CN109553129B - 纳米级高分散氧化锆及其制备方法与在合成气制备芳烃中的应用 - Google Patents

纳米级高分散氧化锆及其制备方法与在合成气制备芳烃中的应用 Download PDF

Info

Publication number
CN109553129B
CN109553129B CN201811404341.XA CN201811404341A CN109553129B CN 109553129 B CN109553129 B CN 109553129B CN 201811404341 A CN201811404341 A CN 201811404341A CN 109553129 B CN109553129 B CN 109553129B
Authority
CN
China
Prior art keywords
mixed solution
zirconia
zirconium
nano
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811404341.XA
Other languages
English (en)
Other versions
CN109553129A (zh
Inventor
张成华
刘竞舸
李珂
颜琳琳
马彩萍
相宏伟
杨勇
李永旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongke Synthetic Oil Technology Co Ltd
Original Assignee
Synfuels China Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synfuels China Technology Co Ltd filed Critical Synfuels China Technology Co Ltd
Priority to CN201811404341.XA priority Critical patent/CN109553129B/zh
Publication of CN109553129A publication Critical patent/CN109553129A/zh
Application granted granted Critical
Publication of CN109553129B publication Critical patent/CN109553129B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种纳米级高分散氧化锆及其制备方法与在合成气制备芳烃中的应用。该制备纳米级高分散氧化锆的方法,包括:1)将锆盐、螯合剂溶于溶剂中,记为混合液A;2)向所述混合液A中加入矿化剂,得到混合液B;3)将所述混合液B进行水热反应,反应完毕将所得产物过滤、洗涤、干燥,焙烧,得到所述纳米级高分数氧化锆。该方法操作简单、重复性强,产物晶粒小、分散度高,具有较高的CO转化率,低的CO2选择性,且产物中多以芳烃为主,具有极高的芳烃选择性。

Description

纳米级高分散氧化锆及其制备方法与在合成气制备芳烃中的 应用
技术领域
本发明涉及一种催化剂及其制备方法与应用,具体的说,本发明涉及一种纳米级高分散氧化锆及其制备方法与在合成气制备芳烃中的应用。
背景技术
苯(benzene)、甲苯(toluene)、二甲苯(xylene),简称BTX,作为一级化工原料,是石化工业的基本有机化工原料,可用来生产合成橡胶,合成纤维和合成树脂等多种化工产品,也可用来生产多种精细化学产品,还可作为高辛烷值汽油的调和成分。BTX约占汽油组成的21%,经济效益高、市场需求量大。目前,BTX主要来自石油炼制,以催化重整油和裂解汽油为主要原料,但由于石油资源匮乏导致这些化学品的价格居高不下,同时,我国的原油以石蜡基原油为主,不利于重整反应的进行,芳烃产量较低。寻找新的BTX生产路线变得尤为迫切,相较于烃类重整、甲醇芳构化等技术路线而言,合成气直接制芳烃可以缩短工艺流程,产物易于分离,能够显著提高煤化工过程效率,大大降低生产成本。
氧化锆作为异构化催化剂[Ind.Eng.Chem.,Prod.Res.Dev.176,15(2),123],可以在较高反应温度、压力下,将合成气转化为烃类化合物;Pichler等[Brennst.Chem.,1949,30,13-22.]首次研究了合成气异构化反应,指出ZrO2具有较高的异丁烯/烷的选择性;Yingwei Li等[J.Cat.,2004,221,584-593.]对ZrO2上的合成气异构化反应做了大量研究,认为ZrO2表面的酸、碱性对催化合成气转化起着决定性的作用,酸性位活化CO,而碱性位则起到异构化的作用。目前对ZrO2上能直接合成芳烃的研究报告不多,且以金属氧化物作为催化剂活性相,催化活性比较低:Clarence D.Chang等[J.Catal.,1979,56,268-273]在400℃,8Mpa下将合成气直接转化为芳烃,但反应的C5 +只有24%,且C5 +中芳烃含量只有53%。
目前纳米ZrO2的制备方法主要有溶胶-凝胶法、水热法和共沉淀法:GeorgGarnweitner等[Small,2007,9,1626-1632]以异丙醇锆为锆源采用溶胶-凝胶法制备得到3nm左右的ZrO2;Weizhen Li等[Langmuir,2008,24,8358-8366]采用水热法制备得到的ZrO2尺寸集中在7nm;共沉淀法合成的ZrO2其实际颗粒尺寸往往大于10nm,且这些方法都存在成本高、颗粒尺寸难以控制等问题。
发明内容
本发明的目的是提供一种纳米级高分散氧化锆及其制备方法与在合成气制备芳烃中的应用。
本发明提供的制备纳米级高分散氧化锆的方法,包括:
1)将锆盐、螯合剂溶于溶剂中,记为混合液A;
2)向所述混合液A中加入矿化剂,得到混合液B;
3)将所述混合液B进行水热反应而得。
上述方法步骤1)中,锆盐选自硝酸锆、氯化锆、醋酸锆、硫酸锆、硝酸氧锆、氧氯化锆、丙醇锆和丁醇锆中至少一种;
螯合剂选自对苯二甲酸、均苯三甲酸、联苯二甲酸、甲基咪唑和反丁烯二酸中至少一种;
溶剂选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、甲醇、乙醇和水中至少一种;
所述溶剂的量具体可为100-1000mL,更具体可为100、200、300或1000mL;
所述锆盐在混合液A的摩尔浓度为0.10~0.20mol/L,具体可为0.10、0.11、0.12、0.13、0.14、0.15或0.17mol/L;
所述锆盐与螯合剂的摩尔比为1:1~5,具体可以为1:1,1:2,1:3,1:4或1:5。
所述方法还包括:在所述步骤1)之后,步骤2)之前,将所述混合液A超声;
所述超声步骤中,时间具体为30~60min;功率为100W;温度为40-60℃;具体可为50℃。
所述步骤2)中,矿化剂选自硝酸、盐酸、硫酸、甲酸、乙酸和丙酸中至少一种;
所述矿化剂与锆盐的摩尔比为0.3~100:1,具体为0.5:1、1:1,5:1,10:1,20:1,30:1,40:1,50:1,60:1,70:1,80:1,90:1或100:1。
所述方法还包括:在所述步骤2)之后,步骤3)之前,将所述混合液B搅拌;
所述搅拌步骤中,温度为常温;时间为10~30min。
所述步骤3)水热反应步骤中,温度为100~150℃,具体可为100,110,120,130,140或150℃;时间为12~24h,具体可以为12,16,20或24h。
所述方法还包括:在所述步骤3)水热反应之后,将所得产物过滤、洗涤、干燥,焙烧;
所述过滤步骤中,滤孔的目数为325-400目;所述过滤可在真空度为-0.1至-0.05条件进行;所述过滤可为抽滤;
所述洗涤步骤中,洗涤剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、甲醇、乙醇或水;洗涤温度为50~70℃;时间为10-60min;具体为30min;洗涤剂的用量为100~200ml;
所述洗涤为超声洗涤;功率为100W;上述洗涤步骤可根据实际需要重复,如可重复3次;
所述干燥步骤中,温度为100~120℃;时间为12~24h;
所述焙烧步骤中,焙烧温度为350~750℃,具体为350,400,450,500,550,600,650,700或750℃;焙烧时间为6~12h,具体为6,7,8,9,10,11或12h;焙烧气氛为纯氧气或合成空气;所述合成空气的组成如下:20%O2/He或20%O2/Ar。
另外,按照上述方法制备得到的纳米级高分散氧化锆及该纳米级高分散氧化锆在合成气催化转化中的应用,也属于本发明的保护范围。其中,所述纳米级高分散氧化锆为四方相ZrO2;尺寸为3-12纳米;具体为4-11nm;
所述H2与CO的摩尔比为0.5~5.0,优选1.0~3.0,具体为1:1、1.5:1、2:1、2.5:1或3:1;
温度为350~550℃;具体为400~500℃,更具体为400、425、450、475或500℃;
压力为0.5~10Mpa,优选4~6Mpa、具体为4、4.5、5、5.5或6Mpa;
空速为500~5000ml/gcat·h-1;具体为1000~2000ml/gcat·h-1、1000、1250、1500、1750或2000ml/gcat·h-1
所述合成气催化转化具体为催化合成气制备芳烃。所述芳烃的碳原子数具体可为6-12。
与现有技术相比,本发明具有以下优点:
1、该方法操作简单、重复性强,产物具有晶粒小、分散度高等特点;
2、通过控制焙烧条件可实现氧化锆晶粒尺寸的调节,表征结果显示得到的氧化锆高度分散,呈单晶分布,催化剂比表面积较高;
3、该方法合成的氧化锆催化剂具有较高的CO转化率,低的CO2选择性,且产物中多以芳烃为主,具有极高的芳烃选择性;
4、该发明制备方案均为常压操作,实验结果重复性好,前驱物低温活化,能耗较低,设备投资及操作费用低,有利于工业化生产。
附图说明
图1为实施例1氧化锆的前驱物X-射线衍射谱图;
图2为实施例1氧化锆的X-射线衍射谱图;
图3为实施例1氧化锆的N2-吸脱附曲线谱图。
具体实施方式
下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径获得。
实施例1、纳米级高分散氧化锆的可控合成及其催化合成气直接转化制备芳烃:
称量硝酸氧锆4.60g,对苯二甲酸3.32g,溶于100ml N,N-二甲基甲酰胺中,50℃下超声30min,得到混合液A;
加入1.26g矿化剂硝酸,常温下磁力搅拌10min,得到混合液B;
将混合液B置于具有聚四氟乙烯内衬的管弹反应器中,100℃下水热反应12h,待冷却至室温后取出;
后处理:分别用50℃热乙醇磁力搅拌30min、N,N-二甲基甲酰胺超声洗涤30min,重复上述洗涤过程3次,抽滤,100℃干燥24h,得到含有Zr的前驱物;
将前驱物置于管式炉中,通入50ml/min的20%O2/He,程序升温至400℃后停留6h,自然冷却至室温,得到氧化锆;
将焙烧得到的氧化锆经研磨、压片、破碎、筛分后,取1g 20~40目氧化锆催化剂在固定床装置中评价其催化转化合成气性能,催化剂织构性质、反应条件、CO转化率及产物分布见表-1、表-2。
本实施例中的氧化锆的前驱物X-射线衍射谱图如图1所示;在图1中,2θ=7.4、8.5、14.1、14.7、17.0、18.6和19.1°处的衍射峰归属于氧化锆的前驱物,表明该前驱物制备成功。
本实施例中的氧化锆的X-射线衍射谱图如图2所示;在图2中,2θ=30.2、35、50.4、60.0和62.9°处的衍射峰归属于氧化锆,表明得到的氧化锆为纯相的四方相氧化锆。
本实施例中的氧化锆的N2-吸脱附曲线谱图如图3所示;在图3中,得到的N2-吸脱附曲线具有明显的H-3回滞环,表明得到的氧化锆具有典型的介孔结构。
实施例2、纳米级高分散氧化锆的可控合成及其催化合成气直接转化制备芳烃:
称量硝酸锆9.45g,均苯三甲酸9.25g,溶于200ml N,N-二甲基乙酰胺中,50℃下超声40min,得到混合液A;
加入0.803g的盐酸,常温下磁力搅拌10min,得到混合液B;
将混合液B置于具有聚四氟乙烯内衬的管弹反应器中,110℃下水热反应12h,待冷却至室温后取出;
后处理:分别用50℃热乙醇磁力搅拌30min、N,N-二甲基乙酰胺超声洗涤30min,重复上述洗涤过程3次,抽滤,120℃干燥24h,得到含有Zr的前驱物;
将前驱物置于管式炉中,通入50ml/min的20%O2/Ar,程序升温至450℃后,停留8h,自然冷却至室温,得到氧化锆;
将焙烧得到的氧化锆经研磨、压片、破碎、筛分后,取1g 20~40目氧化锆催化剂在固定床装置中评价其催化转化合成气性能,催化剂织构性质、反应条件、CO转化率及产物分布见表-1、表-2。
实施例3、纳米级高分散氧化锆的可控合成及其催化合成气直接转化制备芳烃:
称量氯化锆5.59g,甲基咪唑5.91g,溶于200ml水中,50℃下超声40min,得到混合液A;
加入0.803g的盐酸,常温下磁力搅拌10min,得到混合液B;
将混合液B置于聚四氟乙烯内衬的管弹反应器中,110℃下水热反应12h,待冷却至室温后取出;
后处理:分别用50℃热乙醇磁力搅拌30min、水超声洗涤30min,重复上述洗涤过程3次,抽滤,120℃干燥24h,得到含有Zr的前驱物;
将前驱物置于管式炉中,通入50ml/min的20%O2/Ar,程序升温至450℃后,停留8h,自然冷却至室温,得到氧化锆;
将焙烧得到的氧化锆经研磨、压片、破碎、筛分后,取1g 20~40目氧化锆催化剂在固定床装置中评价其催化转化合成气性能,催化剂织构性质、反应条件、CO转化率及产物分布见表-1、表-2。
实施例4、纳米级高分散氧化锆的可控合成及其催化合成气直接转化制备芳烃:
称量醋酸锆8.51g,反丁烯二酸3.02g,溶于300ml甲醇中,50℃下超声60min,,得到混合液A;
加入30.18g的甲酸,常温下磁力搅拌20min,得到混合液B;
将混合液B置于聚四氟乙烯内衬的管弹反应器中,120℃下水热反应24h,待冷却至室温后取出;
后处理:分别用70℃热乙醇磁力搅拌30min、甲醇超声洗涤30min,重复上述洗涤过程3次,抽滤,120℃干燥24h,得到含有Zr的前驱物;
将前驱物置于管式炉中,通入50ml/min的纯氧气,程序升温至550℃后,停留12h,自然冷却至室温,得到氧化锆;
将焙烧得到的氧化锆经研磨、压片、破碎、筛分后,取1g 20~40目氧化锆催化剂在固定床装置中评价其催化转化合成气性能,催化剂织构性质、反应条件、CO转化率及产物分布见表-1、表-2。
实施例5、纳米级高分散氧化锆的可控合成及其催化合成气直接转化制备芳烃:
称量硫酸锆7.93g,联苯二甲酸13.56g,溶于1000ml乙醇中,50℃下超声30min,得到混合液A;
加入43.60g丙酸,常温下磁力搅拌30min,得到混合液B;
将混合液B置于聚四氟乙烯内衬的管弹反应器中,120℃下水热反应24h,待冷却至室温后取出;
后处理:分别用50℃热乙醇磁力搅拌30min、乙醇超声洗涤30min、重复上述洗涤过程3次,抽滤,100℃干燥24h,得到含有Zr的前驱物;
将前驱物置于管式炉中,通入50ml/min的20%O2/He,程序升温至600℃后,停留12h,自然冷却至室温,得到氧化锆;
将焙烧得到的氧化锆经研磨、压片、破碎、筛分后,取1g 20~40目氧化锆催化剂在固定床装置中评价其催化转化合成气性能,催化剂织构性质、反应条件、CO转化率及产物分布见表-1、表-2。
表-1、合成气在氧化锆催化剂催化转化制芳烃评价结果
Figure BDA0001876998930000061
表-2、合成气在氧化锆催化转化烃类产物分布
Figure BDA0001876998930000062
Figure BDA0001876998930000071
由表-1可以看出,采用该方法制备得到的纳米ZrO2,具有晶粒尺寸小,分散度高等特点,并且可以通过调节焙烧温度,得到不同晶粒尺寸的ZrO2,大量的实验表明,采用该方法制备纳米ZrO2,具有很强的可重复性。
将该方法制备得到的ZrO2用于催化合成气制芳烃反应,当温度为350~500℃,压力为0.5~10MPa,H2/CO为1~2,空速为1000~5000ml/gcat·h-1时,催化剂具有一定的活性,产物中烃类化合物的选择性高于60%,这其中甲烷的选择性低于10%,C2-C4的烃类仅为20%左右,具有高附加值的C5 +的选择性达到70%,这其中包含有90%以上的芳烃。
综上,采用该方法实现纳米ZrO2的可控合成,并且此技术制备得到的ZrO2在合成气催化转化制芳烃领域具有良好的应用前景。

Claims (7)

1.一种制备纳米级高分散氧化锆的方法,包括:
1)将锆盐、螯合剂溶于溶剂中,记为混合液A;
所述螯合剂选自对苯二甲酸、均苯三甲酸、联苯二甲酸、甲基咪唑和反丁烯二酸中至少一种;
所述锆盐在混合液A的摩尔浓度为0.10~0.20mol/L;
所述锆盐与螯合剂的摩尔比为1:1~5;
2)向所述混合液A中加入矿化剂,得到混合液B;
所述矿化剂与锆盐的摩尔比为0.3~100:1;
3)将所述混合液B进行水热反应而得;
所述步骤3)水热反应步骤中,温度为100~150℃;时间为12~24h;
所述方法还包括:在所述步骤3)水热反应之后,将所得产物过滤、洗涤、干燥,焙烧;
所述焙烧步骤中,焙烧温度为350~750℃;焙烧时间为6~12h;焙烧气氛为纯氧气或合成空气;所述合成空气的组成如下:20% O2/He或20% O2/Ar。
2.根据权利要求1所述的方法,其特征在于:所述步骤1)中,锆盐选自硝酸锆、氯化锆、醋酸锆、硫酸锆、硝酸氧锆、氧氯化锆、丙醇锆和丁醇锆中至少一种;
溶剂选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、甲醇、乙醇和水中至少一种。
3.根据权利要求1所述的方法,其特征在于:所述方法还包括:在所述步骤1)之后,步骤2)之前,将所述混合液A超声。
4. 根据权利要求3所述的方法,其特征在于:所述超声步骤中,时间为30~60min;功率为100 W;温度为40-60℃。
5.根据权利要求1-4中任一所述的方法,其特征在于:所述步骤2)中,矿化剂选自硝酸、盐酸、硫酸、甲酸、乙酸和丙酸中至少一种。
6.根据权利要求1-4中任一所述的方法,其特征在于:所述方法还包括:在所述步骤2)之后,步骤3)之前,将所述混合液B搅拌;
所述搅拌步骤中,温度为常温;时间为10~30min。
7.根据权利要求1-4中任一所述的方法,其特征在于:所述过滤步骤中,滤孔的目数为325-400目;
所述洗涤步骤中,洗涤剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、甲醇、乙醇或水;洗涤温度为50~70℃;时间为10-60min;洗涤剂的用量为100~200ml;
所述洗涤为超声洗涤;功率为100W;
所述干燥步骤中,温度为100~120℃;时间为12~24h。
CN201811404341.XA 2018-11-23 2018-11-23 纳米级高分散氧化锆及其制备方法与在合成气制备芳烃中的应用 Active CN109553129B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811404341.XA CN109553129B (zh) 2018-11-23 2018-11-23 纳米级高分散氧化锆及其制备方法与在合成气制备芳烃中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811404341.XA CN109553129B (zh) 2018-11-23 2018-11-23 纳米级高分散氧化锆及其制备方法与在合成气制备芳烃中的应用

Publications (2)

Publication Number Publication Date
CN109553129A CN109553129A (zh) 2019-04-02
CN109553129B true CN109553129B (zh) 2021-05-14

Family

ID=65867083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811404341.XA Active CN109553129B (zh) 2018-11-23 2018-11-23 纳米级高分散氧化锆及其制备方法与在合成气制备芳烃中的应用

Country Status (1)

Country Link
CN (1) CN109553129B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110228819A (zh) * 2019-07-08 2019-09-13 桂林电子科技大学 一种纳米氧化锆粉体的水热制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631796A (zh) * 2004-11-30 2005-06-29 中国科学院山西煤炭化学研究所 一种具有高热稳定性的介孔二氧化锆的制备方法
CN1915836A (zh) * 2006-09-01 2007-02-21 清华大学 一种纳米氧化锆粉体的制备方法
WO2008068915A1 (ja) * 2006-12-01 2008-06-12 Dai Nippon Toryo Co., Ltd. 酸化ジルコニウム粒子分散液、酸化ジルコニウム粒子含有光硬化性組成物及び硬化膜
CN104556225A (zh) * 2014-12-25 2015-04-29 石家庄学院 一种微/纳米结构ZrO2及其制备方法
CN106540674A (zh) * 2016-10-26 2017-03-29 中科合成油技术有限公司 一种金属掺杂的氧化锆催化剂及其制备方法与在催化合成气催化转化中的应用
CN107032397A (zh) * 2016-10-26 2017-08-11 中科合成油技术有限公司 一种高比表面高纯四方相纳米氧化锆及其制备方法与在催化合成气催化转化中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016120795A1 (en) * 2015-01-28 2016-08-04 Universita' Ca' Foscari Totally-mesoporous zirconia nanoparticles, use and method for producing thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631796A (zh) * 2004-11-30 2005-06-29 中国科学院山西煤炭化学研究所 一种具有高热稳定性的介孔二氧化锆的制备方法
CN1915836A (zh) * 2006-09-01 2007-02-21 清华大学 一种纳米氧化锆粉体的制备方法
WO2008068915A1 (ja) * 2006-12-01 2008-06-12 Dai Nippon Toryo Co., Ltd. 酸化ジルコニウム粒子分散液、酸化ジルコニウム粒子含有光硬化性組成物及び硬化膜
CN104556225A (zh) * 2014-12-25 2015-04-29 石家庄学院 一种微/纳米结构ZrO2及其制备方法
CN106540674A (zh) * 2016-10-26 2017-03-29 中科合成油技术有限公司 一种金属掺杂的氧化锆催化剂及其制备方法与在催化合成气催化转化中的应用
CN107032397A (zh) * 2016-10-26 2017-08-11 中科合成油技术有限公司 一种高比表面高纯四方相纳米氧化锆及其制备方法与在催化合成气催化转化中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高分散氧化锆纳米晶体的合成与表征;俞建长 等;《硅酸盐学报》;20060228;第34卷(第2期);162-166 *

Also Published As

Publication number Publication date
CN109553129A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
Dasireddy et al. The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity
Tahay et al. Highly porous monolith/TiO2 supported Cu, Cu-Ni, Ru, and Pt catalysts in methanol steam reforming process for H2 generation
Guo et al. Highly active Ni-based catalyst derived from double hydroxides precursor for low temperature CO2 methanation
Al-Swai et al. Syngas production via methane dry reforming over ceria–magnesia mixed oxide-supported nickel catalysts
Talkhoncheh et al. Syngas production via dry reforming of methane over Ni-based nanocatalyst over various supports of clinoptilolite, ceria and alumina
Sajjadi et al. Dry reforming of greenhouse gases CH 4/CO 2 over MgO-promoted Ni–Co/Al 2 O 3–ZrO 2 nanocatalyst: effect of MgO addition via sol–gel method on catalytic properties and hydrogen yield
Delgado et al. Influence of the nature of the support on the catalytic properties of Pt-based catalysts for hydrogenolysis of glycerol
Zhang et al. Synergically engineering Cu+ and oxygen vacancies in CuMn2O4 catalysts for enhanced toluene oxidation performance
WO2018120576A1 (zh) 一种用于二氧化碳一步加氢制备烃类的催化剂及其制备方法
Lu et al. Promotional effect of Ti doping on the ketonization of acetic acid over a CeO 2 catalyst
US9114378B2 (en) Iron and cobalt based fischer-tropsch pre-catalysts and catalysts
CN104941668A (zh) 用于乙烷氧化脱氢反应的纳米复合物催化剂及其制备方法
Nawaz et al. Tailoring the synergistic dual-decoration of (Cu–Co) transition metal auxiliaries in Fe-oxide/zeolite composite catalyst for the direct conversion of syngas to aromatics
Ding et al. Engineering a nickel–oxygen vacancy interface for enhanced dry reforming of methane: a promoted effect of CeO2 introduction into Ni/MgO
Tian et al. Influence of Mn and Mg oxides on the performance of In2O3 catalysts for CO2 hydrogenation to methanol
Li et al. Metal-organic framework derived hexagonal layered cobalt oxides with {1 1 2} facets and rich oxygen vacancies: High efficiency catalysts for total oxidation of propane
CN109553129B (zh) 纳米级高分散氧化锆及其制备方法与在合成气制备芳烃中的应用
Zeng et al. Highly Dispersed Ni x Ga y Catalyst and La2O3 Promoter Supported by LDO Nanosheets for Dry Reforming of Methane: Synergetic Catalysis by Ni, Ga, and La2O3
Xia et al. Effects of precursor phase distribution on the performance of Cu-based catalysts for direct CO2 conversion to dimethyl ether
Tian et al. Engineering crystal phases of oxides in tandem catalysts for high-efficiency production of light olefins from CO2 hydrogenation
Li et al. Efficient Metal–organic framework-derived Cu–Zr oxygen carriers with an enhanced reduction reaction rate for chemical looping air separation
CN100441298C (zh) 氧化钛-氧化铝复合载体及其制备方法和应用
Meng et al. Role of Zn-Al oxide structure and oxygen vacancy in bifunctional catalyst for syngas conversion to light olefins
Shang et al. Insights into the Mn-doping effects on the catalytic performance of ZnCrAlOy/SAPO-34 bifunctional catalyst for the direct conversion of syngas to light olefins
Shen et al. Enhanced Methanol Synthesis via CO2 Hydrogenation over ZnO/ZrO2 Catalysts by the Regulation of Precipitation Method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 101407 Zhongke synthetic oil Technology Co., Ltd., No. 1, south 2nd Street, Yuanyuan, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee after: Zhongke synthetic oil Technology Co.,Ltd.

Address before: 101407 Zhongke synthetic oil Technology Co., Ltd., No. 1, south 2nd Street, Yuanyuan, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee before: SYNFUELS CHINA TECHNOLOGY Co.,Ltd.