CN109571483B - 一种空间机械臂任务轨迹规划域构建方法 - Google Patents
一种空间机械臂任务轨迹规划域构建方法 Download PDFInfo
- Publication number
- CN109571483B CN109571483B CN201910006517.4A CN201910006517A CN109571483B CN 109571483 B CN109571483 B CN 109571483B CN 201910006517 A CN201910006517 A CN 201910006517A CN 109571483 B CN109571483 B CN 109571483B
- Authority
- CN
- China
- Prior art keywords
- space
- base
- manipulator
- space manipulator
- posture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010276 construction Methods 0.000 title claims description 14
- 238000007667 floating Methods 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 34
- 238000012512 characterization method Methods 0.000 claims description 21
- 239000013598 vector Substances 0.000 claims description 21
- 230000036544 posture Effects 0.000 description 41
- 239000011159 matrix material Substances 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
本发明实施例提供了一种空间机械臂任务轨迹规划域构建方法,包括:依据基座自由漂浮空间机械臂的一般运动学模型,获得空间机械臂等效虚拟机械臂模型;依据所述空间机械臂等效虚拟机械臂模型,获得空间机械臂不同基座控制模式下的表征空间;依据所述空间机械臂不同基座控制模式下的表征空间,获得空间机械臂任务轨迹规划域。根据本发明实施例提供的技术方案,可有效提高基座自由漂浮空间机械臂任务轨迹规划的成功率。
Description
【技术领域】
本发明涉及一种空间机械臂任务轨迹规划域构建方法,属于空间机械臂任务规划领域。
【背景技术】
随着空间探索技术的不断发展,越来越多的空间任务需要被完成。空间机械臂由于其灵活性高、操作能力强、工作范围广等特点,被广泛用于执行各种空间任务,其中最常见的是具有自由漂浮基座的空间机械臂,即基座自由漂浮空间机械臂。为使基座自由漂浮空间机械臂能够顺利完成空间任务,需构建空间机械臂任务轨迹规划域,进而在任务轨迹规划域内进行轨迹规划以完成空间任务。但基座自由漂浮空间机械臂具有非完整特性,在执行空间任务时基座与机械臂之间的耦合运动会导致机械臂工作能力退化,这将严重影响任务轨迹规划域的构建。因此,为了保证空间任务的顺利完成,亟需开展空间机械臂任务轨迹规划域构建方法的研究。
现有机械臂任务轨迹规划域构建方法研究主要围绕机械臂的表征空间展开。通过对表征空间分析得到机械臂的任务轨迹规划域。然而现有研究仅针对地面固定机械臂,未考虑漂浮基座运动对表征空间建立的影响,同时对表征空间的分析方法具有局限性,在所得任务轨迹规划域中进行轨迹规划成功率低。因此不适用于基座自由漂浮空间机械臂任务轨迹规划域的构建。
【发明内容】
有鉴于此,本发明实施例提供了一种空间机械臂任务轨迹规划域构建方法,通过建立基座自由漂浮空间机械臂的等效虚拟机械臂模型,并从空间机械臂不同基座控制模式下的表征空间出发提出任务轨迹规划域构建方法,以实现空间机械臂任务轨迹规划域的构建。
本发明实施例提供了一种空间机械臂任务轨迹规划域构建方法,包括:
依据基座自由漂浮空间机械臂的一般运动学模型,获得空间机械臂等效虚拟机械臂模型;
依据所述空间机械臂等效虚拟机械臂模型,获得空间机械臂不同基座控制模式下的表征空间;
依据所述空间机械臂不同基座控制模式下的表征空间,获得空间机械臂任务轨迹规划域。
上述方法中,所述依据基座自由漂浮空间机械臂的一般运动学模型,获得空间机械臂等效虚拟机械臂模型,包括:
依据基座自由漂浮空间机械臂的一般运动学模型,利用基座自由漂浮空间机械臂线动量可积分性及系统线动量守恒,获得空间机械臂等效虚拟机械臂模型,进而获得空间机械臂等效虚拟机械臂的末端位置矢量pE:
其中,i=1,2,…,n;n为空间机械臂自由度数;为等效虚拟机械臂模型中第i关节到第i杆质心矢量;为等效虚拟机械臂模型中第i杆质心到第i+1关节矢量;为等效虚拟机械臂模型中第i杆质心到第i+1关节矢量。
上述方法中,所述依据所述空间机械臂等效虚拟机械臂模型,获得空间机械臂不同基座控制模式下的表征空间,包括:
(1)利用如下公式获得空间机械臂基座固定表征空间状态变量:
其中,ξFRS为空间机械臂基座固定表征空间状态变量;ξ1,ξ2,…,ξm为根据任务要求所选构成ξFRS的状态子变量;x1,x1,…,xm分别为ξ1,ξ2,…,ξm中与基座运动无关的变量集合;为预设的常数,表示基座位置不变;为预设的常数,表示基座姿态不变;m为表征空间维度;
依据所述空间机械臂基座固定表征空间状态变量ξFRS,利用如下公式获得空间机械臂基座固定表征空间:
ξi min≤ξi≤ξi max,i=1,2,…,m}
其中,RFRS为空间机械臂基座固定表征空间;ξi min为ξFRS中第i个状态子变量ξi的最小值;ξi max为ξFRS中第i个状态子变量ξi的最大值;
(2)利用如下公式获得空间机械臂基座姿态受限表征空间状态变量:
其中,ξCRS为空间机械臂基座姿态受限表征空间状态变量;ξ1,ξ2,…,ξm为根据任务要求所选构成ξCRS的状态子变量;x1,x1,…,xm分别为ξ1,ξ2,…,ξm中与基座运动无关的变量集合;θ=[θ1,θ2,…,θn]T∈Rn×1为空间机械臂基座姿态受限时的关节角度;为预设的常数,表示基座位姿不变;
依据所述空间机械臂基座姿态受限表征空间状态变量ξCRS,利用如下公式获得空间机械臂基座姿态受限表征空间:
ξi min≤ξi≤ξi max,i=1,2,…,m}
其中,RCRS为空间机械臂基座姿态受限表征空间;ξi min为ξCRS中第i个状态子变量ξi的最小值;ξi max为ξCRS中第i个状态子变量ξi的最大值;
(3)利用如下公式获得空间机械臂最大可达表征空间状态变量:
ξMRS=[ξ1(x1,θ,Ψ0),ξ2(x2,θ,Ψ0),…,ξm(xm,θ,Ψ0)]T∈Rm
其中,ξMRS为空间机械臂最大可达表征空间状态变量;ξ1,ξ2,…,ξm为根据任务要求所选构成ξMRS的状态子变量;x1,x1,…,xm分别为ξ1,ξ2,…,ξm中与基座运动无关的变量集合;θ=[θ1,θ2,…,θn]T∈Rn×1为空间机械臂基座自由漂浮时的关节角度;Ψ0∈R3×1为空间机械臂基座自由漂浮时的基座姿态;
依据所述空间机械臂基座自由漂浮时表征空间状态变量ξMRS,利用如下公式获得空间机械臂最大可达表征空间:
RMRS={ξMRS|ξMRS=[ξ1(x1,θ,Ψ0),ξ2(x2,θ,Ψ0),…,ξm(xm,θ,Ψ0)]T,
ξi min≤ξi≤ξi max,i=1,2,…,m
其中,RMRS为空间机械臂最大可达表征空间;ξi min为ξMRS中第i个状态子变量ξi的最小值;ξi max为ξMRS中第i个状态子变量ξi的最大值;为空间机械臂基座自由漂浮时基座理论最小可达姿态;为空间机械臂基座自由漂浮时基座理论最大可达姿态;为空间机械臂基座自由漂浮时基座姿态理论可达范围;
(4)利用如下公式获得空间机械臂有保证表征空间RGRS:
(5)利用如下公式获得空间机械臂基座姿态实际偏转可达范围:
其中,为空间机械臂基座实际偏转的最小可达姿态;为空间机械臂基座实际偏转的最大可达姿态;为空间机械臂在初始状态下基座的最小可达姿态;为空间机械臂在初始状态下基座的最大可达姿态;为空间机械臂在任务期望点状态下基座的最小可达姿态;为空间机械臂在任务期望点状态下基座的最大可达姿态;为空间机械臂基座受偏转限制的最小姿态;为空间机械臂基座受偏转限制的最大姿态;
上述方法中,所述依据所述空间机械臂不同基座控制模式下的表征空间,获得空间机械臂任务轨迹规划域,包括:
利用如下公式获得空间机械臂基座姿态实际偏转可达范围:
利用如下公式获得基座自由漂浮空间机械臂的任务轨迹规划域:
其中,RPPD为基座自由漂浮空间机械臂的任务轨迹规划域。
由以上技术方案可以看出,本发明实施例具有以下有益效果:
本发明实施例的技术方案中,依据基座自由漂浮空间机械臂的一般运动学模型,获得空间机械臂等效虚拟机械臂模型,进而依据等效虚拟机械臂模型获得空间机械臂不同基座控制模式下的表征空间,依据不同基座控制模式下的表征空间获得任务轨迹规划域。建立的等效虚拟机械臂模型,将基座自由漂浮空间机械臂等效为以被动关节与虚拟地面连接的地面机械臂,极大程度上简化了空间机械臂运动学特性分析复杂度。提出的不同基座控制模式下的表征空间分析方法,为空间机械臂任务轨迹规划域构建方法提供了依据。提出的任务轨迹规划域构建方法能够有效提高任务轨迹规划的成功率。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单的介绍,显而易见的,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性和劳动性的前提下,还可以根据这些附图获得其它附图。
图1是本发明实施例所提供的空间机械臂任务轨迹规划域构建方法的流程示意图;
图2是本发明实施例所提供的三自由度空间机械臂模型示意图;
图3是利用本发明实施例所提供的方法对空间机械臂不同基座控制模式下表征空间进行分析的过程中部分有保证表征空间RPGRS的仿真示意图;
图4是利用本发明实施例所提供的方法对空间机械臂不同基座控制模式下表征空间进行分析的过程中部分有保证表征空间RPGRS内的任务规划所得轨迹示意图。
【具体实施方式】
为了更好的理解本发明的技术方案,下面结合附图对本发明实施例进行详细描述。
应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明实施例给出一种空间机械臂任务轨迹规划域构建方法,请参考图1,其为本发明实施例所提供的空间机械臂任务轨迹规划域构建方法的流程示意图,如图1所示,该方法包括以下步骤:
步骤101,依据基座自由漂浮空间机械臂的一般运动学模型,获得空间机械臂等效虚拟机械臂模型。
具体的,建立基座自由漂浮空间机械臂的一般运动学模型,考虑系统动量守恒及线动量可积性,通过虚拟机械臂法将空间机械臂等效为以被动关节与虚拟地面连接的地面机械臂,获得空间机械臂等效虚拟机械臂模型,并以虚拟机械臂的被动关节转动表示基座自由漂浮空间机械臂的基座姿态偏转。
(1)建立基座自由漂浮空间机械臂的一般运动学模型。
针对n自由度自由漂浮空间机械臂,在系统质心处建立惯性坐标系。对于涉及到的矢量及矩阵,除特殊说明外的都是惯性坐标系下的矢量及矩阵。
空间机械臂各连杆质心及末端位置矢量为:
其中,ri∈R3×1为第i杆质心位置矢量,r0∈R3×1为基座质心位置矢量,b0∈R3×1为基座质心到第1关节的位置矢量,li∈R3×1为i关节到i+1关节矢量且有li=ai+bi,ai∈R3×1为i关节到第i杆质心矢量,bi∈R3×1为i杆质心到i+1关节矢量,pe=[xe,ye,ze]T∈R3×1为末端执行器位置矢量。
通过对上式求导获得空间机械臂各连杆质心线速度及末端线速度:
其中,vi∈R3×1为第i杆质心线速度,v0∈R3×1为基座线速度,ω0∈R3×1为基座角速度,kk∈R3×1为k关节转轴的单位矢量,pk∈R3×1为k关节位置矢量,为k关节的关节速度,ve∈R3×1为末端执行器线速度。
令r0i=ri-r0=[r0ix r0iy r0iz]T,p0e=pe-r0=[p0ex p0ey p0ez]T,获得反对称矩阵替换叉乘运算的表达式:
空间机械臂各连杆及末端角速度为:
进而获得空间机械臂末端速度的矩阵形式:
空间机械臂系统线动量和角动量分别为:
其中,P为空间机械臂系统线动量,L为空间机械臂系统角动量,M为系统总质量,mi为空间机械臂第i杆质量,I0为空间机械臂基座绕其质心的惯量矩阵,Ii为空间机械臂第i杆绕其质心的惯量矩阵, JTi=[k1×(ri-p1),…,ki×(ri-pi),0,…,0]∈R3×n,JRi=[k1,…,ki,0,…,0]∈R3×n,
在基座自由漂浮状态下,空间机械臂系统线动量及角动量守恒,假设系统初始动量为零,则P=0,L=0,进而获得反映基座运动与机械臂关节运动间耦合关系的表达式:
通过将式(13)与式(9)结合,获得空间机械臂的正向运动学方程:
其中,Jg∈R6×n为空间机械臂广义雅可比矩阵。
进而获得空间机械臂的逆向运动学方程:
(2)建立空间机械臂等效虚拟机械臂模型。
利用自由漂浮机械臂的线动量可积分性及线动量守恒,对式(10)进行积分获得如下关系式:
进而依据空间机械臂系统质心公式获得如下关系式:
式(17)表明空间机械臂系统整体质心位置不变,表达式为:
rg(t)=rg(0) (18)
依据惯性坐标系被建立在系统质心处,获得空间机械臂各连杆质心位置的方程:
将式(1)代入到式(19)中获得空间机械臂基座质心位置表达式:
将式(20)代入到式(2)中获得空间机械臂末端位置表达式:
利用lk=ak+bk获得空间机械臂末端位置具体表达式:
步骤102,依据所述空间机械臂等效虚拟机械臂模型,获得空间机械臂不同基座控制模式下的表征空间。
具体的,考虑基座漂浮特性,选择能够同时准确反映空间任务要求及基座耦合运动特点的最少系统变量作为状态变量,对空间机械臂的表征空间进行定义。针对空间机械臂的不同基座控制模式,依据表征空间定义建立空间机械臂不同基座控制模式下的表征空间。
首先,为充分反映基座耦合运动特性,选择空间机械臂表征空间状态变量:
ξ=[ξ1(x1,r0,Ψ0),ξ2(x2,r0,Ψ0),…,ξm(xm,r0,Ψ0)]T∈Rm (24)
其中,ξ为空间机械臂表征空间状态变量,ξ1,ξ2,…,ξm为根据任务要求所选构成ξ的状态子变量,x1,x1,…,xm为ξ1,ξ2,…,ξm中与基座运动无关的变量集合,r0∈R3×1为基座位置,Ψ0∈R3×1为基座姿态,m为表征空间维度。
依据所选表征空间状态变量ξ,获得空间机械臂表征空间定义:
其中,R为空间机械臂表征空间,ξi min为ξ中第i个状态子变量ξi的最小值,ξi max为ξ中第i个状态子变量ξi的最大值。
然后,依据空间机械臂不同基座控制模式,建立空间机械臂基座固定表征空间、基座姿态受限表征空间、最大可达表征空间、有保证表征空间及部分有保证表征空间。
(1)建立空间机械臂基座固定表征空间RFRS
空间机械臂基座固定表征空间RFRS定义为基座固定时,所选状态变量所张成的表征空间。依据空间机械臂基座固定时位置和姿态均不变,利用如下公式获得空间机械臂基座固定表征空间状态变量:
其中,ξFRS为空间机械臂基座固定表征空间状态变量,ξ1,ξ2,…,ξm为根据任务要求所选构成ξFRS的状态子变量,x1,x1,…,xm分别为ξ1,ξ2,…,ξm中与基座运动无关的变量集合,为预设的常数,为预设的常数,m为表征空间维度。
依据所述空间机械臂基座固定表征空间状态变量ξFRS,利用如下公式获得空间机械臂基座固定表征空间:
其中,RFRS为空间机械臂基座固定表征空间,ξi min为ξFRS中第i个状态子变量ξi的最小值,ξi max为ξFRS中第i个状态子变量ξi的最大值。
(2)建立空间机械臂基座姿态受限表征空间RCRS
空间机械臂基座姿态受限表征空间RCRS定义为基座姿态受限时,所选状态变量所张成的表征空间。依据空间机械臂基座姿态受限时位姿不变,考虑系统线动量守恒有利用如下公式获得空间机械臂基座姿态受限表征空间状态变量:
其中,ξCRS为空间机械臂基座姿态受限表征空间状态变量,ξ1,ξ2,…,ξm为根据任务要求所选构成ξCRS的状态子变量,x1,x1,…,xm分别为ξ1,ξ2,…,ξm中与基座运动无关的变量集合,θ=[θ1,θ2,…,θn]T∈Rn×1为空间机械臂基座姿态受限时的关节角度,为预设的常数。
依据所述空间机械臂基座姿态受限表征空间状态变量ξCRS,利用如下公式获得空间机械臂基座姿态受限表征空间:
其中,RCRS为空间机械臂基座姿态受限表征空间,ξi min为ξCRS中第i个状态子变量ξi的最小值,ξi max为ξCRS中第i个状态子变量ξi的最大值。
(3)建立空间机械臂最大可达表征空间RMRS
空间机械臂最大可达表征空间RMRS定义为基座自由漂浮时,所选状态变量所张成的表征空间。基座姿态的理论可达范围为考虑系统线动量守恒有r0=r0(θ,Ψ0),利用如下公式获得空间机械臂最大可达表征空间状态变量:
ξMRS=[ξ1(x1,θ,Ψ0),ξ2(x2,θ,Ψ0),…,ξm(xm,θ,Ψ0)]T∈Rm (30)
其中,ξMRS为空间机械臂最大可达表征空间状态变量,ξ1,ξ2,…,ξm为根据任务要求所选构成ξMRS的状态子变量,x1,x1,…,xm分别为ξ1,ξ2,…,ξm中与基座运动无关的变量集合,θ=[θ1,θ2,…,θn]T∈Rn×1为空间机械臂基座自由漂浮时的关节角度,Ψ0∈R3×1为空间机械臂基座自由漂浮时的基座姿态。
依据所述空间机械臂基座自由漂浮时表征空间状态变量ξMRS,利用如下公式获得空间机械臂最大可达表征空间:
其中,RMRS为空间机械臂最大可达表征空间,ξi min为ξMRS中第i个状态子变量ξi的最小值,ξi max为ξMRS中第i个状态子变量ξi的最大值,为空间机械臂基座自由漂浮时基座理论最小可达姿态,为空间机械臂基座自由漂浮时基座理论最大可达姿态,为空间机械臂基座自由漂浮时基座姿态理论可达范围。
依据式(28)-(29)与式(30)-(31),获得RMRS和RCRS之间关系的表达式:
(4)建立空间机械臂有保证表征空间RGRS
空间机械臂有保证表征空间RGRS定义为基座姿态在理论可达范围内变化时机械臂均能到达的状态变量点集合,在几何上是基座姿态理论可达范围内所有值对应RCRS的交集。依据式(29)利用如下公式获得空间机械臂有保证表征空间:
(5)建立空间机械臂部分有保证表征空间RPGRS
空间机械臂部分有保证表征空间RPGRS在几何上是基座姿态实际偏转可达范围内所有值对应RCRS的交集,依据式(29)和式(34)获得空间机械臂部分有保证表征空间:
步骤103,依据所述空间机械臂不同基座控制模式下的表征空间,获得空间机械臂任务轨迹规划域。
具体的,依据空间机械臂不同基座控制模式下的表征空间,分析其对空间机械臂任务轨迹规划域构建的作用,进而获得空间机械臂任务轨迹规划域。
空间机械臂基座固定表征空间RFRS仅能作为基座固定空间机械臂的任务轨迹规划域,当基座位姿改变时需要重新建立表征空间,因此无法适用于基座自由漂浮空间机械臂任务轨迹规划域的构建。
空间机械臂基座姿态受限表征空间RCRS对基座姿态进行了限制,因此不适用于基座自由漂浮空间机械臂任务轨迹规划域的构建。但是RCRS表明基座姿态的变化将直接影响空间机械臂任务轨迹规划域的构建,为基座自由漂浮空间机械臂任务轨迹规划域的构建提供了依据。
空间机械臂最大可达表征空间RMRS直接表征了基座自由漂浮空间机械臂的状态变量可达情况,但是RMRS中的状态变量没有考虑基座姿态的可达性,因此无法用于空间机械臂任务轨迹规划域的构建。
空间机械臂有保证表征空间RGRS中的所有状态变量的基座姿态全方位可达,当空间机械臂执行任务时无需对基座姿态进行控制,因此RGRS可用于构建基座自由漂浮空间机械臂的任务轨迹规划域,但是基座姿态的理论可达范围非常大,导致获得的RGRS空间体积较小;同时,空间机械臂在实际运行过程中允许的基座姿态偏转范围有限,空间机械臂以RGRS为轨迹规划域执行任务时极易导致基座姿态超出实际偏转限制。因此,以RGRS为轨迹规划域将严重影响任务执行的成功率。
在考虑基座姿态全方位可达的基础上,结合任务要求及基座姿态偏转限制获得基座姿态实际偏转可达范围进而建立空间机械臂部分有保证表征空间RPGRS,不仅有效扩大了空间机械臂的任务轨迹规划域,同时满足基座姿态偏转限制要求。
依据以上对空间机械臂不同基座控制模式下表征空间的分析,获得基座自由漂浮空间机械臂任务轨迹规划域:
(1)依据实际任务要求获得基座姿态实际偏转可达范围:
(2)依据空间机械臂不同基座控制模式下的表征空间获得空间机械臂任务轨迹规划域:
其中,RPPD为基座自由漂浮空间机械臂的任务轨迹规划域。
依据本发明实施例提供的上述方法,对空间机械臂任务轨迹规划域构建方法进行了仿真,针对空间机械臂的任务轨迹规划域构建开展仿真实验研究。
请参考图2,其为三自由度自由漂浮空间机械臂,其DH参数如表1所示,动力学参数如表2所示。
表1三自由度空间机械臂DH参数
表2三自由度空间机械臂动力学参数
系统总质量为M=m0+m1+m2+m3=630kg,等效虚拟机械臂连杆参数为 假设机械臂初始构型为θini=[30°,90°,-30°]T,初始基座姿态为则初始末端位姿为设定期望末端位姿为系统基座姿态最大偏转限制为
请参考图3,其为空间机械臂部分有保证表征空间RPGRS的仿真示意图。
请参考图4,其为空间机械臂部分有保证表征空间RPGRS内的任务规划所得轨迹示意图,该任务轨迹由两段直线构成,可以发现在RPGRS中进行轨迹规划能够使得任务完成。因此,RPGRS能够作为空间机械臂的任务轨迹规划域。使用本发明实施例提供的上述方法实现了基座自由漂浮空间机械臂任务轨迹规划域的构建。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。
Claims (4)
1.一种空间机械臂任务轨迹规划域构建方法,其特征在于,所述方法包括:
依据基座自由漂浮空间机械臂的一般运动学模型,获得空间机械臂等效虚拟机械臂模型;
依据所述空间机械臂等效虚拟机械臂模型,获得空间机械臂不同基座控制模式下的表征空间,包含基座固定表征空间、姿态受限表征空间、最大可达表征空间、有保证表征空间和部分有保证表征空间;
依据所述空间机械臂不同基座控制模式下的表征空间,获得空间机械臂任务轨迹规划域。
3.根据权利要求1所述的方法,其特征在于,所述依据所述空间机械臂等效虚拟机械臂模型,获得空间机械臂不同基座控制模式下的表征空间,包括:
(1)利用如下公式获得空间机械臂基座固定表征空间状态变量:
其中,ξFRS为空间机械臂基座固定表征空间状态变量;ξ1,ξ2,…,ξm为根据任务要求所选构成ξFRS的状态子变量;x1,x1,…,xm分别为ξ1,ξ2,…,ξm中与基座运动无关的变量集合;为预设的常数,表示基座位置不变;为预设的常数,表示基座姿态不变;m为表征空间维度;
依据所述空间机械臂基座固定表征空间状态变量ξFRS,利用如下公式获得空间机械臂基座固定表征空间:
其中,RFRS为空间机械臂基座固定表征空间;ξimin为ξFRS中第i个状态子变量ξi的最小值;ξimax为ξFRS中第i个状态子变量ξi的最大值;
(2)利用如下公式获得空间机械臂基座姿态受限表征空间状态变量:
其中,ξCRS为空间机械臂基座姿态受限表征空间状态变量;ξ1,ξ2,…,ξm为根据任务要求所选构成ξCRS的状态子变量;x1,x1,…,xm分别为ξ1,ξ2,…,ξm中与基座运动无关的变量集合;θ=[θ1,θ2,…,θn]T∈Rn×1为空间机械臂基座姿态受限时的关节角度;为预设的常数,表示基座位姿不变;
依据所述空间机械臂基座姿态受限表征空间状态变量ξCRS,利用如下公式获得空间机械臂基座姿态受限表征空间:
其中,RCRS为空间机械臂基座姿态受限表征空间;ξimin为ξCRS中第i个状态子变量ξi的最小值;ξimax为ξCRS中第i个状态子变量ξi的最大值;
(3)利用如下公式获得空间机械臂最大可达表征空间状态变量:
ξMRS=[ξ1(x1,θ,Ψ0),ξ2(x2,θ,Ψ0),…,ξm(xm,θ,Ψ0)]T∈Rm
其中,ξMRS为空间机械臂最大可达表征空间状态变量;ξ1,ξ2,…,ξm为根据任务要求所选构成ξMRS的状态子变量;x1,x1,…,xm分别为ξ1,ξ2,…,ξm中与基座运动无关的变量集合;θ=[θ1,θ2,…,θn]T∈Rn×1为空间机械臂基座自由漂浮时的关节角度;Ψ0∈R3×1为空间机械臂基座自由漂浮时的基座姿态;
依据所述空间机械臂最大可达表征空间状态变量ξMRS,利用如下公式获得空间机械臂最大可达表征空间:
其中,RMRS为空间机械臂最大可达表征空间;ξimin为ξMRS中第i个状态子变量ξi的最小值;ξimax为ξMRS中第i个状态子变量ξi的最大值;为空间机械臂基座自由漂浮时基座理论最小可达姿态;为空间机械臂基座自由漂浮时基座理论最大可达姿态;为空间机械臂基座自由漂浮时基座姿态理论可达范围;
(4)利用如下公式获得空间机械臂有保证表征空间:
(5)利用如下公式获得空间机械臂基座姿态实际偏转可达范围:
其中,为空间机械臂基座实际偏转的最小可达姿态;Ψ0 upper∈R3×1为空间机械臂基座实际偏转的最大可达姿态;为空间机械臂在初始状态下基座的最小可达姿态;为空间机械臂在初始状态下基座的最大可达姿态;为空间机械臂在任务期望点状态下基座的最小可达姿态;为空间机械臂在任务期望点状态下基座的最大可达姿态;为空间机械臂基座受偏转限制的最小姿态;为空间机械臂基座受偏转限制的最大姿态;
4.根据权利要求1所述的方法,其特征在于,所述依据所述空间机械臂不同基座控制模式下的表征空间,获得空间机械臂任务轨迹规划域,包括:
利用如下公式获得空间机械臂基座姿态实际偏转可达范围:
其中,为空间机械臂基座实际偏转的最小可达姿态;Ψ0 upper∈R3×1为空间机械臂基座实际偏转的最大可达姿态;为空间机械臂在初始状态下基座的最小可达姿态;为空间机械臂在初始状态下基座的最大可达姿态;为空间机械臂在任务期望点状态下基座的最小可达姿态;为空间机械臂在任务期望点状态下基座的最大可达姿态;为空间机械臂基座受偏转限制的最小姿态;为空间机械臂基座受偏转限制的最大姿态;
利用如下公式获得基座自由漂浮空间机械臂的任务轨迹规划域:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910006517.4A CN109571483B (zh) | 2019-01-04 | 2019-01-04 | 一种空间机械臂任务轨迹规划域构建方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910006517.4A CN109571483B (zh) | 2019-01-04 | 2019-01-04 | 一种空间机械臂任务轨迹规划域构建方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109571483A CN109571483A (zh) | 2019-04-05 |
CN109571483B true CN109571483B (zh) | 2021-12-17 |
Family
ID=65915646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910006517.4A Active CN109571483B (zh) | 2019-01-04 | 2019-01-04 | 一种空间机械臂任务轨迹规划域构建方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109571483B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170112460A (ko) * | 2016-03-31 | 2017-10-12 | 한국과학기술원 | 로봇 |
CN108326849A (zh) * | 2018-01-04 | 2018-07-27 | 浙江大学 | 一种基于改进人工势场法的多自由度机械臂动态避障路径规划方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4133381B2 (ja) * | 2003-01-31 | 2008-08-13 | 川崎重工業株式会社 | 宇宙ロボットの姿勢制御方法及び装置 |
CN105354433B (zh) * | 2015-11-24 | 2017-11-21 | 北京邮电大学 | 一种空间机械臂参数对运动可靠性影响比重的确定方法 |
CN106228260A (zh) * | 2016-01-26 | 2016-12-14 | 西北工业大学 | 一种平面三自由度空间机器人逆运动学求解方法 |
CN106055522A (zh) * | 2016-06-30 | 2016-10-26 | 大连大学 | 冗余空间机械臂最小基座姿态扰动的轨迹规划方法 |
-
2019
- 2019-01-04 CN CN201910006517.4A patent/CN109571483B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170112460A (ko) * | 2016-03-31 | 2017-10-12 | 한국과학기술원 | 로봇 |
CN108326849A (zh) * | 2018-01-04 | 2018-07-27 | 浙江大学 | 一种基于改进人工势场法的多自由度机械臂动态避障路径规划方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109571483A (zh) | 2019-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108241339B (zh) | 仿人机械臂的运动求解和构型控制方法 | |
JP7324932B2 (ja) | 動的計画コントローラ | |
Qassem et al. | Modeling and Simulation of 5 DOF educational robot arm | |
Patidar et al. | Survey of robotic arm and parameters | |
CN108068113B (zh) | 7-dof仿人臂飞行物体作业最小加速度轨迹优化 | |
CN108908347B (zh) | 一种面向冗余移动机械臂容错型重复运动规划方法 | |
Zhou et al. | Dynamic coupling analysis of multi-arm space robot | |
CN111515928B (zh) | 机械臂运动控制系统 | |
CN112497208A (zh) | 基于全状态阻抗控制器的移动操作机器人通用控制方法 | |
Žlajpah | On orientation control of functional redundant robots | |
CN112045664A (zh) | 一种基于ros系统的通用机械臂控制器 | |
CN109159124B (zh) | 采用快速双幂次终态神经网络的冗余机器人重复运动规划方法 | |
CN112001087B (zh) | 一种旋转关节型工业机器人非线性动力学建模分析方法 | |
CN109571483B (zh) | 一种空间机械臂任务轨迹规划域构建方法 | |
Fadaei et al. | Dynamics modeling of a stewart platform in Simulink MSC ADAMS | |
Guangfeng et al. | Trajectory planning of Delta robot for fixed point pick and placement | |
CN111546344A (zh) | 一种用于对准的机械臂控制方法 | |
Murakami et al. | Motion planning for catching a light-weight ball with high-speed visual feedback | |
Wu et al. | Research on modeling and simulation of cable-driven bionic octopus arm based on simmechanics | |
Setlak et al. | Dynamics of the designed robotic manipulator in the CAD program | |
KR102332131B1 (ko) | 최소 영공간 작업의 매개변수화 방법 | |
Hwang et al. | Human interface, automatic planning, and control of a humanoid robot | |
CN108555904B (zh) | 一种表面改性机器人操作性能的优化方法 | |
Chaves-Arbaiza et al. | Smart placement of a two-arm assembly for an everyday object manipulation humanoid robot based on capability maps | |
Caccavale et al. | Experiments of spatial impedance control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |