CN109552289A - 一种汽车自适应辅助制动系统及其控制方法 - Google Patents

一种汽车自适应辅助制动系统及其控制方法 Download PDF

Info

Publication number
CN109552289A
CN109552289A CN201811440496.9A CN201811440496A CN109552289A CN 109552289 A CN109552289 A CN 109552289A CN 201811440496 A CN201811440496 A CN 201811440496A CN 109552289 A CN109552289 A CN 109552289A
Authority
CN
China
Prior art keywords
automobile
auxiliary
vehicle
driver
real
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811440496.9A
Other languages
English (en)
Other versions
CN109552289B (zh
Inventor
王亚君
孙福明
李刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Quanchebang Intelligent Technology Co ltd
Original Assignee
Liaoning University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University of Technology filed Critical Liaoning University of Technology
Priority to CN201811440496.9A priority Critical patent/CN109552289B/zh
Publication of CN109552289A publication Critical patent/CN109552289A/zh
Application granted granted Critical
Publication of CN109552289B publication Critical patent/CN109552289B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/741Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on an ultimate actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

本发明公开一种汽车自适应辅助制动系统,包括:液压制动主系统,其包括:制动主缸,其与汽车制动踏板连接;制动器,其设置在汽车车轮上,且与所述制动主缸连接;电机辅助制动系统,其包括:轮毂电机,其设置在所述汽车轮毂上;信号采集模块,其用于采集汽车行驶信息、路况信息和驾驶员状态;信号处理模块,其与所述信号采集模块连接,用于处理所述信号采集模块采集的数据,并做出辅助控制决策;控制模块,其与所述信号处理模块和轮毂电机连接,用于接收所述辅助控制决策,并对汽车进行辅助制动。本发明还提供一种汽车自适应辅助制动系统的控制方法,能够根据汽车行驶信息和路况环境信息,实时确定汽车与前辆汽车的安全距离,并做出辅助控制决策。

Description

一种汽车自适应辅助制动系统及其控制方法
技术领域
本发明涉及汽车制动电子控制技术领域,更具体的是,本发明涉及一种汽车自适应辅助制动系统及其控制方法。
背景技术
随着经济的发展,汽车保有量增加,人们对车辆的驾驶和乘坐舒适性提出了越来越高的要求;同时车辆的增多影响到道路交通的安全。车辆的制动系统是车辆的重要控制系统之一,车辆控制制动技术的发展情况决定了车辆的技术水平。
现有技术中的车辆的制动系统包括刹车制动、手动制动等,传统情况中,当驾驶员遇到紧急情况,通常将踩在油门上的右脚急速放松,回收同时移向刹车踏板,并将刹车踏板踩下,当刹车踏板踩下后,车速才会降低,在此过程中车速基本保持原有车速,而其间的时间并没有即使形成制动,也就是说,制动操作不能够由驾驶员发现紧急情况时及时作出反应,存在延误操作的可能,对车辆的行驶安全造成了极大的威胁。
发明内容
本发明的一个目的是设计开发了一种汽车自适应辅助制动系统,设置了电机辅助制动系统,在进行液压制动的同时,电机辅助制动系统通过轮毂电机进行辅助制动,提高制动效果和行车安全性。
本发明的另一个目的是设计开发了一种汽车自适应辅助制动系统的控制方法,能够根据汽车行驶信息和路况环境信息,实时确定汽车与相邻前辆汽车的安全距离,并做出辅助控制决策。
本发明在汽车与相邻前辆汽车的实时距离小于等于汽车的安全距离时,精确控制汽车的辅助制动加速度,提高制动效果和驾驶舒适性。
本发明还能在汽车与相邻前辆汽车的实时距离大于汽车的安全距离时,基于BP神经网络确定汽车的辅助制动加速度,提高制动效果和驾驶舒适性。
本发明提供的技术方案为:
一种汽车自适应辅助制动系统,包括:
液压制动主系统,其包括:
制动主缸,其与汽车制动踏板连接;
制动器,其设置在汽车车轮上,且与所述制动主缸连接;
电机辅助制动系统,其包括:
轮毂电机,其设置在所述汽车轮毂上;
信号采集模块,其用于采集汽车行驶信息、路况信息和驾驶员状态;
信号处理模块,其与所述信号采集模块连接,用于处理所述信号采集模块采集的数据,并做出辅助控制决策;
控制模块,其与所述信号处理模块和轮毂电机连接,用于接收所述辅助控制决策,并对汽车进行辅助制动。
优选的是,所述信号采集模块包括:
摄像头,其设置在汽车前挡风玻璃顶端中间,用于检测前方道路信息;
车速传感器,其设置在汽车底盘上,用于检测汽车行驶速度;
踏板位移传感器,其与制动踏板连接,用于检测制动踏板的位移;
多个振动传感器,其分别设置在汽车坐垫、靠背和地板处,用于检测汽车行驶时的振动程度;
多个转向盘压力传感器,其均匀分布在汽车转向盘轮辋骨架上,用于检测驾驶员作用于汽车转向盘上的压力;
心率传感器,其设置在汽车驾驶座位的安全带上,用于检测驾驶员的心率。
一种汽车自适应辅助制动系统的控制方法,包括:
当汽车进行制动时,按照采样周期,通过传感器测量采集汽车行驶信息和路况环境信息,实时确定汽车与相邻前辆汽车的安全距离,并做出辅助控制决策,控制模块根据所述辅助控制决策对汽车进行辅助制动,其中,所述汽车与相邻前辆汽车的安全距离为:
其中,DS为安全距离,d0为当前车况环境下应当保持的安全距离,ds为能见度,v为车速,k为参数,n为等概率出现的选择对象数,χ为天气状况系数且χ∈[-2,1],g为重力加速度,e为自然对数的底数,σ为风力等级且σ∈[0,9]。
优选的是,当汽车与相邻前辆汽车的实时距离D满足D≤DS时,
控制模块通过轮毂电机对汽车进行辅助制动的辅助制动加速度为:
其中,a为辅助制动加速度,v0为汽车的实时车速,fi为第i个转向盘压力传感器检测的压力值,n为汽车转向盘轮辋骨架上分布的转向盘压力传感器的数量,为汽车平均振动幅度,F为转向盘压力方差,T为驾驶员心率趋势。
优选的是,所述汽车转向盘压力方差为:
优选的是,所述驾驶员心率趋势为:
式中,TRE为驾驶员的实时心率值,TREmin为驾驶员的最小心率值,TREmax为驾驶员的最大心率值。
优选的是,当汽车与相邻前辆汽车的实时距离D满足D>DS时,基于BP神经网络采集汽车行驶信息、路况信息和驾驶员状态并确定辅助制动加速度,具体包括如下步骤:
步骤一、按照采样周期,通过传感器采集汽车与相邻前辆汽车的实时距离D,汽车的实时车速v0,汽车平均振动幅度转向盘压力方差F,驾驶员心率趋势T以及制动踏板的位移H;
步骤二、依次将汽车与相邻前辆汽车的实时距离D,汽车的实时车速v0,汽车平均振动幅度转向盘压力方差F,驾驶员心率趋势T以及制动踏板的位移H进行规格化,确定三层BP神经网络的输入层向量x={x1,x2,x3,x4,x5,x6};其中,x1为实时距离系数,x2为车速系数,x3为振动幅度系数,x4为转向盘压力方差系数,x5为心率趋势系数,x6为制动踏板的位移系数;
步骤三、所述输入层向量映射到中间层,所述中间层向量y={y1,y2,…,ym};m为中间层节点个数;
步骤四、得到输出层向量z={z1};其中,z1为辅助制动加速度调节系数,使
ai+1=z1 iamax
其中,z1 i为第i个采样周期输出层向量参数,amax为设定的辅助制动加速度的最大值,ai+1为第i+1个采样周期时的辅助制动加速度。
优选的是,步骤二中,将汽车与相邻前辆汽车的实时距离D,汽车的实时车速v0,汽车平均振动幅度转向盘压力方差F,驾驶员心率趋势T以及制动踏板的位移H进行规格化的公式为:
其中,xj为输入层向量中的参数,Xj分别为测量参数D、v0F、T、H,j=1,2,3,4,5,6;Xjmax和Xjmin分别为相应测量参数中的最大值和最小值。
优选的是,所述步骤一中,初始运行状态下,辅助制动加速度满足经验值:
a0=0.5amax
其中,a0为初始辅助制动加速度;amax为设定的最大辅助制动加速度。
优选的是,所述中间层的节点个数m满足:其中n为输入层节点个数,p为输出层节点个数,所述中间层及所述输出层的激励函数均采用S型函数fj(x)=1/(1+e-x)。
本发明所述的有益效果:
(1)本发明提供的汽车自适应辅助制动系统,设置了电机辅助制动系统,在进行液压制动的同时,电机辅助制动系统通过轮毂电机进行辅助制动,提高制动效果和行车安全性。
(2)本发明提供的汽车自适应辅助制动系统的控制方法,能够根据汽车行驶信息和路况环境信息,实时确定汽车与相邻前辆汽车的安全距离,并做出辅助控制决策。在汽车与相邻前辆汽车的实时距离小于等于汽车的安全距离时,精确控制汽车的辅助制动加速度。还能在汽车与相邻前辆汽车的实时距离大于汽车的安全距离时,基于BP神经网络确定汽车的辅助制动加速度,提高制动效果和驾驶舒适性,也提高了行车安全性。
具体实施方式
下面对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
本发明提供一种汽车自适应辅助制动系统,包括:液压制动主系统,其包括:制动主缸,其与汽车制动踏板连接;制动器,其设置在汽车车轮上,且与所述制动主缸连接。主要是踩踏制动踏板时,通过液压传递到车轮上的制动器,对汽车进行制动。
电机辅助制动系统,其包括:轮毂电机,其设置在所述汽车轮毂上;信号采集模块,其用于采集汽车行驶信息、路况信息和驾驶员状态;信号处理模块,其与所述信号采集模块连接,用于处理所述信号采集模块采集的数据,并做出辅助控制决策;控制模块,其与所述信号处理模块和轮毂电机连接,用于接收所述辅助控制决策,并对汽车进行辅助制动。通过轮毂电机接收的控制决策对车轮进行制动。
所述信号采集模块包括:摄像头,其设置在汽车前挡风玻璃顶端中间,用于检测前方道路信息,主要是确定汽车与相邻前辆汽车的实时距离;车速传感器,其设置在汽车底盘上,用于检测汽车行驶速度;踏板位移传感器,其与制动踏板连接,用于检测制动踏板的位移;多个振动传感器,其分别设置在汽车坐垫、靠背和地板处,用于检测汽车行驶时的振动程度;多个转向盘压力传感器,其均匀分布在汽车转向盘轮辋骨架上,用于检测驾驶员作用于汽车转向盘上的压力;心率传感器,其设置在汽车驾驶座位的安全带上,用于检测驾驶员的心率。
本发明提供的汽车自适应辅助制动系统,设置了电机辅助制动系统,在进行液压制动的同时,电机辅助制动系统通过轮毂电机进行辅助制动,提高制动效果和行车安全性。
本发明还提供一种汽车自适应辅助制动系统的控制方法,具体是当汽车进行制动时,按照采样周期,通过传感器测量采集汽车行驶信息和路况环境信息,实时确定汽车与相邻前辆汽车的安全距离,并做出辅助控制决策,控制模块根据所述辅助控制决策对汽车进行辅助制动,其中,所述汽车与相邻前辆汽车的安全距离为:
其中,DS为安全距离,d0为当前车况环境下应当保持的安全距离,ds为能见度,v为车速,k为参数,n为等概率出现的选择对象数,χ为天气状况系数且χ∈[-2,1],g为重力加速度,e为自然对数的底数,σ为风力等级且σ∈[0,9]。
(1)当汽车与相邻前辆汽车的实时距离D满足D≤DS时,
控制模块通过轮毂电机对汽车进行辅助制动的辅助制动加速度为:
其中,a为辅助制动加速度,v0为汽车的实时车速,fi为第i个转向盘压力传感器检测的压力值,n为汽车转向盘轮辋骨架上分布的转向盘压力传感器的数量,为汽车平均振动幅度,F为转向盘压力方差,T为驾驶员心率趋势。
优选的是,所述汽车转向盘压力方差为:
优选的是,所述驾驶员心率趋势为:
式中,TRE为驾驶员的实时心率值,TREmin为驾驶员的最小心率值,TREmax为驾驶员的最大心率值。
(2)当汽车与相邻前辆汽车的实时距离D满足D>DS时,基于BP神经网络采集汽车行驶信息、路况信息和驾驶员状态并确定辅助制动加速度,具体包括如下步骤:
步骤一、建立BP神经网络模型;
本发明采用的BP网络体系结构由三层组成,第一层为输入层,共n个节点,对应了表示汽车行驶信息、路况信息和驾驶员状态的n个检测信号,这些信号参数由数据预处理模块给出。第二层为中间层,共m个节点,由网络的训练过程以自适应的方式确定。第三层为输出层,共p个节点,由系统实际需要输出的响应确定。所述中间层及所述输出层的激励函数均采用S型函数fj(x)=1/(1+e-x)。
该网络的数学模型为:
输入层向量:x=(x1,x2,…,xn)T
中间层向量:y=(y1,y2,…,ym)T
输出层向量:z=(z1,z2,…,zp)T
本发明中,输入层节点数为n=6,输出层节点数为p=1。隐藏层节点数m由下式估算得出:
按照采样周期,输入的6个参数为,x1为实时距离系数,x2为车速系数,x3为振动幅度系数,x4为转向盘压力方差系数,x5为心率趋势系数,x6为制动踏板的位移系数;
由于传感器获取的数据属于不同的物理量,其量纲各不相同。因此,在数据输入神经网络之前,需要将数据规格化为0-1之间的数。
具体而言,对于汽车与相邻前辆汽车的实时距离D,进行规格化后,得到实时距离系数x1
其中,Dmin和Dmax分别为汽车与相邻前辆汽车的实时距离的最小值和最大值。
对于汽车的实时车速v0,进行规格化后,得到车速系数x2
其中,vmin和vmax分别为最小车速和最大车速。
对于汽车平均振动幅度进行规格化后,得到振动幅度系数x3
其中,和Amax分别为汽车平均振动幅度的最小值和最大值。
对于转向盘压力方差F,进行规格化后,得到转向盘压力方差系数x4
其中,Fmin和Fmax分别为转向盘压力方差的最小值和最大值。
对于驾驶员心率趋势T,进行规格化后,得到驾驶员心率趋势系数x5
其中,Tmin和Tmax分别为驾驶员心率趋势的最小值和最大值。
对于制动踏板的位移H,进行规格化后,得到制动踏板的位移系数x6
其中,Hmin和Hmax分别为制动踏板的最小位移和最大位移。
输出信号的1个参数表示为:z1为辅助制动加速度调节系数;
辅助制动加速度调节系数z1表示为下一个采样周期中的辅助制动加速度与当前采样周期中设定的最大辅助制动加速度之比,即在第i个采样周期中,采集到的辅助制动加速度为ai,通过BP神经网络输出第i个采样周期的辅助制动加速度调节系数z1 i后,控制第i+1个采样周期中辅助制动加速度为ai+1,使其满足ai+1=z1 iamax
步骤二:进行BP神经网络的训练。
建立好BP神经网络节点模型后,即可进行BP神经网络的训练。根据产品的经验数据获取训练的样本,并给定输入节点i和隐含层节点j之间的连接权值wij,中间层节点j和输出层节点k之间的连接权值wjk,中间层节点j的阈值θj,输出层节点k的阈值wij、wjk、θj、θk均为-1到1之间的随机数。
在训练过程中,不断修正wij和wjk的值,直至系统误差小于等于期望误差时,完成神经网络的训练过程。
如表1所示,给定了一组训练样本以及训练过程中各节点的值。
表1训练过程各节点值
步骤三、采集数据运行参数输入神经网络得到调控系数;
训练好的人工神经网络固化在芯片之中,使硬件电路具备预测和智能决策功能,从而形成智能硬件。智能硬件加电启动后,在汽车进行制动时,初始辅助制动加速度为a0=0.5amax
同时,使用传感器测量汽车与相邻前辆汽车的初始距离D0,汽车的初始车速v00,汽车初始平均振动幅度转向盘初始压力方差F0,驾驶员初始心率趋势T0以及制动踏板的初始位移H0,通过将上述参数规格化,得到BP神经网络的初始输入向量通过BP神经网络的运算得到初始输出向量
步骤四:得到初始输出向量后,即可调节辅助制动加速度,使下一个采样周期的辅助制动加速度为:
a1=z1 0amax
通过传感器获取第i个采样周期中的汽车与相邻前辆汽车的实时距离D,汽车的实时车速v0,汽车平均振动幅度转向盘压力方差F,驾驶员心率趋势T以及制动踏板的位移H,通过进行规格化得到第i个采样周期的输入向量xi=(x1 i,x2 i,x3 i,x4 i,x5 i,x6 i),通过BP神经网络的运算得到第i个采样周期的输出向量zi=(z1 i),然后控制调节辅助制动加速度,使第i+1个采样周期时的辅助制动加速度为:
ai+1=z1 iamax
通过上述设置,通过传感器实时监测汽车行驶信息、路况信息和驾驶员状态,通过采用BP神经网络算法,对辅助制动加速度进行调控,提高制动效果和驾驶舒适性。
本发明提供的汽车自适应辅助制动系统的控制方法,能够根据汽车行驶信息和路况环境信息,实时确定汽车与相邻前辆汽车的安全距离,并做出辅助控制决策。在汽车与相邻前辆汽车的实时距离小于等于汽车的安全距离时,精确控制汽车的辅助制动加速度。还能在汽车与相邻前辆汽车的实时距离大于汽车的安全距离时,基于BP神经网络确定汽车的辅助制动加速度,提高制动效果和驾驶舒适性,也提高了行车安全性。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (10)

1.一种汽车自适应辅助制动系统,其特征在于,包括:
液压制动主系统,其包括:
制动主缸,其与汽车制动踏板连接;
制动器,其设置在汽车车轮上,且与所述制动主缸连接;
电机辅助制动系统,其包括:
轮毂电机,其设置在所述汽车轮毂上;
信号采集模块,其用于采集汽车行驶信息、路况信息和驾驶员状态;
信号处理模块,其与所述信号采集模块连接,用于处理所述信号采集模块采集的数据,并做出辅助控制决策;
控制模块,其与所述信号处理模块和轮毂电机连接,用于接收所述辅助控制决策,并对汽车进行辅助制动。
2.如权利要求1所述的汽车自适应辅助制动系统,其特征在于,所述信号采集模块包括:
摄像头,其设置在汽车前挡风玻璃顶端中间,用于检测前方道路信息;
车速传感器,其设置在汽车底盘上,用于检测汽车行驶速度;
踏板位移传感器,其与制动踏板连接,用于检测制动踏板的位移;
多个振动传感器,其分别设置在汽车坐垫、靠背和地板处,用于检测汽车行驶时的振动程度;
多个转向盘压力传感器,其均匀分布在汽车转向盘轮辋骨架上,用于检测驾驶员作用于汽车转向盘上的压力;
心率传感器,其设置在汽车驾驶座位的安全带上,用于检测驾驶员的心率。
3.一种汽车自适应辅助制动系统的控制方法,其特征在于,包括:
当汽车进行制动时,按照采样周期,通过传感器测量采集汽车行驶信息和路况环境信息,实时确定汽车与相邻前辆汽车的安全距离,并做出辅助控制决策,控制模块根据所述辅助控制决策对汽车进行辅助制动,其中,所述汽车与相邻前辆汽车的安全距离为:
其中,DS为安全距离,d0为当前车况环境下应当保持的安全距离,ds为能见度,v为车速,k为参数,n为等概率出现的选择对象数,χ为天气状况系数且χ∈[-2,1],g为重力加速度,e为自然对数的底数,σ为风力等级且σ∈[0,9]。
4.如权利要求3所述的汽车自适应辅助制动系统的控制方法,其特征在于,当汽车与相邻前辆汽车的实时距离D满足D≤DS时,
控制模块通过轮毂电机对汽车进行辅助制动的辅助制动加速度为:
其中,a为辅助制动加速度,v0为汽车的实时车速,fi为第i个转向盘压力传感器检测的压力值,n为汽车转向盘轮辋骨架上分布的转向盘压力传感器的数量,为汽车平均振动幅度,F为转向盘压力方差,T为驾驶员心率趋势。
5.如权利要求4所述的汽车自适应辅助制动系统的控制方法,其特征在于,所述汽车转向盘压力方差为:
6.如权利要求4或5所述的汽车自适应辅助制动系统的控制方法,其特征在于,所述驾驶员心率趋势为:
式中,TRE为驾驶员的实时心率值,TREmin为驾驶员的最小心率值,TREmax为驾驶员的最大心率值。
7.如权利要求3所述的汽车自适应辅助制动系统的控制方法,其特征在于,当汽车与相邻前辆汽车的实时距离D满足D>DS时,基于BP神经网络采集汽车行驶信息、路况信息和驾驶员状态并确定辅助制动加速度,具体包括如下步骤:
步骤一、按照采样周期,通过传感器采集汽车与相邻前辆汽车的实时距离D,汽车的实时车速v0,汽车平均振动幅度转向盘压力方差F,驾驶员心率趋势T以及制动踏板的位移H;
步骤二、依次将汽车与相邻前辆汽车的实时距离D,汽车的实时车速v0,汽车平均振动幅度转向盘压力方差F,驾驶员心率趋势T以及制动踏板的位移H进行规格化,确定三层BP神经网络的输入层向量x={x1,x2,x3,x4,x5,x6};其中,x1为实时距离系数,x2为车速系数,x3为振动幅度系数,x4为转向盘压力方差系数,x5为心率趋势系数,x6为制动踏板的位移系数;
步骤三、所述输入层向量映射到中间层,所述中间层向量y={y1,y2,…,ym};m为中间层节点个数;
步骤四、得到输出层向量z={z1};其中,z1为辅助制动加速度调节系数,使
ai+1=z1 iamax
其中,z1 i为第i个采样周期输出层向量参数,amax为设定的辅助制动加速度的最大值,ai+1为第i+1个采样周期时的辅助制动加速度。
8.如权利要求7所述的汽车自适应辅助制动系统的控制方法,其特征在于,步骤二中,将汽车与相邻前辆汽车的实时距离D,汽车的实时车速v0,汽车平均振动幅度转向盘压力方差F,驾驶员心率趋势T以及制动踏板的位移H进行规格化的公式为:
其中,xj为输入层向量中的参数,Xj分别为测量参数D、v0F、T、H,j=1,2,3,4,5,6;Xjmax和Xjmin分别为相应测量参数中的最大值和最小值。
9.如权利要求8所述的汽车自适应辅助制动系统的控制方法,其特征在于,所述步骤一中,初始运行状态下,辅助制动加速度满足经验值:
a0=0.5amax
其中,a0为初始辅助制动加速度;amax为设定的最大辅助制动加速度。
10.如权利要求9所述的汽车自适应辅助制动系统的控制方法,其特征在于,所述中间层的节点个数m满足:其中n为输入层节点个数,p为输出层节点个数,所述中间层及所述输出层的激励函数均采用S型函数fj(x)=1/(1+e-x)。
CN201811440496.9A 2018-11-29 2018-11-29 一种汽车自适应辅助制动系统及其控制方法 Expired - Fee Related CN109552289B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811440496.9A CN109552289B (zh) 2018-11-29 2018-11-29 一种汽车自适应辅助制动系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811440496.9A CN109552289B (zh) 2018-11-29 2018-11-29 一种汽车自适应辅助制动系统及其控制方法

Publications (2)

Publication Number Publication Date
CN109552289A true CN109552289A (zh) 2019-04-02
CN109552289B CN109552289B (zh) 2020-06-02

Family

ID=65867898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811440496.9A Expired - Fee Related CN109552289B (zh) 2018-11-29 2018-11-29 一种汽车自适应辅助制动系统及其控制方法

Country Status (1)

Country Link
CN (1) CN109552289B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110154894A (zh) * 2019-05-29 2019-08-23 辽宁工业大学 一种基于路面状况的汽车安全驾驶预警方法
CN110588607A (zh) * 2019-10-25 2019-12-20 江苏赛麟汽车科技有限公司 一种基于多传感器的自动驻车系统的控制方法
CN110816531A (zh) * 2019-11-22 2020-02-21 辽宁工业大学 一种无人驾驶汽车车辆间安全距离的控制系统及控制方法
CN112114541A (zh) * 2019-06-21 2020-12-22 华为技术有限公司 传感器的控制方法、装置和传感器
CN113085806A (zh) * 2021-04-06 2021-07-09 南京航空航天大学 一种基于超磁致伸缩制动系统的复合再生制动控制方法
CN113335285A (zh) * 2021-06-29 2021-09-03 东风汽车集团股份有限公司 基于电动车倒车场景的防止油门误操作控制方法及系统
CN113978259A (zh) * 2021-11-19 2022-01-28 张展浩 一种基于驾驶场景及驾驶习惯的电动汽车制动控制方法
CN115009037A (zh) * 2022-07-25 2022-09-06 常州星宇车灯股份有限公司 一种电动汽车辅助驾驶节能控制系统及控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745194A (zh) * 2012-06-19 2012-10-24 东南大学 一种高速公路汽车防追尾前车的自适应报警方法
CN103273913A (zh) * 2013-06-08 2013-09-04 浙江大学 一种基于正交配置优化的汽车自动制动装置
CN103273914A (zh) * 2013-06-08 2013-09-04 浙江大学 一种基于动态优化的汽车自动制动装置
CN103802679A (zh) * 2012-11-13 2014-05-21 博世汽车部件(苏州)有限公司 用于车辆复合制动系统的控制装置和控制方法
CN104108316A (zh) * 2014-04-12 2014-10-22 北京工业大学 一种纯电动汽车的电液联合制动控制方法
CN106043256A (zh) * 2016-07-11 2016-10-26 南京航空航天大学 一种电动汽车电液复合制动系统及其优化方法
CN106314428A (zh) * 2016-09-14 2017-01-11 中国科学院微电子研究所 一种避撞系统、避撞方法及机动车辆
CN106671961A (zh) * 2017-03-02 2017-05-17 吉林大学 一种基于电动汽车的主动防碰撞系统及其控制方法
CN108501944A (zh) * 2018-05-14 2018-09-07 吕杉 汽车爆胎安全稳定控制方法
CN108545082A (zh) * 2018-04-28 2018-09-18 辽宁工业大学 一种汽车变道预警方法
CN108639065A (zh) * 2018-05-15 2018-10-12 辽宁工业大学 一种基于视觉的车辆安全行驶控制方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745194A (zh) * 2012-06-19 2012-10-24 东南大学 一种高速公路汽车防追尾前车的自适应报警方法
CN103802679A (zh) * 2012-11-13 2014-05-21 博世汽车部件(苏州)有限公司 用于车辆复合制动系统的控制装置和控制方法
CN103273913A (zh) * 2013-06-08 2013-09-04 浙江大学 一种基于正交配置优化的汽车自动制动装置
CN103273914A (zh) * 2013-06-08 2013-09-04 浙江大学 一种基于动态优化的汽车自动制动装置
CN104108316A (zh) * 2014-04-12 2014-10-22 北京工业大学 一种纯电动汽车的电液联合制动控制方法
CN106043256A (zh) * 2016-07-11 2016-10-26 南京航空航天大学 一种电动汽车电液复合制动系统及其优化方法
CN106314428A (zh) * 2016-09-14 2017-01-11 中国科学院微电子研究所 一种避撞系统、避撞方法及机动车辆
CN106671961A (zh) * 2017-03-02 2017-05-17 吉林大学 一种基于电动汽车的主动防碰撞系统及其控制方法
CN108545082A (zh) * 2018-04-28 2018-09-18 辽宁工业大学 一种汽车变道预警方法
CN108501944A (zh) * 2018-05-14 2018-09-07 吕杉 汽车爆胎安全稳定控制方法
CN108639065A (zh) * 2018-05-15 2018-10-12 辽宁工业大学 一种基于视觉的车辆安全行驶控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谢浩: "基于BP神经网络及其优化算法的汽车车速预测", 《重庆大学硕士学位论文》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110154894B (zh) * 2019-05-29 2020-12-11 辽宁工业大学 一种基于路面状况的汽车安全驾驶预警方法
CN110154894A (zh) * 2019-05-29 2019-08-23 辽宁工业大学 一种基于路面状况的汽车安全驾驶预警方法
CN112114541A (zh) * 2019-06-21 2020-12-22 华为技术有限公司 传感器的控制方法、装置和传感器
US12072432B2 (en) 2019-06-21 2024-08-27 Huawei Technologies Co., Ltd. Sensor control method and apparatus, and sensor
CN110588607B (zh) * 2019-10-25 2021-09-28 江苏赛麟汽车科技有限公司 一种基于多传感器的自动驻车系统的控制方法
CN110588607A (zh) * 2019-10-25 2019-12-20 江苏赛麟汽车科技有限公司 一种基于多传感器的自动驻车系统的控制方法
CN110816531A (zh) * 2019-11-22 2020-02-21 辽宁工业大学 一种无人驾驶汽车车辆间安全距离的控制系统及控制方法
CN110816531B (zh) * 2019-11-22 2020-12-04 辽宁工业大学 一种无人驾驶汽车车辆间安全距离的控制系统及控制方法
CN113085806A (zh) * 2021-04-06 2021-07-09 南京航空航天大学 一种基于超磁致伸缩制动系统的复合再生制动控制方法
CN113335285A (zh) * 2021-06-29 2021-09-03 东风汽车集团股份有限公司 基于电动车倒车场景的防止油门误操作控制方法及系统
CN113978259A (zh) * 2021-11-19 2022-01-28 张展浩 一种基于驾驶场景及驾驶习惯的电动汽车制动控制方法
CN113978259B (zh) * 2021-11-19 2022-10-18 张展浩 一种基于驾驶场景及驾驶习惯的电动汽车制动控制方法
CN115009037A (zh) * 2022-07-25 2022-09-06 常州星宇车灯股份有限公司 一种电动汽车辅助驾驶节能控制系统及控制方法
WO2024021320A1 (zh) * 2022-07-25 2024-02-01 常州星宇车灯股份有限公司 一种电动汽车辅助驾驶节能控制系统及控制方法
EP4335683A4 (en) * 2022-07-25 2024-10-02 Changzhou Xingyu Automotive Lighting Systems Co Ltd ELECTRIC VEHICLE DRIVING ASSISTANCE ENERGY SAVING CONTROL SYSTEM AND CONTROL METHOD

Also Published As

Publication number Publication date
CN109552289B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
CN109552289B (zh) 一种汽车自适应辅助制动系统及其控制方法
CN112046454B (zh) 一种基于车辆环境识别的自动紧急制动方法
CN109263654B (zh) 一种汽车过减速带自适应调速系统及调速方法
CN108482481B (zh) 四轮独立驱动与转向电动汽车的四轮转向控制方法
CN104260725A (zh) 一种含有驾驶员模型的智能驾驶系统
CN105035085B (zh) 自动跟车方法及装置
CN112874515B (zh) 利用驾驶姿态对驾驶辅助系统进行安全提醒的系统和方法
CN115675099A (zh) 一种基于驾驶员风格识别的纯电动汽车制动能量回收方法
CN109455178A (zh) 一种基于双目视觉的道路交通车辆行驶主动控制系统及方法
CN109910865B (zh) 一种基于物联网的车辆预警刹车方法
CN109712424B (zh) 一种基于物联网的车辆导航方法
CN110682903A (zh) 一种基于视觉感知的安全超车预警系统及方法
CN110816531B (zh) 一种无人驾驶汽车车辆间安全距离的控制系统及控制方法
CN110154893B (zh) 一种基于驾驶员特性的汽车安全驾驶预警方法
CN109572692B (zh) 一种电控车辆防冲撞系统的控制方法
CN103231710B (zh) 基于驾驶员工作负担调度驾驶员接口任务的系统和方法
CN109835333B (zh) 一种保持车辆在车道中间行驶的控制系统及控制方法
TWM515505U (zh) 自行車防鎖死煞車系統
CN114154227B (zh) 一种重型挂车制动过程自适应学习方法
CN114228678B (zh) 一种基于制动压力控制的汽车制动舒适性控制方法
CN113665580B (zh) 一种自动紧急制动控制方法、装置、设备及存储介质
TWI541163B (zh) Bicycle anti - lock braking system and method thereof
CN111196270B (zh) 一种电动汽车电液复合制动系统转弯控制方法
KR102389160B1 (ko) 기계학습을 이용한 스마트휠센서 기반의 노면상태추정 방법 및 장치
CN110203190B (zh) 一种用于电控车辆的防溜车系统及其控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210623

Address after: 121001, 169 street, Guta District, Liaoning, Jinzhou

Patentee after: Wang Yajun

Address before: 121001, 169 street, Guta District, Liaoning, Jinzhou

Patentee before: LIAONING University OF TECHNOLOGY

TR01 Transfer of patent right

Effective date of registration: 20210825

Address after: 518000 no.909, Silicon Valley Building, No.3, Yunfeng Road, Queshan, Gaofeng community, Dalang street, Longhua New District, Shenzhen City, Guangdong Province

Patentee after: Shenzhen Morning Intellectual Property Operations Co.,Ltd.

Address before: 121001, 169 street, Guta District, Liaoning, Jinzhou

Patentee before: Wang Yajun

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220217

Address after: 430000 No. 3-20, floor 5, building 14, Changfeng Village, Changfeng Township, Gutian Second Road, Qiaokou District, Wuhan City, Hubei Province

Patentee after: Hubei quanchebang Intelligent Technology Co.,Ltd.

Address before: 518000 no.909, Silicon Valley Building, No.3, Yunfeng Road, Queshan, Gaofeng community, Dalang street, Longhua New District, Shenzhen City, Guangdong Province

Patentee before: Shenzhen Morning Intellectual Property Operations Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200602

CF01 Termination of patent right due to non-payment of annual fee