CN109554706A - 一种高温合金表面TBC/Al复合热障涂层及其制备方法 - Google Patents

一种高温合金表面TBC/Al复合热障涂层及其制备方法 Download PDF

Info

Publication number
CN109554706A
CN109554706A CN201811350244.7A CN201811350244A CN109554706A CN 109554706 A CN109554706 A CN 109554706A CN 201811350244 A CN201811350244 A CN 201811350244A CN 109554706 A CN109554706 A CN 109554706A
Authority
CN
China
Prior art keywords
tbc
temperature alloy
coating
thermal barrier
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811350244.7A
Other languages
English (en)
Inventor
梁文萍
虞礼嘉
缪强
崔世宇
林浩
安浩
赵子龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201811350244.7A priority Critical patent/CN109554706A/zh
Publication of CN109554706A publication Critical patent/CN109554706A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种高温合金表面TBC/Al复合热障涂层及其制备方法,属于金属材料表面改性技术,制备的TBC/Al复合涂层表面致密,无明显的孔洞和裂纹,在高温氧化时能够有效保护高温合金。本发明涂层由表及里依次为Al层,8%Y2O3部分稳定的ZrO2(以下简称YSZ)陶瓷层和NiCoCrAlY粘结层;首先采用等离子喷涂技术在高温合金表面制备NiCoCrAlY粘结层和YSZ陶瓷层;然后采用磁控溅射技术在YSZ陶瓷层表面制备一层致密的Al层;最后进行真空扩散退火处理,提高涂层与基体之间的结合力。

Description

一种高温合金表面TBC/Al复合热障涂层及其制备方法
技术领域
本发明属于金属材料表面改性技术,尤其涉及一种高温合金表面TBC/Al复合热障涂层及其制备方法。
背景领域
高温合金是一种可以广泛应用于-253℃~650℃范围内的时效强化型镍基合金,能在600℃以上的高温及一定应力作用下长期工作。它的高温综合力学性能和热腐蚀性能十分优秀,并且具有良好的抗氧化性、抗腐蚀性、断裂韧性、长期的组织稳定性能和机械加工性能,广泛应用于航空航天领域中制造一些重要高温零部件。
高温合金由于成分复杂并且含有较多易氧化的元素(如Nb、 Mo、 Fe等),在高温条件下不可避免的发生氧化,严重时会影响材料的使用,甚至引起材料失效。与此同时,高温合金部件在经机械加工之后,表面会产生一些缺陷,如粗糙波纹、裂纹等表面缺陷。虽然只有极薄的一层,但对其使用性能产生极大的影响,零件的磨损、腐蚀和疲劳破坏都是从零件表面开始的,尤其是对于那些在高温、高压、高速、高应力条件下服役的零部件,表面缺陷影响材料的使用性能,对零部件的失效也有促进作用。改进材料成分和加工工艺,可以提高材料的各项性能,伴随而来的是较高的研发成本和市场风险。如GE公司在上世纪80年代末为了替代700℃下工作的GH4169,研制了主要由Y"相强化的Rene220铸造合金,它的焊接性能与GH4169相近,但造价相比GH4169优势不明显,依然无法取代GH4169在相关场合的应用。
众所周知,材料表面的结构和各项性能对材料的失效有着重要的影响,同时结合使用环境和特殊要求对现有材料进行表面改性,更易实现和更具经济效益。表面改性技术可在不损害高温合金基体材料性能的前提下,在其表面制备具有优良抗高温氧化性能的合金层,是一种有效可行的技术手段。
随着高温合金的发展速度逐渐变缓,高温合金表面涂层技术的崛起给高温合金的使用带来了新的活力。热障涂层(TBCs)是目前最先进的高温防护涂层之一, 具有良好的高温化学稳定性、抗冲刷性和隔热性等特点,可使高温燃气和工作基体金属部件之间产生很大的温降(可达 170℃或更高),达到延长热机零件寿命、提高热机热效率的目的。在热障涂层的制备技术中,最为常见的是等离子喷涂和电子束物理气相沉积。等离子喷涂工艺具有喷涂材料广泛、沉积速率快、操作简便、制备成本低、制备的涂层隔热效果好等特点,得到最为广泛的应用。但是,等离子喷涂技术由于自身的工作原理而存在固有的缺陷:熔化或半熔化的颗粒,经过高速的气流加速后撞向基体,强烈撞击后形成扁平状的颗粒并迅速冷却,形成典型结构的层状结构;由于半熔化的颗粒堆积和气体的参杂,涂层内部含有大量的孔隙,组织疏松;喷涂过程中的快速冷却,喷涂材料在化学成分和晶体结构上处于非平衡态;不可避免的产生残余应力和裂纹;等离子喷涂的涂层间结合为机械结合,抗热冲击性能差。
发明内容
本发明提供了一种高温合金表面TBC/Al复合热障涂层及其制备方法,能有效提高热障涂层性能,封堵热障涂层表面孔隙的办法,提高了高温合金的抗高温氧化性能。
为实现以上目的,本发明采用以下技术方案:
一种高温合金表面TBC/Al复合热障涂层,包括:由表及里依次为Al层,8%Y2O3部分稳定的ZrO2陶瓷层、NiCoCrAlY粘结层。
以上所述涂层中,Al层为10-15μm,8%Y2O3部分稳定的ZrO2陶瓷层为180-200μm,NiCoCrAlY粘结层为90-100μm;所述Al层的质量分数为99.9%,YSZ陶瓷层中Zr、O、Y的质量分数分别为65.14%、27.25%、7.61%。
一种高温合金表面TBC/Al复合热障涂层的制备方法,包括以下步骤:
(1) 清洗高温合金基体表面并进行喷砂处理;
(2)先在步骤(1)处理后的基体表面喷涂厚度为90-100µm的NiCoCrAlY粘结层,然后再喷涂一层厚度为180-200µm 的YSZ陶瓷层;
(3)利用磁控溅射技术在步骤(2)涂层后的高温合金上得到Al层;
(4)将步骤(3)得到的合金在氩气气氛中650℃-700℃下煅烧1 h,冷却后完成高温合金表面TBC/Al复合涂层的制备。
以上所述步骤中,步骤(2)利用等离子喷涂技术进行喷涂,所述等离子喷涂技术的调试工艺参数为:
喷涂距离:110mm
喷枪走速:600mm·s-1
送粉速率:15-50g·min-1
Ar送粉气流量:50-65L·min-1
H2送粉气流量;6L·min-1
N2送粉气流量:15L·min-1
步骤(3)中所述磁控溅射过程为:将步骤(2)涂层后的高温合金和Al靶材放入磁控溅射设备炉中抽真空至10-4Pa,通入氩气,达到启辉水平,调试工艺参数,功率降为零后关闭氩气,抽真空至10-4Pa,关闭电源,随炉冷却至室温,从而得到Al层;所述Al靶材的Al纯度为99.9%,所述工艺参数为:
靶材与基体表面的极间距:25mm
炉内气压:0.8Pa
电压:34~36V
溅射功率:180~190W
氩气的流量:30~34sccm
保温时间:3h。
本发明的有益效果:本发明提供了一种高温合金表面TBC/Al复合热障涂层及其制备方法,利用磁控溅射制备技术,在等离子喷涂的涂层基础上制备新的涂层,实现对原有涂层的封孔作用,同时利用金属在空气中的氧化作用,形成钝化膜,阻碍氧气和其余空气中的杂质对涂层的危害。先采用等离子喷涂技术在高温合金表面制备YSZ+NiCoCrAlY热障涂层,然后采用磁控溅射技术通入氩气作为保护气体在YSZ表面制备一层致密的Al层,最后用管式炉真空退火,最终在高温合金表面形成一层具有抗高温氧化性的TBC/Al复合涂层;NiCoCrAlY粘结层作为过渡层,降低了陶瓷层和基体间因热膨胀系数差距过大导致的热失配效应,提高基体与陶瓷层的粘接作用;磁控溅射表面的Al层致密,可以封堵热障涂层表面的孔隙,同时Al会与空气中的O反应生成致密的Al2O3膜,阻碍O的侵入,从而阻止了合金的氧化,Al在高温熔化后将通过YSZ涂层表面孔隙和裂纹渗入涂层一定深度,填充了孔隙和裂纹,对传统YSZ涂层起到了封孔作用。并且Al的渗入对ZrO2相有一定的稳定作用;本发明制备的TBC/Al复合涂层表面致密,无明显的孔洞和裂纹,在高温氧化时能够有效保护高温合金。
附图说明
图1为本发明实施例中GH4169合金的TBC/Al复合涂层表面形貌图;
图2为本发明实施例中GH4169合金的TBC/Al复合涂层截面形貌图;
图3为本发明实施例中GH4169合金的TBC/Al复合涂层表面划痕形貌图;
图4为本发明实施例中GH4169合金的TBC/Al复合涂层表面划痕声发射曲线图;
图5为本发明实施例中GH4169合金的TBC/Al复合涂层750℃循环氧化100h后的截面形貌图;
图6为本发明实施例中GH4169合金的TBC/Al复合涂层850℃循环氧化100h后的截面形貌图;
图7为本发明实施例中GH4169合金的TBC/Al复合涂层950℃循环氧化100h后的截面形貌图。
具体实施方式
下面结合附图和实施例对本发明进行详细说明:
实施例1
GH4169合金表面TBC/Al复合热障涂层,包括:由表及里依次为Al层,8%Y2O3部分稳定的ZrO2陶瓷层、NiCoCrAlY粘结层。
以上所述涂层中,Al层为15μm,8%Y2O3部分稳定的ZrO2陶瓷层为200μm,NiCoCrAlY粘结层为100μm;所述Al层的质量分数为99.9%,YSZ陶瓷层中Zr、O、Y的质量分数分别为65.14%、27.25%、7.61%。
以上所述GH4169合金表面TBC/Al复合热障涂层的制备方法,包括以下步骤:
(1) 将GH4169合金切割为15mm×15mm×5mm尺寸的长方体,用砂纸逐级打磨试样,超声清洗5-8min,烘干备用;
(2)在喷涂热障涂层之前,使用丙酮清洗GH4169基体表面,以去除表面的油污和锈迹,再使用刚玉对基体表面进行喷砂处理;
(3)利用等离子喷涂系统在GH4169表面喷涂一层厚度约为100µm的NiCoCrAlY粘结层,然后再喷涂一层200µm厚的YSZ陶瓷层;
喷涂距离:110mm
喷枪走速:600mm·s-1
送粉速率:15-50g·min-1
Ar送粉气流量:50-65L·min-1
H2送粉气流量;6L·min-1
N2送粉气流量:15L·min-1
(4)将制备好热障涂层的GH4169合金、Al靶材放入磁控溅射设备炉中。其中靶材成分为:Al纯度为99.9%;
(5)将试样GH4169合金放置在载物台上,控制靶材到试样表面的距离为25mm。最后用真空纸擦拭炉体内部,降下设备钟罩;
(6)打开机械泵抽真空至0.1Pa,然后开启分子泵抽真空至10-4Pa。充入氩气,调节炉内气压至0.8Pa ,启辉。调节电压至34V,保证功率在180W,氩气流量30sccm,保温时间3h。关闭氩气,切断电源,随炉冷却至室温;
(7)将步骤(6)得到的合金在氩气气氛中650℃下退火1 h,冷却后完成GH4169合金表面TBC/Al复合涂层的制备。
图1为本发明TBC/Al复合涂层表面形貌图,由图可知,涂层表面致密,无明显的孔洞和裂纹,原子基本成球状成长机制。
图2为本发明TBC/Al复合涂层截面形貌图,由图可知,分别为最外层Al层,厚度约为10μm;中间层为8%Y2O3部分稳定的ZrO2陶瓷层,厚度约为200μm;最里层为NiCoCrAlY粘结层,厚度约为90μm;结合表面形貌可知涂层致密,无明显的裂纹、孔洞。
对制备好的涂层进行了结合力测试,具体方法如下:
测试设备:兰州化学物理研究所生产的WS-2005划痕仪;
具体的操作方法如下:把制备好的TBC/Al复合涂层试样放置载物台上,设置最终载荷100N,加载速度50 N/min,压头的横向临界速度为2mm/min,划痕长度为3mm。
实验结果如图3所示。随着载荷的增加,TBC/Al复合涂层的划痕宽度也不断增加,局部出现部分不规则剥落,在末端处涂层破裂剥落,整个涂层失效。划痕周围并未出现裂纹和空洞,说明涂层具有一定的韧性与基体结合良好。
如图4所示,临界载荷达到74.6N时,开始出现声波信号,信号平稳,强度不高,说明此时涂层还具有较好的塑性变形,随后出现较强的声波信号,涂层开始剥落。
对TBC/Al复合涂层的抗高温氧化性能进行测试,具体方法如下:
测试设备:高温马弗炉
具体的操作方法如下:将TBC/Al复合涂层装在不同坩埚里一起放进马弗炉中,在750℃、850℃和950℃下保温100h,测定其氧化增重与时间的关系。每隔10h随炉冷却取出试样称重在放入马弗炉中加热保温,此为一个周期。直至涂层失效,终止实验。
实验结果如图5、图6和图7所示,分别为本发明制的TBC/Al复合涂层750℃、850℃和950℃循环氧化100h后的截面形貌图。750℃下的复合涂层分布致密均匀,无剥落现象,该温度下复合涂层的抗高温氧化能力非常好,保护基体的能力非常好;850℃下,基体的表现不如750℃时,表面有少量脱落,但是没有孔洞,分布仍然较为均匀,说明在该温度下,复合涂层的抗高温氧化能力较好,保护基体的能力较好;950℃下,涂层表面没有明显脱落,有少量孔洞,说明在该温度条件下,复合涂层有一定的抗氧化能力,且还没有达到剥落退化的临界值通过表面镀Al,Al与O的反应形成致密Al2O3膜,阻碍了氧的渗入。此外,Al在高温熔化后将通过YSZ涂层表面孔隙和裂纹渗入涂层一定深度,填充了孔隙和裂纹,对传统YSZ涂层起到了封孔作用。并且Al的渗入对ZrO2相有一定的稳定作用。以上体现了涂层较好的高温防护力。
实施例2
改变实施例1中磁控溅射的溅射电压为36V,溅射功率为190W,氩气流量34sccm,其他步骤同实例1相同。
检测在本实例中用划痕法测得,逐渐增大载荷,当加载至68.7N时,出现声波信号,表明此时涂层出现了破裂。之后声波信号较慢,当外加载荷超过72N后,信号变得密集,说明此时涂层出现了剥落,直至外在载荷到达基体,可得涂层与基体结合较好。在750℃、850℃和950℃下的高温氧化实验表明,涂层在100h后表面没有出现明显的剥落,与基体结合较好,氧化增重量较实例1中的进一步有所增加,综上可知,制备的TBC/Al复合涂层抗氧性能良好。
实施例3
改变实施例1中磁控溅射的磁控溅射中,改变溅射电压为35V,溅射功率为185W,氩气流量32sccm,其他步骤同实例1相同。
检测在本实例中用划痕法测得,逐渐增大载荷,当加载至71.2N时,出现声波信号,表明此时涂层出现了破裂。之后声波信号较慢,当外加载荷超过73.8N后,信号变得密集,说明此时涂层出现了剥落,直至外在载荷到达基体,可得涂层与基体结合较好。在750℃、850℃和950℃下的高温氧化实验表明,涂层在100h后表面没有出现明显的剥落,与基体结合较好,氧化增重量较实例1中的进一步有所增加,综上可知,制备的TBC/Al复合涂层抗氧性能良好。
实施例4
K406合金表面TBC/Al复合热障涂层,包括:由表及里依次为Al层,8%Y2O3部分稳定的ZrO2陶瓷层、NiCoCrAlY粘结层。
以上所述涂层中,Al层为15μm,8%Y2O3部分稳定的ZrO2陶瓷层为200μm,NiCoCrAlY粘结层为100μm;所述Al层的质量分数为99.9%,YSZ陶瓷层中Zr、O、Y的质量分数分别为65.14%、27.25%、7.61%。
以上所述GH4169合金表面TBC/Al复合热障涂层的制备方法,包括以下步骤:
(1)将K406合金切割为15mm×15mm×5mm尺寸的长方体,用砂纸逐级打磨试样,超声清洗5-8min,烘干备用;
(2)在喷涂热障涂层之前,使用丙酮清洗K406基体表面,以去除表面的油污和锈迹,再使用刚玉对基体表面进行喷砂处理;
(3)利用等离子喷涂系统在K406表面喷涂一层厚度约为100µm的NiCoCrAlY粘结层,然后再喷涂一层200µm厚的YSZ陶瓷层;
喷涂距离:110mm
喷枪走速:600mm·s-1
送粉速率:15-50g·min-1
Ar送粉气流量:50-65L·min-1
H2送粉气流量;6L·min-1
N2送粉气流量:15L·min-1
(4)将制备好热障涂层的K406合金、Al靶材放入磁控溅射设备炉中。其中靶材成分为:Al纯度为99.9%;
(5)将试样K406合金放置在载物台上,控制靶材到试样表面的距离为25mm。最后用真空纸擦拭炉体内部,降下设备钟罩;
(6)打开机械泵抽真空至0.1Pa,然后开启分子泵抽真空至10-4Pa。充入氩气,调节炉内气压至0.8Pa ,启辉。调节电压至34V,保证功率在180W,氩气流量30sccm,保温时间3h。关闭氩气,切断电源,随炉冷却至室温;
(7)将步骤(6)得到的合金在氩气气氛中650℃下退火1 h,冷却后完成K406合金表面TBC/Al复合涂层的制备。
实施例5
γ-TiAl合金表面TBC/Al复合热障涂层,包括:由表及里依次为Al层,8%Y2O3部分稳定的ZrO2陶瓷层、NiCoCrAlY粘结层。
Al层为10μm,8%Y2O3部分稳定的ZrO2陶瓷层为180μm,NiCoCrAlY粘结层为90μm;所述Al层的质量分数为99.9%,YSZ陶瓷层中Zr、O、Y的质量分数分别为65.14%、27.25%、7.61%。
以上所述γ-TiAl合金表面TBC/Al复合热障涂层的制备方法,包括以下步骤:
(1)将γ-TiAl合金切割为15mm×15mm×5mm尺寸的长方体,用砂纸逐级打磨试样,超声清洗5-8min,烘干备用;
(2)在喷涂热障涂层之前,使用丙酮清洗γ-TiAl基体表面,以去除表面的油污和锈迹,再使用刚玉对基体表面进行喷砂处理;
(3)利用等离子喷涂系统在γ-TiAl表面喷涂一层厚度约为90µm的NiCoCrAlY粘结层,然后再喷涂一层180µm厚的YSZ陶瓷层;
喷涂距离:110mm
喷枪走速:600mm·s-1
送粉速率:15-50g·min-1
Ar送粉气流量:50-65L·min-1
H2送粉气流量;6L·min-1
N2送粉气流量:15L·min-1
(4)将制备好热障涂层的γ-TiAl合金、Al靶材放入磁控溅射设备炉中。其中靶材成分为:Al纯度为99.9%;
(5)将试样γ-TiAl合金放置在载物台上,控制靶材到试样表面的距离为25mm。最后用真空纸擦拭炉体内部,降下设备钟罩;
(6) 打开机械泵抽真空至0.1Pa,然后开启分子泵抽真空至10-4Pa。充入氩气,调节炉内气压至0.8Pa ,启辉。调节电压至34V,保证功率在180W,氩气流量30sccm,保温时间3h。关闭氩气,切断电源,随炉冷却至室温;
(7)将步骤(6)得到的合金在氩气气氛中650℃下退火1 h,冷却后完成γ-TiAl合金表面TBC/Al复合涂层的制备。
实施例6
Ti2AlNb合金表面TBC/Al复合热障涂层,包括:由表及里依次为Al层,8%Y2O3部分稳定的ZrO2陶瓷层、NiCoCrAlY粘结层。
Al层为10μm,8%Y2O3部分稳定的ZrO2陶瓷层为180μm,NiCoCrAlY粘结层为90μm;所述Al层的质量分数为99.9%,YSZ陶瓷层中Zr、O、Y的质量分数分别为65.14%、27.25%、7.61%。
以上所述Ti2AlNb合金表面TBC/Al复合热障涂层的制备方法,包括以下步骤:
(1)将Ti2AlNb合金切割为15mm×15mm×5mm尺寸的长方体,用砂纸逐级打磨试样,超声清洗5-8min,烘干备用;
(2)在喷涂热障涂层之前,使用丙酮清洗Ti2AlNb基体表面,以去除表面的油污和锈迹,再使用刚玉对基体表面进行喷砂处理;
(3) 利用等离子喷涂系统在Ti2AlNb表面喷涂一层厚度约为90µm的NiCoCrAlY粘结层,然后再喷涂一层180µm厚的YSZ陶瓷层;
喷涂距离:110mm
喷枪走速:600mm·s-1
送粉速率:15-50g·min-1
Ar送粉气流量:50-65L·min-1
H2送粉气流量;6L·min-1
N2送粉气流量:15L·min-1
(4)将制备好热障涂层的Ti2AlNb合金、Al靶材放入磁控溅射设备炉中。其中靶材成分为:Al纯度为99.9%;
(5)将试样Ti2AlNb合金放置在载物台上,控制靶材到试样表面的距离为25mm。最后用真空纸擦拭炉体内部,降下设备钟罩;
(6)打开机械泵抽真空至0.1Pa,然后开启分子泵抽真空至10-4Pa。充入氩气,调节炉内气压至0.8Pa ,启辉。调节电压至34V,保证功率在180W,氩气流量30sccm,保温时间3h。关闭氩气,切断电源,随炉冷却至室温;
(7)将步骤(6)得到的合金在氩气气氛中650℃下退火1 h,冷却后完成Ti2AlNb合金表面TBC/Al复合涂层的制备。
以上所述仅是本发明的优选实施方式,应当指出对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种高温合金表面TBC/Al复合热障涂层,其特征在于,包括:由表及里依次为Al层,8%Y2O3部分稳定的ZrO2陶瓷层、NiCoCrAlY粘结层。
2.根据权利要求1所述的高温合金表面TBC/Al复合热障涂层,其特征在于,所述Al层为10μm -15μm,所述8%Y2O3部分稳定的ZrO2陶瓷层为180μm -200μm,所述NiCoCrAlY粘结层为90μm -100μm。
3.根据权利要求1或2所述的高温合金表面TBC/Al复合热障涂层,其特征在于,所述Al层中Al的质量分数为99.9%,YSZ陶瓷层中Zr、O、Y的质量分数分别为65.14%、27.25%、7.61%。
4.一种高温合金表面TBC/Al复合热障涂层的制备方法,其特征在于,包括以下步骤:
(1) 清洗高温合金基体表面并进行喷砂处理;
(2)先在步骤(1)处理后的基体表面喷涂厚度为90-100µm的NiCoCrAlY粘结层,然后再喷涂一层厚度为180-200µm 的YSZ陶瓷层;
(3)利用磁控溅射技术在步骤(2)涂层后的高温合金上得到Al层;
(4)将步骤(3)得到的合金在氩气气氛中650℃-700℃下煅烧1h-1.5h,冷却后完成高温合金表面TBC/Al复合涂层的制备。
5.根据权利要求4所述的高温合金表面TBC/Al复合热障涂层的制备方法,其特征在于,步骤(2)利用等离子喷涂技术进行喷涂,所述等离子喷涂技术的调试工艺参数为:
喷涂距离:110mm
喷枪走速:600mm·s-1
送粉速率:15-50g·min-1
Ar送粉气流量:50-65L·min-1
H2送粉气流量;6L·min-1
N2送粉气流量:15L·min-1
6.根据权利要求4或5所述的高温合金表面TBC/Al复合热障涂层的制备方法,其特征在于,步骤(3)中所述磁控溅射过程为:将步骤(2)涂层后的高温合金和Al靶材放入磁控溅射设备炉中抽真空至10-4Pa,通入氩气,达到启辉水平,调试工艺参数,功率降为零后关闭氩气,抽真空至10-4Pa,关闭电源,随炉冷却至室温,从而得到Al层。
7.根据权利要求6所述的高温合金表面TBC/Al复合热障涂层的制备方法,其特征在于,所述Al靶材的Al纯度为99.9%,所述调试工艺参数为:
靶材与基体表面的极间距:25mm
炉内气压:0.8Pa
电压:34~36V
溅射功率:180~190W
氩气的流量:30~34sccm
保温时间:3h。
CN201811350244.7A 2018-11-14 2018-11-14 一种高温合金表面TBC/Al复合热障涂层及其制备方法 Pending CN109554706A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811350244.7A CN109554706A (zh) 2018-11-14 2018-11-14 一种高温合金表面TBC/Al复合热障涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811350244.7A CN109554706A (zh) 2018-11-14 2018-11-14 一种高温合金表面TBC/Al复合热障涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN109554706A true CN109554706A (zh) 2019-04-02

Family

ID=65866199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811350244.7A Pending CN109554706A (zh) 2018-11-14 2018-11-14 一种高温合金表面TBC/Al复合热障涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN109554706A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111005024A (zh) * 2019-12-04 2020-04-14 天津大学 一种抗熔融cmas腐蚀的热障涂层及制备方法
CN111004990A (zh) * 2019-12-04 2020-04-14 天津大学 用于热障涂层抗熔融cmas腐蚀的max相涂层及热喷涂制备方法
CN116288207A (zh) * 2023-03-21 2023-06-23 浙江大学 一种热障涂层及其制备方法和在高温合金中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1635178A (zh) * 2004-12-21 2005-07-06 北京航空航天大学 一种抗海洋性气氛腐蚀热障涂层
CN103668191A (zh) * 2013-12-09 2014-03-26 广州有色金属研究院 一种热障涂层的制备方法
CN104674218A (zh) * 2015-03-21 2015-06-03 西北有色金属研究院 一种钛基体表面高温抗氧化复合涂层的制备方法
CN108004543A (zh) * 2017-11-30 2018-05-08 中国航发沈阳黎明航空发动机有限责任公司 一种抗cmas腐蚀的热障涂层及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1635178A (zh) * 2004-12-21 2005-07-06 北京航空航天大学 一种抗海洋性气氛腐蚀热障涂层
CN103668191A (zh) * 2013-12-09 2014-03-26 广州有色金属研究院 一种热障涂层的制备方法
CN104674218A (zh) * 2015-03-21 2015-06-03 西北有色金属研究院 一种钛基体表面高温抗氧化复合涂层的制备方法
CN108004543A (zh) * 2017-11-30 2018-05-08 中国航发沈阳黎明航空发动机有限责任公司 一种抗cmas腐蚀的热障涂层及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111005024A (zh) * 2019-12-04 2020-04-14 天津大学 一种抗熔融cmas腐蚀的热障涂层及制备方法
CN111004990A (zh) * 2019-12-04 2020-04-14 天津大学 用于热障涂层抗熔融cmas腐蚀的max相涂层及热喷涂制备方法
CN111005024B (zh) * 2019-12-04 2021-12-17 天津大学 一种抗熔融cmas腐蚀的热障涂层及制备方法
CN111004990B (zh) * 2019-12-04 2022-07-08 天津大学 用于热障涂层抗熔融cmas腐蚀的max相涂层及热喷涂制备方法
CN116288207A (zh) * 2023-03-21 2023-06-23 浙江大学 一种热障涂层及其制备方法和在高温合金中的应用
CN116288207B (zh) * 2023-03-21 2024-04-05 浙江大学 一种热障涂层及其制备方法和在高温合金中的应用

Similar Documents

Publication Publication Date Title
US7622195B2 (en) Thermal barrier coating compositions, processes for applying same and articles coated with same
US6042898A (en) Method for applying improved durability thermal barrier coatings
CA2517298C (en) Process for applying a protective layer
EP1995350B1 (en) High temperature component with thermal barrier coating
Karaoglanli et al. Effects of heat treatment on adhesion strength of thermal barrier coating systems
US6447854B1 (en) Method of forming a thermal barrier coating system
JP4555864B2 (ja) 熱放射特性等に優れる溶射皮膜被覆部材およびその製造方法
CN109554706A (zh) 一种高温合金表面TBC/Al复合热障涂层及其制备方法
JP2007231422A (ja) コーティング方法、およびコーティングされた物品
US20090011260A1 (en) Heat-Insulating Protective Layer for a Component Located Within the Hot Gas Zone of a Gas Turbine
JP2019533090A (ja) セラミック化合物を含む層を有する固体基材の表面をコーティングする方法、及び該方法で得られたコーティング基材
US20100028711A1 (en) Thermal barrier coatings and methods of producing same
JPH11229161A (ja) 遮熱コーティング系用ボンディングコートの緻密化及び粒子間結合の促進方法
US5900102A (en) Method for repairing a thermal barrier coating
CN113584419B (zh) 用于TiAl合金表面的热障涂层及其制备方法
JPS5887273A (ja) セラミツク被覆層を有する部品とその製造方法
US20130323069A1 (en) Turbine Blade for Industrial Gas Turbine and Industrial Gas Turbine
CN103590002A (zh) 一种镍基高温合金Al-Cr涂层的制备方法
Fiebig et al. Thermal spray processes for the repair of gas turbine components
Šulák et al. Low cycle fatigue performance of Ni-based superalloy coated with complex thermal barrier coating
Guo et al. Progress on high-temperature protective coatings for aero-engines
Vural et al. Plasma-sprayed oxide ceramics on steel substrates
CN110791734A (zh) 一种涡轮工作叶片热障涂层制备方法
Gatzen et al. Improved adhesion of different environmental barrier coatings on Al2O3/Al2O3‐ceramic matrix composites
US20100247952A1 (en) Controlled oxidation of bond coat

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190402

RJ01 Rejection of invention patent application after publication