系统的研究", 《光学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110376754A (zh) * 2019-07-26 2019-10-25 业成科技(成都)有限公司 光学系统偏振结构
CN111060038A (zh) * 2020-01-02 2020-04-24 云谷(固安)科技有限公司 一种膜表面平整度的检测装置及方法
CN116485918A (zh) * 2023-06-25 2023-07-25 天府兴隆湖实验室 一种标定方法、系统及计算机可读存储介质
CN116485918B (zh) * 2023-06-25 2023-09-08 天府兴隆湖实验室 一种标定方法、系统及计算机可读存储介质

Also Published As

Publication number Publication date
CN109579747B (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN105783775B (zh) 一种镜面及类镜面物体表面形貌测量装置与方法
CN109579747A (zh) 基于二维光学点阵的漫反射型表面形貌测量方法
Sansoni et al. A novel, adaptive system for 3-D optical profilometry using a liquid crystal light projector
CN109269438A (zh) 一种用于多层复杂微纳结构检测的结构光照明显微测量方法
CN108007375B (zh) 一种基于合成波长双光源剪切散斑干涉的三维变形测量方法
CN106643559A (zh) 一种基于混合干涉条纹的白光显微干涉形貌重建方法
CN106017325A (zh) 一种改进的复杂表面和不规则物体体积的非接触光学测量方法
CN107990846B (zh) 基于单帧结构光的主被动结合深度信息获取方法
CN106595529B (zh) 基于虚拟牛顿环的大曲率半径非零位干涉测量方法及装置
CN107063122B (zh) 光学非球面面形的检测方法及其装置
CN109059787B (zh) 一种基于横向剪切干涉的玻璃板厚度分布测量方法及系统
CN108332684A (zh) 一种基于结构光照明显微技术的三维轮廓测量方法
CN108895986A (zh) 基于条纹成像投影的显微三维形貌测量装置
CN109631798A (zh) 一种基于π相移方法的三维面形垂直测量方法
CN108303038A (zh) 基于二维光学点阵的反射型面形测量方法和装置
CN111982026A (zh) 一种高反射物体曲面的光栅投影三维测量装置和测量方法
Dirckx et al. Optoelectronic moiré projector for real-time shape and deformation studies of the tympanic membrane
CN109341571A (zh) 一种双波长同步干涉的表面形貌测量装置和方法
US20060232788A1 (en) Method and a device for measuring the three dimension surface shape by projecting moire interference fringe
Dvoynishnikov et al. Optoelectronic method of contactless reconstruction of the surface profile of complexly shaped three-dimensional objects
Dai et al. Shape measurement by digital speckle temporal sequence correlation with digital light projector
KR101555027B1 (ko) 3차원 형상 측정 장치 및 방법
CN103954238A (zh) 一种基于高斯函数的光纤干涉条纹图像背景光补偿方法
CN113916154A (zh) 一种基于调制度半宽恒定的自校准结构光测量方法
Xu et al. Range measurement from defocus gradient

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant