CN103273913A - 一种基于正交配置优化的汽车自动制动装置 - Google Patents

一种基于正交配置优化的汽车自动制动装置 Download PDF

Info

Publication number
CN103273913A
CN103273913A CN2013102296617A CN201310229661A CN103273913A CN 103273913 A CN103273913 A CN 103273913A CN 2013102296617 A CN2013102296617 A CN 2013102296617A CN 201310229661 A CN201310229661 A CN 201310229661A CN 103273913 A CN103273913 A CN 103273913A
Authority
CN
China
Prior art keywords
braking
automobile
orthogonal configuration
module
obstacle distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013102296617A
Other languages
English (en)
Other versions
CN103273913B (zh
Inventor
刘兴高
胡云卿
张海波
周赤平
孙优贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201310229661.7A priority Critical patent/CN103273913B/zh
Publication of CN103273913A publication Critical patent/CN103273913A/zh
Application granted granted Critical
Publication of CN103273913B publication Critical patent/CN103273913B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulating Braking Force (AREA)

Abstract

本发明公开了一种基于正交配置优化的汽车自动制动装置,该装置由障碍物距离测量传感器、当前车速测量传感器、汽车中控MCU、制动器单元、紧急制动警报及状态显示设备构成,在中控MCU中输入对应于该车型的制动参数后,开启障碍物距离测量传感器和当前车速测量传感器实时测量前方障碍物距离和当前车速,当障碍物距离等于当前车速下的建议制动距离、且驾驶员没有制动动作时,中控MCU自动执行内部的正交配置优化算法计算出最优制动力,并根据获得的最优制动力向制动器单元输出制动指令,使该汽车在接触障碍物之前停下来;本发明避免了驾驶过程中未能及时制动而导致的碰撞事故,驾驶员可以获得最多的制动时间作为缓冲,避免出现急刹车的情况。

Description

一种基于正交配置优化的汽车自动制动装置
技术领域
本发明涉及汽车安全领域,主要是一种基于正交配置优化的汽车自动制动装置。在出现紧急状况时能使汽车自动减速或停止,同时使驾驶员获得最多的制动时间。
背景技术
汽车驾驶员在驾驶过程中,由于疲劳、接听电话、受其他事物吸引等原因,容易对突发性的紧急状况处理不及时,导致碰撞甚至酿成事故。
随着汽车科技的发展,人们对于更安全的用车要求变得日益强烈。目前国外例如英菲尼迪M系列、沃尔沃S60等一些高档次车型,已经开始配备自动制动控制装置,其原理各异。统计数据表明装备了汽车紧急自动制动(AutonomousEmergency Braking,简称AEB系统)系统的车型可以减少事故发生率达27%。面对激烈的国际竞争,国产车型同样需要开发自动制动技术和相关产品。
发明内容
为了避免汽车驾驶员在驾驶过程中未能及时制动而导致碰撞行人或障碍物、同时又保证驾驶员获得最多的制动时间/缓冲时间,本发明提供一种基于正交配置优化的汽车自动制动装置。
上述汽车制动过程问题可以描述为
min J [ u ( t ) ] = ∫ 0 t f u 2 ( t ) dt
s . t . s · ( t ) = v ( t )
v · ( t ) = u ( t )
s(t0)=0
v(t0)=v0
s(tf)≤sf
v(tf)=0
其中t表示时间,s(t)表示汽车行驶的距离,
Figure BDA00003326573000021
表示s(t)的一阶导数,v(t)表示汽车的当前速度,
Figure BDA00003326573000022
表示v(t)的一阶导数,t0表示汽车开始制动的时间点,v(t0)为t0时刻的速度,tf表示汽车制动完成的时间点,在tf时刻要求汽车停下来且行驶的距离不超过sf,J[u(t)]表示问题的目标函数,由随时间变化的制动力u(t)决定。从该描述可以看出,汽车自动制动问题实际上是一个最优控制问题,求解得到的是制动力u(t)的最优值。
本发明解决其技术问题所采用的技术方案是:在汽车中控MCU中集成了正交配置优化算法(Orthogonal collocation,简称OC),在需要紧急制动时由所述MCU自动输出制动指令给制动器单元,实现紧急减速或停车。所述MCU可以视为自动制动信号产生器,该系统如图2所示,包括障碍物距离测量传感器、当前车速测量传感器、汽车中控MCU、制动器单元、紧急制动警报及状态显示设备。所述系统内的各组成部分均由车内数据总线连接。由于不同汽车的制动性能不同,投入使用之前需要在所述MCU中输入对应于该车的制动参数。
所述系统的运行过程如下:
步骤A1:将所述系统安装在某型号车上,并在中控MCU中输入对应于该车的制动参数。例如该车行驶在60km/h的速度下最多能避免碰撞前方5m内的行人或障碍物,这里的60km/h、5m就是该车的一组制动参数,称5m是该车在60km/h车速下的建议制动距离。另外一个主要制动参数是该车的最大制动力;
步骤A2:该汽车在行驶过程中开启障碍物距离测量传感器,用于实时测量前方行人或障碍物距离;同时开启当前车速测量传感器,用于实时测量当前该汽车的行驶速度;
步骤A3:当障碍物距离测量传感器送入中控MCU的障碍物距离等于当前车速下的建议制动距离、且驾驶员没有制动动作时,中控MCU自动执行内部的正交配置优化算法,计算出最优制动力,并根据获得的最优制动力向制动器单元4输出制动指令,使该汽车在接触障碍物之前停下来。中控MCU执行完正交配置优化算法的同时,向驾驶员发出紧急制动报警信号。
集成了正交配置优化算法的汽车中控MCU是本发明的核心,如图3所示,其内部包括信息采集模块、初始化模块、常微分方程组(Ordinary differentialequations,简称ODE)正交配置模块、非线性规划问题(Non-linear Programming,简称NLP)求解模块、控制指令输出模块。其中信息采集模块包括障碍物距离采集、当前车速采集、人为刹车动作采集三个子模块,NLP求解模块包括寻优方向计算、寻优步长计算、NLP收敛性判断三个子模块。
所述中控MCU自动产生制动信号的过程如下:
步骤B1:信息采集模块实时获取障碍物距离测量传感器、当前车速测量传感器送入中控MCU的当前值,并检测驾驶员是否有制动动作。当障碍物距离测量传感器测到的障碍物距离等于当前车速下的建议制动距离、且驾驶员没有制动动作时,执行从步骤B2开始的正交配置优化算法;
步骤B2:初始化模块开始运行,设置制动过程时间的离散段数、制动轨迹的初始猜测值u(0)(t)、状态轨迹的初始值s(0)(t)和v(0)(t),设定优化精度要求tol;
步骤B3:通过ODE正交配置模块将常微分方程组在时间轴[t0,tf]上全部离散;
步骤B4:通过NLP问题求解模块获得所需的制动力和对应状态轨迹,这个过程包括多次内部迭代,每次迭代都要计算寻优方向和寻优步长。对于某一次迭代得到的制动力u(k)(t),如果其对应目标函数值J[u(k)(t)]与前一次迭代的目标函数值J[u(k-1)(t)]之差小于精度要求tol,则判断收敛性满足,并将制动力u(k)(t)作为指令输出到制动器单元。
所述的ODE正交配置模块,采用如下步骤实现:
步骤C1:将控制轨迹u(t)、状态轨迹s(t)和v(t)用M阶基函数的线性组合表示,即:
u ( t ) ≈ Σ j = 1 M u i , j φ i , j ( M ) ( t ) , i = 1,2 , . . . , N
s ( t ) ≈ Σ j = 1 M s i , j φ i , j ( M ) ( t ) , i = 1,2 , . . . , N
v ( t ) ≈ Σ j = 1 M v i , j φ i , j ( M ) ( t ) , i = 1,2 , . . . , N
其中N是时间轴[t0,tf]的离散段数,φ(t)可以选择拉格朗日插值基函数、样条基函数、小波基函数等不同种类的基函数,线性组合系数ui,j、si,j、vi,j分别是u(t)、s(t)和v(t)在配置点ti,j上的值。
步骤C2:由于所有基函数的导函数表达式已知,于是状态轨迹的微分方程组被离散化代数形式:
s · ( t ) ≈ Σ j = 1 M s i , j φ · ( M ) i , j ( t ) , i = 1,2 , . . . , N
v · ( t ) ≈ Σ j = 1 M v i , j φ · ( M ) i , j ( t ) , i = 1,2 , . . . , N
步骤C3:用离散化后的微分方程组代替原来微分方程组,将得到待求的NLP问题。
所述的NLP求解模块,采用如下步骤实现:
步骤D1:将制动力u(k-1)(t)作为向量空间中的某个点,记作P1,P1对应的目标函数值就是J[u(k-1)(t)];
步骤D2:从点P1出发,根据选用的NLP算法构造向量空间中的一个寻优方向d(k-1)和步长α(k-1)
步骤D3:通过式u(k)(t)=u(k-1)(t)+α(k-1)d(k-1)构造向量空间中对应u(k)的另外一个点P2,使得P2对应的目标函数值J[u(k)(t)]比J[u(k-1)(t)]更优。
本发明的有益效果主要表现在:1、避免驾驶过程中未能及时制动而导致的碰撞事故;2、驾驶员可以获得最多的制动时间作为缓冲,避免出现急刹车的情况。
附图说明
图1是本发明的功能示意图;
图2是本发明的结构示意图;
图3是本发明中控MCU内部模块结构图;
图4是实施例1的自动制动信号图。
具体实施方式
实施例1
假设汽车在高速公路上行驶,车上的障碍物距离测量传感器以及当前车速测量传感器均已开启。在某时刻前方道路上突然出现障碍,且驾驶员由于疲劳驾驶并未意识到可能发生事故。
设当前车速测量传感器传入中控MCU的当前车速为80km/h,当前车速下的建议制动距离为18m,当障碍物距离测量传感器测到的障碍物距离等于或非常接近18m、且驾驶员没有任何制动动作时,中控MCU开始启动内部正交配置优化算法,并根据计算结果向制动器单元输出制动指令。
中控MCU中内部正交配置优化算法的执行过程如图3所示,为:
步骤E1:初始化模块32开始运行,设置制动过程时间的分段数为20、设置制动力的初始猜测值u(0)(t)为-0.5,s(0)(t)和v(0)(t)都为2,设定数值计算的精度要求tol为0.01;
步骤E2:设ODE方程组的初始值为s(t0)和v(t0),通过ODE正交配置模块将常微分方程组在时间轴[t0,tf]上全部离散;
步骤E3:通过NLP问题求解模块获得所需的制动力和对应状态轨迹,这个过程包括多次内部迭代,每次迭代都要计算寻优方向和寻优步长。对于某一次迭代得到的制动力u(k)(t),如果其对应目标函数值J[u(k)(t)]与前一次迭代的目标函数值J[u(k-1)(t)]之差小于精度要求0.01,则判断收敛性满足,并将制动力u(k)(t)作为指令输出到制动器单元。
所述的ODE正交配置,采用如下步骤实现:
步骤F1:将控制轨迹u(t)、状态轨迹s(t)和v(t)用三阶拉格朗日插值基函数的线性组合表示,即:
u ( t ) ≈ Σ j = 1 3 u i , j Π r = 0 , ≠ j 3 t - t i , r t i , j - t i , r , i = 1,2 , . . . , N
s ( t ) ≈ Σ j = 1 3 s i , j Π r = 0 , ≠ j 3 t - t i , r t i , j - t i , r , i = 1,2 , . . . , N
v ( t ) ≈ Σ j = 1 3 v i , j Π r = 0 , ≠ j 3 t - t i , r t i , j - t i , r , i = 1,2 , . . . , N
其中N是时间轴[t0,tf]的离散段数,线性组合系数ui,j、si,j、vi,j分别是u(t)、s(t)和v(t)在配置点ti,j上的值。
步骤F2:由于所有基函数的导函数表达式已知,于是状态轨迹的微分方程组被离散化代数形式:
s · ( t ) ≈ Σ j = 1 3 s i , j φ · ( 3 ) i , j ( t ) , i = 1,2 , . . . , N
v · ( t ) ≈ Σ j = 1 3 v i , j φ · ( 3 ) i , j ( t ) , i = 1,2 , . . . , N
步骤F3:用离散化后的微分方程组代替原来微分方程组,将得到待求的NLP问题。
所述的NLP求解,采用如下步骤实现:
步骤G1:将制动力u(k-1)(t)作为向量空间中的某个点,记作P1,P1对应的目标函数值就是J[u(k-1)(t)];
步骤G2:从点P1出发,采用SQP算法构造向量空间中的一个寻优方向d(k-1)和步长α(k-1)
步骤G3:通过式u(k)(t)=u(k-1)(t)+α(k-1)d(k-1)构造向量空间中对应u(k)的另外一个点P2,使得P2对应的目标函数值J[u(k)(t)]比J[u(k-1)(t)]更优。
以上步骤中t表示时间,t0表示汽车开始制动的时间点,初始距离s(t0)为0,v(t0)为t0时刻的速度,在这里为80km/h;tf表示汽车制动完成的时间点,在tf时刻要求汽车停下来v(tf)=0,且行驶的距离s(tf)不超过建议制动距离18m。
正交配置优化算法的计算结果如图4所示。正交配置优化算法获得制动控制轨迹为最下方的细实线。坐标经过归一化处理,即:如果该车的最大制动力为4000N,则-1表示-4000N;同理,-0.75表示-4000N×0.75=-3000N。整条控制轨迹的值都不超过0,表明这是一条制动控制轨迹,而非加速控制轨迹。整条轨迹的值只在制动过程结束时才为0,表明尽量多的增加了制动时间,这在高速公路行驶时对驾驶员具有最大限度的保护作用,尽可能的增加了缓冲时间。
最后,中控MCU将获得的制动控制轨迹作为指令输出到制动器单元,完成机械上的制动操作,同时向驾驶员发出紧急制动报警信号。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (1)

1.一种基于正交配置优化的汽车自动制动装置,在出现紧急状况时能使汽车自动减速或停止,同时使驾驶员获得最多的制动时间。其特征在于:由障碍物距离测量传感器、当前车速测量传感器、汽车中控MCU、制动器单元、紧急制动警报及状态显示设备构成,各组成部分均由车内数据总线连接。所述装置的运行过程包括:
步骤A1:在中控MCU中输入对应于该车的制动参数;
步骤A2:开启障碍物距离测量传感器和当前车速测量传感器用于实时测量前方障碍物距离和当前车速;
步骤A3:当障碍物距离等于当前车速下的建议制动距离、且驾驶员没有制动动作时,中控MCU自动执行内部的正交配置优化算法,计算出最优制动力,并根据获得的最优制动力向制动器单元输出制动指令,使该汽车在接触障碍物之前停下来;
步骤A4:中控MCU执行完正交配置优化算法的同时,向驾驶员发出紧急制动报警信号。
所述的汽车中控MCU部分,包括信息采集模块、初始化模块、常微分方程组(Ordinary differential equations,简称ODE)正交配置模块、非线性规划问题(Non-linear Programming,简称NLP)求解模块、控制指令输出模块。其中,信息采集模块包括障碍物距离采集、当前车速采集、人为刹车动作采集三个子模块;NLP求解模块包括寻优方向计算、寻优步长计算、NLP收敛性判断三个子模块。
所述的汽车中控MCU自动产生制动信号的正交配置优化算法运行步骤如下:
步骤B1:信息采集模块(31)实时获取障碍物距离测量传感器、当前车速测量传感器送入中控MCU的当前值,并检测驾驶员是否有制动动作。当障碍物距离测量传感器测到的障碍物距离等于当前车速下的建议制动距离、且驾驶员没有制动动作时,执行从步骤B2开始的正交配置优化算法;
步骤B2:初始化模块(32)开始运行,设置制动过程时间的离散段数、制动轨迹的初始猜测值u(0)(t)、状态轨迹的初始值s(0)(t)和v(0)(t),设定优化精度要求tol;
步骤B3:通过ODE正交配置模块将常微分方程组在时间轴[t0,tf]上全部离散;
步骤B4:通过NLP问题求解模块获得所需的制动轨迹和对应状态轨迹,这个过程包括多次内部迭代,每次迭代都要计算寻优方向和寻优步长。对于某一次迭代得到的制动轨迹u(k)(t),如果其对应目标函数值J[u(k)(t)]与前一次迭代的目标函数值J[u(k-1)(t)]之差小于精度要求tol,则判断收敛性满足,并将制动轨迹u(k)(t)作为指令输出到制动器单元。
所述的ODE正交配置模块,采用如下步骤实现:
步骤C1:将控制轨迹u(t)、状态轨迹s(t)和v(t)用M阶基函数的线性组合表示,即:
u ( t ) ≈ Σ j = 1 M u i , j φ i , j ( M ) ( t ) , i = 1,2 , . . . , N
s ( t ) ≈ Σ j = 1 M s i , j φ i , j ( M ) ( t ) , i = 1,2 , . . . , N
v ( t ) ≈ Σ j = 1 M v i , j φ i , j ( M ) ( t ) , i = 1,2 , . . . , N
其中N是时间轴[t0,tf]的离散段数,φ(t)可以选择拉格朗日插值基函数、样条基函数、小波基函数等不同种类的基函数,线性组合系数ui,j、si,j、vi,j分别是u(t)、s(t)和v(t)在配置点ti,j上的值。
步骤C2:由于所有基函数的导函数表达式已知,于是状态轨迹的微分方程组被离散化代数形式:
s · ( t ) ≈ Σ j = 1 M s i , j φ · ( M ) i , j ( t ) , i = 1,2 , . . . , N
v · ( t ) ≈ Σ j = 1 M v i , j φ · ( M ) i , j ( t ) , i = 1,2 , . . . , N
步骤C3:用离散化后的微分方程组代替原来微分方程组,将得到待求的NLP问题。
所述的NLP求解模块,采用如下步骤实现:
步骤D1:将制动力u(k-1)(t)作为向量空间中的某个点,记作P1,P1对应的目标函数值就是J[u(k-1)(t)];
步骤D2:从点P1出发,根据选用的NLP算法构造向量空间中的一个寻优方向d(k-1)和步长α(k-1)
步骤D3:通过式u(k)(t)=u(k-1)(t)+α(k-1)d(k-1)构造向量空间中对应u(k)的另外一个点P2,使得P2对应的目标函数值J[u(k)(t)]比J[u(k-1)(t)]更优。
CN201310229661.7A 2013-06-08 2013-06-08 一种基于正交配置优化的汽车自动制动装置 Expired - Fee Related CN103273913B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310229661.7A CN103273913B (zh) 2013-06-08 2013-06-08 一种基于正交配置优化的汽车自动制动装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310229661.7A CN103273913B (zh) 2013-06-08 2013-06-08 一种基于正交配置优化的汽车自动制动装置

Publications (2)

Publication Number Publication Date
CN103273913A true CN103273913A (zh) 2013-09-04
CN103273913B CN103273913B (zh) 2015-12-23

Family

ID=49056577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310229661.7A Expired - Fee Related CN103273913B (zh) 2013-06-08 2013-06-08 一种基于正交配置优化的汽车自动制动装置

Country Status (1)

Country Link
CN (1) CN103273913B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107885082A (zh) * 2017-11-13 2018-04-06 浙江大学 一种基于正交配置优化的月球着陆器轨迹控制器
CN107908109A (zh) * 2017-11-13 2018-04-13 浙江大学 一种基于正交配置优化的高超声速飞行器再入段轨迹优化控制器
CN109552289A (zh) * 2018-11-29 2019-04-02 辽宁工业大学 一种汽车自适应辅助制动系统及其控制方法
CN111605526A (zh) * 2020-06-03 2020-09-01 安徽江淮汽车集团股份有限公司 制动压力调节方法、装置、设备及可读存储介质
CN113291273A (zh) * 2021-07-28 2021-08-24 天津所托瑞安汽车科技有限公司 基于aeb的车辆制动控制方法、装置、电子设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132787A (ja) * 1993-11-12 1995-05-23 Toyota Motor Corp 車両衝突防止装置
US20020091479A1 (en) * 2001-01-09 2002-07-11 Nissan Motor Co., Ltd. Braking control system with object detection system interaction
CN201154697Y (zh) * 2008-01-25 2008-11-26 田洲 汽车防撞系统
CN202138366U (zh) * 2011-06-14 2012-02-08 陈宜仔 汽车防撞系统
KR20120115688A (ko) * 2011-04-11 2012-10-19 주식회사 만도 차량의 주차제어시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132787A (ja) * 1993-11-12 1995-05-23 Toyota Motor Corp 車両衝突防止装置
US20020091479A1 (en) * 2001-01-09 2002-07-11 Nissan Motor Co., Ltd. Braking control system with object detection system interaction
CN201154697Y (zh) * 2008-01-25 2008-11-26 田洲 汽车防撞系统
KR20120115688A (ko) * 2011-04-11 2012-10-19 주식회사 만도 차량의 주차제어시스템
CN202138366U (zh) * 2011-06-14 2012-02-08 陈宜仔 汽车防撞系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈珑,刘兴高: "改进正交配置算法及其在化工过程动态优化问题中的应用", 《仪器仪表学报》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107885082A (zh) * 2017-11-13 2018-04-06 浙江大学 一种基于正交配置优化的月球着陆器轨迹控制器
CN107908109A (zh) * 2017-11-13 2018-04-13 浙江大学 一种基于正交配置优化的高超声速飞行器再入段轨迹优化控制器
CN107908109B (zh) * 2017-11-13 2020-02-28 浙江大学 一种基于正交配置优化的高超声速飞行器再入段轨迹优化控制器
CN107885082B (zh) * 2017-11-13 2020-03-03 浙江大学 一种基于正交配置优化的月球着陆器轨迹控制器
CN109552289A (zh) * 2018-11-29 2019-04-02 辽宁工业大学 一种汽车自适应辅助制动系统及其控制方法
CN109552289B (zh) * 2018-11-29 2020-06-02 辽宁工业大学 一种汽车自适应辅助制动系统及其控制方法
CN111605526A (zh) * 2020-06-03 2020-09-01 安徽江淮汽车集团股份有限公司 制动压力调节方法、装置、设备及可读存储介质
CN113291273A (zh) * 2021-07-28 2021-08-24 天津所托瑞安汽车科技有限公司 基于aeb的车辆制动控制方法、装置、电子设备及介质
CN113291273B (zh) * 2021-07-28 2021-09-24 天津所托瑞安汽车科技有限公司 基于aeb的车辆制动控制方法、装置、电子设备及介质

Also Published As

Publication number Publication date
CN103273913B (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
CN103921719B (zh) 驾驶员交互式商用车辆侧翻预警方法和系统
CN105966396B (zh) 一种基于驾驶员避撞行为的车辆避撞控制方法
CN101380876B (zh) 汽车爆胎安全控制方法及系统
CN109808685B (zh) 一种基于危险评估的汽车预警自动避撞控制方法
CN103842230B (zh) 车辆的驾驶辅助系统
CN109910879B (zh) 一种结合安全距离与碰撞时间的车辆安全防撞控制方法
CN103927895B (zh) 一种基于车路/车车通讯的车辆弯道通行辅助系统
US9205843B2 (en) Deceleration factor estimating device and drive assisting device
Zhao et al. Identification of driver’s braking intention based on a hybrid model of GHMM and GGAP-RBFNN
CN106157696A (zh) 基于车‑车通信的自车主动避让系统和避让方法
CN105501220A (zh) 车辆碰撞预警的方法、装置以及车辆
CN104129377A (zh) 汽车主动防撞自适应模糊控制方法
CN103273913B (zh) 一种基于正交配置优化的汽车自动制动装置
CN102745194A (zh) 一种高速公路汽车防追尾前车的自适应报警方法
CN105551282A (zh) 一种超车提示方法和装置
CN103273914B (zh) 一种基于动态优化的汽车自动制动装置
CN103287406B (zh) 一种基于精确惩罚优化的汽车自动制动装置
CN109572689A (zh) 一种基于雷达识别障碍物的整车控制方法及系统
CN104200704A (zh) 车辆避撞预警方法及设备
CN107878453A (zh) 一种躲避动障碍物的汽车紧急避撞一体式控制方法
EP2810840A1 (en) Decelerating factor-estimating device
CN205819182U (zh) 基于侧风影响的车道偏移控制系统
CN103303299B (zh) 一种基于正交配置优化的高速列车紧急制动信号发生装置
CN102298736A (zh) 基于典型危险工况的营运客车安全综合预警决策方法
CN202508075U (zh) 低速车辆制动控制系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151223

Termination date: 20160608

CF01 Termination of patent right due to non-payment of annual fee