CN109576609B - 软磁性FeCoNiBCP高熵非晶合金及其制备方法 - Google Patents

软磁性FeCoNiBCP高熵非晶合金及其制备方法 Download PDF

Info

Publication number
CN109576609B
CN109576609B CN201811415787.2A CN201811415787A CN109576609B CN 109576609 B CN109576609 B CN 109576609B CN 201811415787 A CN201811415787 A CN 201811415787A CN 109576609 B CN109576609 B CN 109576609B
Authority
CN
China
Prior art keywords
alloy
amorphous alloy
heat treatment
equal
entropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811415787.2A
Other languages
English (en)
Other versions
CN109576609A (zh
Inventor
姚可夫
施凌翔
邵洋
范子宜
贾蓟丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201811415787.2A priority Critical patent/CN109576609B/zh
Publication of CN109576609A publication Critical patent/CN109576609A/zh
Application granted granted Critical
Publication of CN109576609B publication Critical patent/CN109576609B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/008Amorphous alloys with Fe, Co or Ni as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种软磁性能的FeCoNiBCP高熵非晶合金,其原子百分比组成为FeaCobNicBdCePf,其中,30<a≤45,10≤b≤25,15≤c≤30,0≤d≤20,0<e≤20,0<f≤20,15≤d+e+f≤30。本发明还公开了该高熵非晶合金的制备方法。与现有的技术相比,本发明的优点是:具有高的饱和磁感应强度Bs(多数合金Bs大于1.0T,可达到1.24T),极低的矫顽力(可达到0.5A/m),良好的热稳定性,因此是一种优异的软磁材料,在磁性功能器件中的应用具有优良的前景。

Description

软磁性FeCoNiBCP高熵非晶合金及其制备方法
技术领域
本发明属于高熵非晶合金材料及其制备技术领域,特别涉及具有软磁性的FeCoNiBCP高熵非晶合金及其制备方法。
背景技术
有别于传统的晶态合金,非晶合金是长程无序的合金。因此,非晶合金具有一些晶态合金不具备的优异性能。其中,非晶合金的软磁性能在1967年被首次报道,并立刻引起了科研及工业界的极大重视,成为了几十年来软磁材料研究的热点之一。
对于具有软磁性能的非晶合金而言,因原子呈无序排列,没有晶界阻碍磁畴壁的移动,使得其具有小的矫顽力,因此磁滞损耗小;同时,原子的无序排列,使Fe基非晶合金具有较大的电阻率,导致涡流损耗较小。综上所述,软磁非晶合金具有优异的综合软磁性能。
高熵合金同样是一类特殊的新型合金。其特征为体系的混合熵ΔSmix≥1.5R,在成分上表现为各组元的原子百分比相等或基本相等。这与传统合金仅含1至2种主要组成元素的成分的设计思路差别很大。这种成分特点,使得高熵合金具有一些传统合金无法比拟的优异性能,如高硬度、高强度、高耐磨、高耐蚀、高电阻、高热阻等。
近年来的研究成果表明,部分高熵合金成分在一定条件下,可以制备成具有非晶态结构的合金材料,即高熵非晶合金。例如,2002年,日本东北大学的Ma等人制备出了Ti20Zr20Hf20Cu20M20(M=Fe,Co,Ni)非晶合金条带。2011年,中科院物理所的Wang等人制备出Zn20Ca20Sr20Yb20(Li0.55Mg0.45)20的高熵块体非晶合金。此外日本东北大学的Takeuchi等人通过玻璃包覆提纯法制备出了临界尺寸达到厘米量级的Pd20Pt20Cu20Ni20P20高熵块体非晶合金。随后,清华大学姚可夫研究组研发出多个有大非晶形成能力的高熵块体非晶合金系。近年来,对于高熵非晶合金而言,研究者们更多研究的是其力学性能,而对于其功能特性,如光、电、磁学性能,相关的研究却较少。最近,高熵合金及高熵非晶合金的磁学性能,特别是软磁性能,开始受到关注:大连理工大学的Zhang等人制备了一系列Fe25Co25Ni25(B,C,Si,P)25具有软磁性能的高熵非晶合金[Journal of Alloys and Compounds,2017,693(25-31);Intermetallics,2015,66(8-12);Journal of Non-Crystalline Solids,2018,487(60-64)],具有较低的矫顽力(0.8-6.4A/m),但由于其铁磁性元素Fe,Co,Ni含量相对较低(原子百分比含量75%),故饱和磁感应强度偏低(0.71-0.87T)。因此,开发兼具低矫顽力和较高饱和磁感应强度的高熵非晶合金是很有必要的。
发明内容
本发明提供了具有较高饱和磁感应强度、极低矫顽力、较大非晶形成成分范围的高熵非晶合金及其制备方法。具体技术方案如下。
一种具有优异软磁性能的FeCoNiBCP高熵非晶合金,分子式为FeaCobNicBdCePf,下标a、b、c、d、e、f为各对应元素的原子百分比,满足30<a≤45,10≤b≤25,15≤c≤30,0≤d≤20,0<e<20,0<f<20,15≤d+e+f≤30。
进一步,所述高熵非晶合金,其饱和磁感应强度Bs≥0.8T,优选Bs≥1.0T,更优选1.24T。
进一步,所述非晶合金在低温去应力热处理后(即在低于非晶转变温度Tg或低于晶化温度Tx约50-100度以下热处理后),非晶合金的矫顽力Hc低于15-22A/m,优选Hc≤5.0-6.0A/m,更优选Hc≤0.5A/m。
所述高熵非晶合金的制备方法,包括以下步骤:
(1)将合金原料按化学式配比转换成质量百分比后进行称量配料,使用的原料为纯度大于99.5wt%的Fe、Co、Ni、B、C及纯度大于99.0wt%的Fe3P;
(2)采用感应熔炼炉,在抽真空后,充入保护气体,再将配好的合金元素原料进行多次熔炼,以保证成分均匀,最后得到母合金锭;
(3)将母合金锭进行破碎;
(4)将破碎后的小母合金块熔化,然后采用单辊旋淬法制备出高熵非晶合金条带;
(5)将所述高熵非晶合金条带在热处理炉内进行热处理,其中,所述热处理时间大于15min,所述热处理温度为400℃。
进一步,采用X射线衍射仪检测热处理前及热处理后样品的结构,采用振动样品磁强计(VSM)测量样品的饱和磁感应强度Bs(最大外加磁场为800kA/m),软磁直流测试装置测量样品的B800和Hc(最大外加磁场为800A/m)。
本发明的有益效果:与现有的技术相比,本发明的高熵非晶合金具有高的饱和磁感应强度(可达到1.24T),极低的矫顽力(可达到0.5A/m),良好的热稳定性,因此是一种优异的软磁材料,在磁性功能器件中的应用具有优良的前景。
附图说明
图1是以本发明实施例1-12中各合金成分通过单辊旋淬法获得的条带的X射线衍射图谱。
图2是本发明实施例典型成分非晶合金晶化过程的DSC曲线。
图3是本发明实施例1–12成分的非晶条带的饱和磁感应强度Bs随着成分变化的分布情况图。
图4是本发明实施例1–12中成分的非晶条带的矫顽力Hc随着成分变化的分布情况图。
图5是以本发明实施例13-14中各合金成分通过单辊旋淬法获得的条带对应的X射线衍射图谱。
具体实施方式
下面通过附图和实施例对本发明进行具体说明,但本发明并不局限于此。
表1实施例1-12及对比例的磁学性能
Figure BDA0001879435060000031
Figure BDA0001879435060000041
实施例1-12:制备Fe40Co20Ni20(B,C,P)20高熵非晶合金
设计的高熵合金成分分别为:Fe40Co20Ni20C7P13(实施例1)、Fe40Co20Ni20C10P10(实施例2)、Fe40Co20Ni20B3C7P10(实施例3)、Fe40Co20Ni20B5C5P10(实施例4)、Fe40Co20Ni20B5C7P8(实施例5)、Fe40Co20Ni20B7C3P10(实施例6)、Fe40Co20Ni20B7C5P8(实施例7)、Fe40Co20Ni20B7C7P6(实施例8)、Fe40Co20Ni20B9C1P10(实施例9)、Fe40Co20Ni20B9C3P8(实施例10)、Fe40Co20Ni20B9C5P6(实施例11)、Fe40Co20Ni20B9C7P4(实施例12),合金成分见表一所示。实施例1-12首先根据化学成分配比进行配料,再采用感应熔炼炉,在抽真空后,充入保护气体,再将配好的原料进行多次熔炼,以保证成分均匀,最后得到母合金锭。将母合金锭进行破碎。将破碎后的小母合金块熔化,然后采用单辊旋淬法制备出高熵非晶合金条带。将所述高熵非晶合金条带在热处理炉内进行去应力低温热处理,其中,所述热处理时间约为15min以上,所述热处理温度约为400℃。
采用X射线衍射仪检测热处理前及热处理后条带样品的结构。图1为实施例1-12中各合金成分通过单辊旋淬法获得的条带的X射线衍射图谱,图谱为非晶合金典型的漫散射峰,没有与晶态材料相对应的尖锐衍射峰,表明制备的高熵非晶合金具有完全非晶结构。经低温(400℃)热处理15min后,各条带的X射线衍射图谱与图1相似,也是典型的非晶合金X射线衍射图谱。
采用热分析仪(DSC)测试了典型成分Fe40Co20Ni20B9C3P8(实施例10)非晶合金条带的升温晶化过程的DSC曲线,如图2所示。可见其非晶转变温度Tg=436℃,起始晶化温度Tx=472℃。
采用振动样品磁强计(VSM)测量样品的饱和磁感应强度Bs(最大外加磁场为800kA/m),采用软磁直流测试装置测量样品的B800和Hc(最大外加磁场为800A/m)。所测得的磁学性能如表1所示。图3所示为实施例1-12中不同B、C、P含量的各成分非晶合金的Bs分布图。可见各合金的Bs为0.86-1.24T,多数合金的Bs约大于1.0T。
图4为实施例1-12中不同B、C、P含量的各成分高熵非晶合金条带在经过400℃热处理15min后的矫顽力Hc分布图。可见各合金的Hc为0.5-21.2A/m,多数合金的Hc约小于5.6A/m,甚至达0.5A/m。
比较例1:Fe25Co25Ni25B7.5C7.5P10
该成分选自中国专利CN104878324A,由于该专利的合金铁磁性元素Fe,Co,Ni含量较低,原子百分比含量为75%,因此Bs不高,典型的Fe25Co25Ni25B7.5C7.5P10饱和磁化强度(Bs)为0.80T,矫顽力为3.4A/m。较低的Bs将导致制作出来的器件体积增大,限制了设备向小型化、高效化方向发展。
比较例2:Fe25Co25Ni25Al25
该高熵合金成分选自文献[Journal of Magnetism and Magnetic Materials,2014,371(60-68)],为纯晶态的高熵合金,因此矫顽力较大,为224.5A/m,软磁性能较差。
实施例13-14:制备Fe31Co20Ni30B6C3P10及Fe44Co18Ni18B7C3P10高熵非晶合金
设计了高熵合金成分Fe31Co20Ni30B6C3P10(实施例13)和Fe44Co18Ni18B7C3P10(实施例14)。并根据化学成分配比进行配料,再采用感应熔炼炉,在抽真空后,充入保护气体,再将配好的原料进行多次熔炼,以保证成分均匀,最后得到母合金锭。将母合金锭进行破碎。将破碎后的小母合金块熔化,然后采用单辊旋淬法制备出高熵非晶合金条带。将所述高熵非晶合金条带在热处理炉内进行热处理。其中,所述热处理时间约为15min,所述热处理温度约为400℃。
表2实施例13-14的磁学性能
Figure BDA0001879435060000051
采用X射线衍射仪检测热处理前及热处理后条带样品的结构,图5为实施例13-14中各成分合金通过单辊旋淬法制备的条带退火前的X射线衍射图谱,图谱为非晶合金典型的漫散射峰,没有与晶态材料相对应的尖锐衍射峰,表明制备的高熵非晶合金具有完全非晶结构。经低温(400℃)退火15min后,各条带的X射线衍射图谱与图1相似,也是典型的非晶合金X射线衍射图谱。
采用软磁直流测试装置测量了退火条带样品的B800和Hc(最大外加磁场为800A/m)。所测得的磁学性能如表2所示。可见Fe31Co20Ni30B6C3P10(实施例13)和Fe44Co18Ni18B7C3P10(实施例14)非晶合金条带的B800分别为0.7T和0.97T、Hc分别为2.2A/m和1.2A/m(见表二)。
上述实施例对本发明的技术方案进行了详细说明。显然,本发明并不局限于所描述的实施例。基于本发明中的实施例,熟悉本技术领域的人员还可据此做出多种变化,但任何与本发明等同或相类似的变化都属于本发明保护的范围。

Claims (5)

1.一种具有软磁性能的FeCoNiBCP高熵非晶合金,其特征在于,所述合金的分子式为Fe40Co20Ni20BdCePf,下标d、e、f为各对应元素的原子百分比,满足d为0、5、7,e为3、5、10, f为10,d+e+f为20。
2.权利要求1所述的高熵非晶合金的制备方法,其特征在于,包括以下步骤:
(1)采用纯度大于99.5 wt%的Fe、Co、Ni、B、C及纯度大于99.0 wt%的Fe3P按权利要求1所述的合金元素进行配料;
(2)采用感应熔炼炉,在抽真空后,充入保护气体,再将配好的合金元素原料进行熔炼,得到母合金锭;
(3)将母合金锭进行破碎,得到小母合金块;
(4)将破碎后的小母合金块熔化,然后采用单辊旋淬法制备出高熵非晶合金条带;
(5)将所得高熵非晶合金条带进行热处理,得到所述高熵非晶合金。
3.根据权利要求2所述的制备方法,其特征在于:步骤(2)中所述熔炼为进行多次熔炼,以保证成分均匀。
4.根据权利要求2所述的制备方法,其特征在于:步骤(5)中所述热处理在热处理炉内进行,其中,所述热处理时间大于15 min,所述热处理温度为400℃。
5.根据权利要求2所述的制备方法,其特征在于:还包括步骤(6)采用X射线衍射仪检测热处理前及热处理后样品的结构,采用振动样品磁强计测量样品的饱和磁感应强度B s,采用软磁直流测试装置测量样品的B 800H c
CN201811415787.2A 2018-11-26 2018-11-26 软磁性FeCoNiBCP高熵非晶合金及其制备方法 Active CN109576609B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811415787.2A CN109576609B (zh) 2018-11-26 2018-11-26 软磁性FeCoNiBCP高熵非晶合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811415787.2A CN109576609B (zh) 2018-11-26 2018-11-26 软磁性FeCoNiBCP高熵非晶合金及其制备方法

Publications (2)

Publication Number Publication Date
CN109576609A CN109576609A (zh) 2019-04-05
CN109576609B true CN109576609B (zh) 2021-07-27

Family

ID=65924509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811415787.2A Active CN109576609B (zh) 2018-11-26 2018-11-26 软磁性FeCoNiBCP高熵非晶合金及其制备方法

Country Status (1)

Country Link
CN (1) CN109576609B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938785B (zh) * 2019-12-10 2022-03-15 大连理工大学 一种具有软磁性能的Co基块体非晶合金
CN113981333B (zh) * 2021-10-15 2022-04-19 中国航发北京航空材料研究院 一种高熵增强非晶合金复合材料及其制备方法
CN115044841B (zh) * 2022-05-13 2023-05-02 大连理工大学 一种兼具高饱和磁感应强度和大过冷液相区间的Co基块体非晶合金

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976274A (en) * 1997-01-23 1999-11-02 Akihisa Inoue Soft magnetic amorphous alloy and high hardness amorphous alloy and high hardness tool using the same
JP2009120927A (ja) * 2007-11-19 2009-06-04 Nec Tokin Corp 軟磁性非晶質合金
CN102776430A (zh) * 2012-08-20 2012-11-14 太原理工大学 AlCoCrFeNiTix高熵合金材料及其制备方法
CN104745972A (zh) * 2013-12-27 2015-07-01 井上明久 具有高延展性、高加工性的高磁通密度软磁铁基非晶合金

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8337584B2 (en) * 2008-12-01 2012-12-25 Saint-Gobain Coating Solution Coating for a device for forming glass products
CN104878324B (zh) * 2015-06-01 2017-03-08 大连理工大学 一种软磁性FeCoNiMB高熵块体非晶合金及其制备方法
CN108359918A (zh) * 2018-02-07 2018-08-03 河南中岳非晶新型材料股份有限公司 一种具有高塑性的铁基软磁高熵非晶合金及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976274A (en) * 1997-01-23 1999-11-02 Akihisa Inoue Soft magnetic amorphous alloy and high hardness amorphous alloy and high hardness tool using the same
JP2009120927A (ja) * 2007-11-19 2009-06-04 Nec Tokin Corp 軟磁性非晶質合金
CN102776430A (zh) * 2012-08-20 2012-11-14 太原理工大学 AlCoCrFeNiTix高熵合金材料及其制备方法
CN104745972A (zh) * 2013-12-27 2015-07-01 井上明久 具有高延展性、高加工性的高磁通密度软磁铁基非晶合金

Also Published As

Publication number Publication date
CN109576609A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
CN109576609B (zh) 软磁性FeCoNiBCP高熵非晶合金及其制备方法
CN104878324B (zh) 一种软磁性FeCoNiMB高熵块体非晶合金及其制备方法
Zuo et al. Effect of metalloid elements on magnetic properties of Fe-based bulk metallic glasses
Zhai et al. Influence of Ni substitution for B on crystallization behavior, microstructure and magnetic properties of FeBCu alloys
Dong et al. Effect of Dy addition on magnetocaloric effect in PrCo2 compound
Kramer et al. Origins of coercivity in the amorphous alloy Nd-Fe-Al
Liu et al. Preparation, thermal stability, and magnetic properties of Fe Co Zr Mo W B bulk metallic glass
JP3947066B2 (ja) 磁性合金材料
Sakka et al. Rapid quenching and properties of hard magnetic materials in MnAl-X (X= Ti, Cu, Ni, C, B) systems
CN111218625B (zh) 一种具有高饱和磁感应强度的软磁性Co基块体非晶合金及其制备方法
Makino et al. Magnetic properties of zero-magnetostrictive nanocrystalline Fe–Zr–Nb–B soft magnetic alloys with high magnetic induction
CN106887292B (zh) SmCo5基永磁薄带磁体及其制备方法
Srinivas et al. Magnetic properties of icosahedral Al-Mo-Fe and Al-Ta-Fe alloys
JP2011094229A (ja) 非晶質磁性合金、関連物品及び方法
CN105655079A (zh) 一种铁基纳米晶软磁合金材料及其制备方法
CN110938785B (zh) 一种具有软磁性能的Co基块体非晶合金
Makino et al. Fe-metalloids bulk glassy alloys with high Fe content and high glass-forming ability
CN110468353B (zh) 一种高饱和磁感应强度铁基非晶合金及制备方法
CN108504970B (zh) 一种低脆性锆基非晶合金及其制备方法
Xu et al. The Structure and Magnetic Properties of Co 77 Zr 18 W 5 Melt-Spun Ribbons
RU2791679C1 (ru) Аморфный магнитный сплав на основе системы железо-кремний
Zhukov et al. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys
Chakri et al. Crystallization kinetics and magnetic properties of Fe 40 Ni 40 B 20 bulk metallic glass
Wan et al. Effects of Al content and solidification rate on the crystal orientation of directionally solidified 1.3 wt% Si non-oriented electrical steel
CN104004961A (zh) 一种FeAl磁致伸缩合金材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant