CN1095484C - 一种由液晶类聚合物增强的聚四氟乙烯复合材料的制备方法 - Google Patents

一种由液晶类聚合物增强的聚四氟乙烯复合材料的制备方法 Download PDF

Info

Publication number
CN1095484C
CN1095484C CN 99109356 CN99109356A CN1095484C CN 1095484 C CN1095484 C CN 1095484C CN 99109356 CN99109356 CN 99109356 CN 99109356 A CN99109356 A CN 99109356A CN 1095484 C CN1095484 C CN 1095484C
Authority
CN
China
Prior art keywords
liquid crystal
ptfe
minutes
constant temperature
polymkeric substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 99109356
Other languages
English (en)
Other versions
CN1238355A (zh
Inventor
唐炜
朱宝亮
刘家浚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN 99109356 priority Critical patent/CN1095484C/zh
Publication of CN1238355A publication Critical patent/CN1238355A/zh
Priority to PCT/CN2000/000175 priority patent/WO2001000715A1/zh
Priority to AU55189/00A priority patent/AU5518900A/en
Application granted granted Critical
Publication of CN1095484C publication Critical patent/CN1095484C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种由液晶类聚合物增强的聚四氟乙烯复合材料的制备方法,首先以氟聚合物为原料,加入液晶类聚合物和玻璃纤维或碳酸钙颗粒,其中的液晶类聚合物为芳香族聚酯类高分子化合物,将机械混合均匀的物料放置于干燥箱内,干燥后加压,使其预制成型,再进行烧结,即得本发明的复合材料制品。本发明的复合材料在保持聚四氟乙烯的自润滑特征基础上,极大地改善其耐磨性,成为高强耐磨密封件的选用材料。

Description

一种由液晶类聚合物增强的聚四氟乙烯复合材料的制备方法
本发明涉及一种由液晶类聚合物增强的聚四氟乙烯复合材料的制备方法,属高分子材料技术领域。
聚四氟乙烯(以下简称PTFE)是优良的固体自润滑材料,但其突出的缺点是磨损率大,一般需进行填充改性才可用作密封材料。普遍的作法是在其中填加玻璃纤维、碳纤维、锡青铜粉、二硫化钼等无机填料。但这些填充改性制品仍存在无机填料与聚四氟乙烯相容性差,亲和力较小,在基体中出现明显界面,且不易分散均匀,对被磨件损伤大等不足之处。
相对于纯PTFE而言,发明人在同样的实验条件下发现,普通填料改性的方法对耐磨性提高效果为:填加15%的玻璃纤维和5%的石墨的PTFE,其耐磨性提高23倍,填加60%青铜粉的PTFE,其耐磨性提高8倍多,而改性效果最好的含玻纤、青铜粉和石墨混合物的PTFE复合材料其耐磨性也才提高了36倍。
液晶聚合物(LCP)是聚合物家庭中的独特成员,具有卓著的综合性能。从应用角度来看,不要分为两大类,即溶化状态下成液晶相的溶致液晶和在熔融状态下成液晶相的热致液晶(TLCP)。人们已经发现它们在加工过程中由于受到挤出、注塑、拉伸等力的作用,其分子链中刚性棒状结构会发生高度取向从而极大地起到原位复合增强作用。然而很少有研究者尝试用液晶增强模压工艺成型的树脂,考察在没有受拉伸、挤出等力的作用下液晶聚合物的原位增强效果。
本发明的目的是研究一种由液晶类聚合物增强的聚四氟乙烯复合材料的制备方法,在保持聚四氟乙烯的自润滑特征基础上,极大地改善其耐磨性,使其有可能成为高强耐磨密封件的选用材料。本发明所采用的熔致型液晶(TLCP)在受热的情况下能发生流动取向排列,在基体内部部分原位形成微纤结构增强相,从而达到改善耐磨性的目的。
本发明设计的由液晶类聚合物增强的聚四氟乙烯复合材料的制备方法,包括以下各步骤:
1、本发明为一种填充型氟聚合物基复合材料,配方是以重量占60%~90%的氟聚合物为主要成份,加入重量占10%~30%液晶类聚合物(LCP)和重量占0~10%的玻璃纤维或碳酸钙颗粒;需要说明的是,此处所加的玻纤或碳酸钙颗粒的重量百分比在10%以内,即对被磨件的不良影响在很小的范围内,却不影响耐磨性改善的效果,又能降低成本。
上述的液晶类聚合物为芳香族聚酯类高分子化合物,其物征是分子链中含的以下结构单元中的一种。这些液晶属高热型LCP,熔点较高,能满足与PTFE共混并高温烧结的要求,且具有一定的相容性。
Figure C9910935600041
并将上述的液晶类聚合物,应用低温研磨粉碎至小于500μm的粒度使用。使用前为不规则粒状粉末。低温研磨粉碎用液氮冷却获得,目的是防止液晶的物性发生变化,损害其高强度、耐高温的优点。
2、将上述机械混合均匀的物料放置于干燥箱内,在135~150℃下干燥2~10小时,取出后进行压制。缓慢加压至50~70MPa,视样品大小保压一段时间预制成型,一般为3-5分钟;
3、再以每分钟约2℃的速度升温烧结,在310℃~320℃间恒温0.5~1小时;再以每分钟1℃左右的速度升温到365~380℃恒温50~100分钟,然后冷却至310℃~320℃恒温20~30分钟,随炉冷却至室温,即得本发明的复合材料制品。
下面介绍本发明的实施例:
为进行实验,分别从Amoco公司购得Xydar系列液晶聚合物产品,从Tinoca公司购得Vectra系列液晶聚合物产品和从Dupont公司购得Zenite系列液晶聚合物产品。氟聚合物采用了济南化工厂生产的PTFE悬浮树脂。
实施例1:
将20%Vectra C550(50%A+50%矿物颗粒)粉碎到100~300μm的粉料与80%PTFE的物料,在150℃下干燥4个小时;压制压力为70MPa,保压3分钟,烧结时在310℃~320℃间恒温30分钟,再升至365℃恒温70分钟;冷却阶段在310℃~320℃恒温25分钟,再随炉冷却即得试样,进行GB3160-83摩擦磨损试验,载荷为10Kg,速度为200转/分,实验进行2小时。取3至4次实验的平均值。实验结果为摩擦系数0.192,磨损率为1.92×10-6mm3/Kg/m;而同样摩擦磨损实验条件下的纯PTFE的磨损率为497×10-6mm3/Kg/m。即本实例的耐磨性提高了259倍之多。
实施例2:
将20%Vectra C550(50%A+50%矿物颗粒)粉碎到100μm的粉料与80%PTFE的物料,在150℃下干燥5个小时;压制压力为65MPa,保压5分钟,烧结时在310℃~320℃间恒温30分钟,再升至365℃恒温60分钟;冷却阶段在310℃~320℃恒温20分钟,再随炉冷却即得试样,进行GB3160-83摩擦磨损试验,条件同1)。实验结果为摩擦系数0.204,磨损率为1.01×10-6mm3/Kg/m;比之纯PTFE的耐磨性提高490倍左右。
实施例3:
将A粉碎到200μm以下直径的粉料与PTFE混合成含A30%的物料,在150℃下干燥6个小时;压制压力为65MPa,保压5分钟,烧结时在310℃~320℃间恒温30分钟,再升至365℃恒温50分钟;冷却阶段在310℃~320℃恒温20分钟,再随炉冷却即得试样,进行GB3160-83摩擦磨损试验,条件同1)。实验结果为摩擦系数0.196,磨损率为1.38×10-6mm3/Kg/m;比之纯PTFE的耐磨性提高360倍左右。
实施例4
将30%的Xydar G930(含70%B和30%玻璃纤维)粉碎到100~300μm的粉料与70%的PTFE混合的物料,在150℃下干燥10个小时;压制压力为60MPa,保压5分钟,烧结时在310℃~320℃间恒温45分钟,再升至370℃恒温80分钟;冷却阶段在310℃~320℃恒温25分钟,再随炉冷却即得试样,进行GB3160-83摩擦磨损试验,条件同1)。实验结果为摩擦系数0.224,磨损率为2.92×10-6mm3/Kg/m;比之纯PTFE的耐磨性提高约170倍。
实施例5:
将20%Xydar G930(含70%B和30%玻璃纤维)粉碎到100μm以下的粉料与80%PTFE混合的物料,在150℃下干燥8个小时;压制压力为60MPa,保压4分钟,烧结时在310℃~320℃间恒温50分钟,再升至375℃恒温80分钟;冷却阶段在310℃~320℃恒温30分钟,再随炉冷却即得试样,进行GB3160-83摩擦磨损试验,条件同1)。实验结果为摩擦系数0.219,磨损率为2.30×10-6mm3/Kg/m;比之纯PTFE耐磨性提高约216倍。
实施例6:
将30%Xydar G900(即100%B)粉碎到150μm以下的粉料与70%PTFE混合的物料,在150℃下干燥9个小时;压制压力为60MPa,保压3分钟,烧结时在310℃~320℃间恒温40分钟,再升至365℃恒温60分钟;冷却阶段在310℃~320℃恒温25分钟,再随炉冷却即得试样,进行GB3160-83摩擦磨损试验,条件同1)。实验结果为摩擦系数0.207,磨损率为1.73×10-6mm3/Kg/m;比之纯PTFE耐磨性提高约287倍。
实施例7:
将30%Zenite6130(含70%C和30%玻璃纤维)粉碎到100~300μm的粉料与70%PTFE混合成的物料,在135℃下干燥3个小时;压制压力为55MPa,保压3分钟,烧结时在310℃~320℃间恒温60分钟,再升至380℃恒温100分钟;冷却阶段在310℃~320℃恒温30分钟,再随炉冷却即得试样,进行GB3160-83摩擦磨损试验,条件同1)。实验结果为摩擦系数0.222,磨损率为1.85×10-6mm3/Kg/m;其耐磨性比纯PTFE提高了268倍。
实施例8:
将20%Zenite6130(含70%C和30%玻璃纤维)粉碎到300~500μm的粉料与PTFE混合成的物料,在135℃下干燥2个小时;压制压力为50MPa,保压4分钟,烧结时在310℃~320℃间恒温60分钟,再升至380℃恒温90分钟;冷却阶段在310℃~320℃恒温30分钟,再随炉冷却即得试样,进行GB3160-83摩擦磨损试验,条件同1)。实验结果为摩擦系数0.228,磨损率为1.52×10-6mm3/Kg/m;其耐磨性比纯PTFE提高了327倍。
为便于对比,在同样的实验条件下,进行了纯PTFE及填加一般无机填料的GB3160-83实验,载荷为5公斤,速度为200转/分。所得结果如下表所示:表1普通填料改性PTFE复合材料摩擦磨损实验结果
试样 摩擦系数 磨损率,10-6mm3/Kg/m
 PTFE  0.18  374
 PTFE+20%SGF  0.22  20.6
 PTFE+40%SGF  0.23  11.6
 PTFE+10%LGF  0.21  16.1
 PTFE+20%LGF  0.24  17.9
 PTFE+20%铜粉  0.25  78.7
 PTFE+40%铜粉  0.26  27.7
 PTFE+60%铜粉  0.27  12.2
 PTFE+5%MoS2  0.19  103
 PTFE+10%MoS2  0.20  67.7
说明:上表中SGF代表短玻璃纤维;
  LGF代表长玻璃纤维
表2是将各种实验材料的的磨损率与纯PTFE在同样实验条件下的磨损率的比值的倒数做为耐磨性提高倍数来进行比较,以便有一目了然的认识。
表2普通填料改性PTFE与液晶填充PTFE的耐磨性提高倍数对比
液晶填充PTFE 普通填料改性PTFE
试    样  提高倍数  试  样 提高倍数
实例1  259  PTFE+20%SGF  18
实例2  490  PTFE+40%SGF  32
实例3  360  PTFE+10%LGF  23
实例4  170  PTFE+20%LGF 21
实例5  216  PTFE+20%铜粉 5
实例6  287  PTFE+40%铜粉 13
实例7  268  PTFE+60%铜粉 31
实例8  327  PTFE+5%MoS2 3
 PTFE+10%MoS2 6
可见,液晶聚合物与PTFE的复合材料在保持了低摩擦系数的同时,磨损率比其它填充型复合材料又有了明显下降。效果最好的实例2与同样实验条件的纯PTFE相比,耐磨性提高了490多倍;而实例中最差的实例4也提高了170倍左右。而普通填料效果最好的也才提高耐磨性32倍之多。

Claims (1)

1、一种由液晶类聚合物增强的聚四氟乙烯复合材料的制备方法,其特征在于,该方法包括以下各步骤:
(1)以重量占60%~90%的氟聚合物为原料,加入重量占10%~30%液晶类聚合物和重量占0~10%的玻璃纤维或碳酸钙颗粒,其中的液晶类聚合物为芳香族聚酯类高分子化合物,其物征是分子链中含有以下结构单元中的任何一种,
Figure C9910935600021
并将该液晶类聚合物用低温研磨粉碎至小于500μm的粒度使用;
(2)将上述机械混合均匀的物料放置于干燥箱内,在135~150℃下干燥2~10小时,取出后缓慢加压至50~70MPa,保持3-5分钟,使其预制成型;
(3)再以每分钟2℃的速度升温烧结,在310℃~320℃间恒温0.5~1小时;再以每分钟1℃左右的速度升温到365~380℃恒温50~100分钟,然后冷却至310℃~320℃恒温20~30分钟,随炉冷却至室温,即得复合材料。
CN 99109356 1999-06-25 1999-06-25 一种由液晶类聚合物增强的聚四氟乙烯复合材料的制备方法 Expired - Fee Related CN1095484C (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN 99109356 CN1095484C (zh) 1999-06-25 1999-06-25 一种由液晶类聚合物增强的聚四氟乙烯复合材料的制备方法
PCT/CN2000/000175 WO2001000715A1 (fr) 1999-06-25 2000-06-26 Procede de preparation d'un materiau composite a base de polytetrafluoroethylene renforce par des polymeres cristaux liquides
AU55189/00A AU5518900A (en) 1999-06-25 2000-06-26 A process for preparing polytetrafluoroethylene composite reinforced by liquid crystalline polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 99109356 CN1095484C (zh) 1999-06-25 1999-06-25 一种由液晶类聚合物增强的聚四氟乙烯复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN1238355A CN1238355A (zh) 1999-12-15
CN1095484C true CN1095484C (zh) 2002-12-04

Family

ID=5273851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 99109356 Expired - Fee Related CN1095484C (zh) 1999-06-25 1999-06-25 一种由液晶类聚合物增强的聚四氟乙烯复合材料的制备方法

Country Status (3)

Country Link
CN (1) CN1095484C (zh)
AU (1) AU5518900A (zh)
WO (1) WO2001000715A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118836A1 (en) * 2001-10-24 2003-06-26 Lee Jeong Chang Fluoropolymer laminates and a process for manufacture thereof
CN101831124A (zh) * 2010-05-14 2010-09-15 浙江超维新材料有限公司 一种聚四氟乙烯合金及其制备方法
CN102585405A (zh) * 2012-01-09 2012-07-18 山东金纪氟塑工程有限公司 高压sf6断路器喷口及制作工艺
CN102806674A (zh) * 2012-08-07 2012-12-05 湖州宁鑫新材料科技有限公司 聚四氟乙烯再生车削薄膜的生产方法
CN102848485B (zh) * 2012-08-31 2014-10-08 华南理工大学 高性能玻纤增强液晶高分子二次料回收造粒的方法
CN107759963A (zh) * 2017-10-24 2018-03-06 郭新 改善F4/纳米Al2O3加工性能配方
CN110437641A (zh) * 2019-07-02 2019-11-12 扬州清研高分子新材料有限公司 一种ptfe/lcp高分子合金及其制备方法
CN111497173B (zh) * 2020-04-29 2022-03-29 江苏裕兴薄膜科技股份有限公司 液晶聚合物薄膜的制备方法
CN112341737A (zh) * 2020-11-10 2021-02-09 刘纯科 一种阻燃隔音保温材料及其制备方法
CN114082111B (zh) * 2021-11-11 2023-11-10 重庆倍维科技有限公司 一种放疗用插植模板的加工处理方法
CN114989547B (zh) * 2022-06-24 2024-01-02 佛山科学技术学院 一种具有磨损原位修复功能的聚合物复合材料及其制备方法和应用
CN115850831B (zh) * 2022-09-06 2023-12-08 湖南弘辉科技有限公司 一种耐磨材料及水润滑轴承
CN116285170A (zh) * 2022-12-16 2023-06-23 常州锐泰新材料科技有限公司 一种聚四氟乙烯复合材料及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567770A (en) * 1993-05-28 1996-10-22 E. I. Du Pont De Nemours And Company Liquid crystalline polymer blends with improved wear properties
JPH07331051A (ja) * 1994-05-31 1995-12-19 Nippon G Ii Plast Kk 難燃性ポリカーボネート系樹脂組成物
US5545475A (en) * 1994-09-20 1996-08-13 W. L. Gore & Associates Microfiber-reinforced porous polymer film and a method for manufacturing the same and composites made thereof
JPH09143357A (ja) * 1995-11-20 1997-06-03 Nippon G Ii Plast Kk 難燃性ポリカーボネート系樹脂組成物

Also Published As

Publication number Publication date
CN1238355A (zh) 1999-12-15
AU5518900A (en) 2001-01-31
WO2001000715A1 (fr) 2001-01-04

Similar Documents

Publication Publication Date Title
CN1095484C (zh) 一种由液晶类聚合物增强的聚四氟乙烯复合材料的制备方法
Liu et al. ‘Green’composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation
Nobile et al. Physical properties of blends of polycarbonate and a liquid crystalline copolyester
Auad et al. Shape memory segmented polyurethanes: dependence of behavior on nanocellulose addition and testing conditions
CN103275448A (zh) 一种改性填料离子增强型聚四氟乙烯复合材料的制备方法
Chen et al. Friction and wear mechanisms of PA66/PPS blend reinforced with carbon fiber
CN103319824A (zh) 改性增强型聚四氟乙烯复合材料的制备方法
CN105440574A (zh) 一种改性peek材料及其制备方法
CN101985501A (zh) 挤出级超高分子量聚乙烯/高密度聚乙烯/凹凸棒石预凝胶复合材料的制备方法
La Mantia et al. Shear flow characterization of blends containing liquid crystal polymers
Li et al. Thermal, morphology, and mechanical properties of polyphenylene sulfide/polyether sulfone binary blends
Rudresh et al. Effect of short glass fiber loading on the mechanical behaviour of PA66/PTFE blend composites
Karsli et al. Effect of short fiber reinforcement on the properties of recycled poly (ethylene terephthalate)/poly (ethylene naphthalate) blends
CN112940419A (zh) 一种多尺度有机/无机填料协同改性聚四氟乙烯耐磨材料的方法
Shojaei et al. Effect of chemical treatment of Teflon powder on the properties of polyamide 66/Teflon composites prepared by melt mixing
Lee et al. Novel approach to fibrillation of LCP in an LCP/PP blend
Li et al. Phase morphology and interfacial characteristics of polycarbonate/acrylonitrile‐ethylene‐propylene‐diene‐styrene blends compatibilized by styrene‐maleic anhydride copolymers
Zeng et al. Processing, structure, and properties of multiwalled carbon nanotube–poly (phenylene sulfide) composite fibers
Shanfeng et al. Viscometric study on the interactions of polymers of the poly (benzazole) family with nylon 66
CN110982249A (zh) 一种tpu夜光母粒及其制备方法
Saikrasun et al. Thermotropic liquid‐crystalline copolyester/thermoplastic elastomer in situ composites. I. Rheology, morphology, and mechanical properties of extruded strands
Amendola et al. The influence of a copolymer as adhesion promoter for polycarbonate and liquid crystalline polymer blends
Cheng et al. Morphology control of polyoxy‐methylene/thermoplastic polyurethane blends by adjusting their viscosity ratio
Saikrasun et al. Self‐reinforcing elastomer composites based on polyolefinic thermoplastic elastomer and thermotropic liquid crystalline polymer
Nayak et al. Effect of MWNTs and SiC‐Coated MWNTs on Properties of PEEK/LCP Blend

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee