CN109545673A - 一种晶体硅太阳电池用无氧扩散方法 - Google Patents

一种晶体硅太阳电池用无氧扩散方法 Download PDF

Info

Publication number
CN109545673A
CN109545673A CN201811187630.9A CN201811187630A CN109545673A CN 109545673 A CN109545673 A CN 109545673A CN 201811187630 A CN201811187630 A CN 201811187630A CN 109545673 A CN109545673 A CN 109545673A
Authority
CN
China
Prior art keywords
diffusion
silicon
solar cell
layer
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811187630.9A
Other languages
English (en)
Other versions
CN109545673B (zh
Inventor
黄海宾
周浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201811187630.9A priority Critical patent/CN109545673B/zh
Publication of CN109545673A publication Critical patent/CN109545673A/zh
Application granted granted Critical
Publication of CN109545673B publication Critical patent/CN109545673B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种晶体硅太阳电池用无氧扩散方法,包括:将表面沉积了不含氧且含有高浓度掺杂原子的源层薄膜的硅片,在通有无氧气氛的高温炉中在810‑1050℃温度范围进行扩散;在扩散结束后将炉温降到700‑800℃,通入氧气体积浓度>2%的气氛,进行20‑200min的退火处理。本发明杜绝了氧通过扩散步骤进入硅片的可能性,另外可改善硅片中的杂质分布状态,提高硅片的少子寿命;杜绝了氧向硅片的扩散及掺杂层中元素的不可控的扩散。本发明适用于n型晶体硅片上制备p型晶体硅扩散层、n型晶体硅扩散层;也适合在p型晶体硅片上制备n型晶体硅扩散层、p型晶体硅扩散层。既适用于制备单晶硅太阳电池,也适用于制备多晶硅太阳电池。

Description

一种晶体硅太阳电池用无氧扩散方法
技术领域
本发明属于太阳电池和半导体器件领域。涉及太阳电池的制备方法。
背景技术
对于pn同质结结构的晶体硅太阳电池,扩散法是迄今为止制备重掺杂的n型晶体硅层或p型晶体硅层最常用的方法。
采用扩散法制备的n型晶体硅薄膜,一般作为p型晶体硅太阳电池的发射极,或作为n型晶体硅太阳电池的背电场。该方法一般采用三氯氧磷作为掺杂源,将掺杂源与氧气以氮气作为载气通入到扩散炉中,在约800-900℃的温度下在硅片表面反应沉积,生成磷硅玻璃,该物质中的磷再扩散进入硅片中,形成一层重掺杂的n型晶体硅层。在这个过程中,生成的磷硅玻璃层还有吸杂的作用,会将硅片中的部分金属原子吸到磷硅玻璃层中,在扩散后的清洗过程中去除掉,从而可改善硅片的性能,利于太阳电池性能的提高。除了这种扩散法外,还有一种方法,是在硅片表面沉积一次重掺杂磷原子的硅薄膜或氧化硅薄膜(CN107749396A,CN104538485A),然后在含氧气氛中高温处理,这样表面这层硅薄膜就会被氧化,变成磷硅玻璃,并且其中的磷原子还会向硅片中扩散,形成一层重掺杂的n型晶体硅层。
采用扩散法制备p型晶体硅薄膜,一般用做n型晶体硅太阳电池的发射极。该方法一般采用溴化硼作为扩散源,该物质与氧气在约900-1000℃的范围内在硅片表面发生反应,生产一层硼硅玻璃,其中的硼原子会在高温下向硅片中扩散,从而形成一层重掺杂p型层。在这个过程中,生成的硼硅玻璃层还有吸杂的作用,会将硅片中的部分金属原子吸到硼硅玻璃层中,在扩散后的清洗过程中去除掉,从而可改善硅片的性能,利于太阳电池性能的提高。除了这种扩散法外,还有一种方法,是在硅片表面沉积一次重掺杂硼原子的硅薄膜或氧化硅薄膜(CN107749396A,CN105702809A),然后在含氧气氛中高温处理,这样表面这层硅薄膜就会被氧化,变成硼硅玻璃,并且其中的磷原子还会向硅片中扩散,形成一层重掺杂的p型晶体硅层。
综上所述,可见无论是扩磷还是扩硼,均是在硅片表面形成一层含氧的物质(磷硅玻璃或硼硅玻璃)。在扩散过程中,这层物质中的氧也会扩散进硅片中,尤其是在扩硼的温度范围(约900-1000℃)时,氧的扩散深度与硼的接近,这意味这会形成一个很大的高浓度的硼、氧共存的区域。对p型硅片的扩磷,其温度低(约800-900℃),氧的扩散深度远低于磷的扩散深度,但即使如此,也会在硅片表面层形成一层高浓度氧含量的区域,形成了一层氧、硼、磷共存的区域。对于晶体硅太阳电池硼与氧的结合会造成严重的光致衰减现象,而且氧本身浓度高后会形成各种类型的缺陷,造成太阳电池性能的下降。所以,各种类型的有氧扩散对晶体硅太阳电池的性能提升是不够理想的。
发明内容
本发明的目的是对pn同质结的晶体硅太阳电池制造过程中的扩散步骤提出一种新的优质方法。该方法尤其适用于n型晶体硅太阳电池中重掺杂p型晶体硅层的制备。可显著克服现有有氧扩散技术的不足,提高晶体硅太阳电池的性能。
本发明是通过以下技术方案实现的。
本发明所述的一种晶体硅太阳电池用无氧扩散方法,包括以下步骤。
(1)将表面沉积了不含氧且含有高浓度掺杂原子的源层薄膜的硅片,在通有无氧气氛的高温炉中在810-1050℃温度范围进行扩散。
(2)在扩散结束后将炉温降到700-800℃之间,通入含氧气氛(氧气体积浓度>2%),进行20-200min的退火处理。
所述源层薄膜优选非晶硅薄膜;对于p型晶体硅层的扩散制备优选硼作为掺杂原子;对于n型晶体硅层的扩散制备优选磷原子作为掺杂原子。所述源层薄膜的制备方法,优选在室温下,采用等离子体增强化学气相沉积、热丝化学气相沉积法或磁控溅射法。
所述无氧气氛优选氩气或氮气;或者氩气或氮气与微量氢的混合气,氢气的体积浓度≤4%。
发明的技术效果是。
(1)在高温扩散过程中,采用无氧的扩散源和无氧的气氛,彻底杜绝了氧通过扩散步骤进入硅片的可能性。而在扩散后降到800℃以下,在含氧气氛中退火,可在硅片表面发生氧化反应生成二氧化硅,该二氧化硅在此温度范围内仍有良好的吸杂作用,且该温度范围退火可改善硅片中的杂质分布状态,提高硅片的少子寿命;但此温度下氧向硅片中扩散的扩散系数很低,基本不会扩散到硅片内部,掺杂的硼、磷等原子向硅片中扩散的扩散系数也很低,所以既杜绝了氧向硅片的扩散,又杜绝了掺杂层中元素的不可控的扩散;而且源层薄膜,尤其是非晶硅薄膜经过氧化后更易于去除。
(2)本发明适用于n型晶体硅片上制备p型晶体硅扩散层、n型晶体硅扩散层,或在两边分别制备p型晶体硅扩散层和n型晶体硅扩散层;本发明也适合在p型晶体硅片上制备n型晶体硅扩散层、p型晶体硅扩散层或在两边分别制备p型晶体硅扩散层和n型晶体硅扩散层。
(3)本发明既适用于制备单晶硅太阳电池,也适用于制备多晶硅太阳电池。
具体实施方式
本发明将通过以下实施例作进一步说明。
实施例1。
对于n型多晶硅太阳电池,将硅片表面进行去损失层并抛光,清洗以后放入热丝化学气相沉积腔体中,在硅片需要做发射极的表面上沉积一层重掺杂硼的非晶硅薄膜,厚度为50nm;然后将硅片放入到管式高温炉中,以氮气作为保护气体,在980℃条件下扩散60分钟;降温到600℃将硅片取出。将硅片再放入热丝化学气相沉积腔体中,在需要制备背电场层的表面上沉积一层重掺杂磷的非晶硅薄膜,厚度为20nm;然后将硅片放入到管式高温炉中,以氮气作为保护气体,在830℃条件下扩散20分钟;然后将炉温降到790℃,以20%氧含量的氮氧混合气作为反应气体,退火30min。降温到600℃将硅片取出,此时硅片两面均有氧化层。用氢氟酸将两面的氧化层去掉。对两层重掺杂层的源层沉积和扩散过程,通过调节镀膜时反应气体中硼烷的比例、薄膜的厚度、扩散过程中的温度和时间,可很方便的控制掺杂层的方阻和结深。可在保证无氧扩散进硅片的前提下,获得方阻、结深均满足要求的两个表面的重掺杂层,且获得较高的硅片少子寿命。在硅片的发射极面沉积氧化铝/氮化硅的复合钝化减反层;在硅片的背电场面沉积多层氮化硅复合钝化减反层。然后在两个表面印刷金属栅线并烧结。对于最终获得的太阳电池,因采用抛光硅片的结构,可减少重掺杂层中载流子横向迁移到栅线过程中实际的迁移距离,减少载流子的复合损耗。从而最终可获得性能优异的n型多晶硅双面太阳电池。
实施例2。
对于n型单晶硅太阳电池,将硅片表面进行去损失层并制绒,清洗以后放入等离子体增强化学气相沉积腔体中,在硅片需要做发射极的表面上沉积一层重掺杂硼的非晶硅薄膜,厚度为40nm;然后将硅片放入到管式高温炉中,以氢气含量为2%的氮气作为保护气体,在1050℃条件下扩散40分钟;然后将炉温降到800℃,以10%氧含量的氮氧混合气作为反应气体,退火60min。降温到600℃将硅片取出,此时硅片两面均有氧化层。用氢氟酸将两面的氧化层去掉。对重掺杂层的源层沉积和扩散过程,通过调节镀膜时反应气体中硼烷的比例、薄膜的厚度、扩散过程中的温度和时间,可很方便的控制掺杂层的方阻和结深。可在保证无氧扩散进硅片的前提下,获得方阻、结深均满足要求的p型重掺杂层,且获得较高的硅片少子寿命。然后在硅片的背电场面制备1.5纳米后的二氧化硅层和100nm后的重掺杂n型微晶硅层。在硅片的发射极面沉积氧化铝/氮化硅的复合钝化减反层;在硅片的背电场面沉积多层氮化硅复合钝化减反层。然后在两个表面印刷金属栅线并烧结。最终可获得性能优异的n型单晶硅双面太阳电池。
实施例3。
对于p型单晶硅太阳电池,将硅片表面进行去损失层并制绒,清洗以后放入等离子体增强化学气相沉积腔体中,在硅片需要做发射极的表面上沉积一层重掺杂磷的非晶硅薄膜,厚度为20nm;然后将硅片放入到管式高温炉中,以氩气作为保护气体,在820℃条件下扩散30分钟;然后将炉温降到700℃,以10%氧含量的氮氧混合气作为反应气体,退火200min。降温到600℃将硅片取出,此时硅片两面均有氧化层。用氢氟酸将两面的氧化层去掉。对重掺杂层的源层沉积和扩散过程,通过调节镀膜时反应气体中硼烷的比例、薄膜的厚度、扩散过程中的温度和时间,可很方便的控制掺杂层的方阻和结深。可在保证无氧扩散进硅片的前提下,获得方阻、结深均满足要求的n型重掺杂层,且获得较高的硅片少子寿命。然后在硅片发射极面制备氮化硅钝化层,在背电场面印刷铝背场,双面印刷电极并烧结。该法所得扩散层的均匀性,一致性可优于现有的三氯氧磷扩散法得到的太阳电池。
实施例4。
对于p型多晶硅太阳电池,将硅片表面进行去损失层并抛光,清洗以后放入等离子体增强化学气相沉积腔体中,在硅片需要做发射极的表面上沉积一层重掺杂磷的非晶氮化硅薄膜,厚度为20nm;然后将硅片放入到管式高温炉中,以氩气作为保护气体,在820℃条件下扩散30分钟;然后将炉温降到700℃,以10%氧含量的氮氧混合气作为反应气体,退火200min。降温到600℃将硅片取出,此时硅片两面均有氧化层。用氢氟酸将两面的氧化层去掉。对重掺杂层的源层沉积和扩散过程,通过调节镀膜时反应气体中硼烷的比例、薄膜的厚度、扩散过程中的温度和时间,可很方便的控制掺杂层的方阻和结深。可在保证无氧扩散进硅片的前提下,获得方阻、结深均满足要求的n型重掺杂层,且获得较高的硅片少子寿命。然后在硅片发射极面制备氮化硅钝化层,在背电场面印刷铝背场,双面印刷电极并烧结。该法所得扩散层的均匀性,一致性可优于现有的三氯氧磷扩散法得到的太阳电池。

Claims (5)

1.一种晶体硅太阳电池用无氧扩散方法,其特征是包括以下步骤:
(1)将表面沉积了不含氧且含有高浓度掺杂原子的源层薄膜的硅片,在通有无氧气氛的高温炉中在810-1050℃温度范围进行扩散;
(2)在扩散结束后将炉温降到700-800℃之间,通入氧气体积浓度>2%的气氛,进行20-200min的退火处理。
2.根据权利要求1所述的一种晶体硅太阳电池用无氧扩散方法,其特征是所述源层薄膜为非晶硅薄膜。
3.根据权利要求1所述的一种晶体硅太阳电池用无氧扩散方法,其特征是对于p型晶体硅层的扩散选择硼作为掺杂原子;对于n型晶体硅层的扩散选择磷原子作为掺杂原子。
4.根据权利要求1所述的一种晶体硅太阳电池用无氧扩散方法,其特征是所述源层薄膜的制备,在室温下,采用等离子体增强化学气相沉积、热丝化学气相沉积法或磁控溅射法。
5.根据权利要求1所述的一种晶体硅太阳电池用无氧扩散方法,其特征是所述无氧气氛为氩气或氮气;或者氩气或氮气与微量氢的混合气,氢气的体积浓度≤4%。
CN201811187630.9A 2018-10-12 2018-10-12 一种晶体硅太阳电池用无氧扩散方法 Active CN109545673B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811187630.9A CN109545673B (zh) 2018-10-12 2018-10-12 一种晶体硅太阳电池用无氧扩散方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811187630.9A CN109545673B (zh) 2018-10-12 2018-10-12 一种晶体硅太阳电池用无氧扩散方法

Publications (2)

Publication Number Publication Date
CN109545673A true CN109545673A (zh) 2019-03-29
CN109545673B CN109545673B (zh) 2022-01-11

Family

ID=65843689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811187630.9A Active CN109545673B (zh) 2018-10-12 2018-10-12 一种晶体硅太阳电池用无氧扩散方法

Country Status (1)

Country Link
CN (1) CN109545673B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066896A (zh) * 2021-03-16 2021-07-02 常州比太科技有限公司 一种太阳能电池发射结制备方法
CN116053333A (zh) * 2022-08-31 2023-05-02 江苏杰太光电技术有限公司 一种太阳能电池发射极制备方法
WO2024164866A1 (zh) * 2023-02-10 2024-08-15 通威太阳能(眉山)有限公司 一种太阳电池及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383284A (zh) * 2008-10-23 2009-03-11 杭州杭鑫电子工业有限公司 一种硅单晶薄片氧化单面预扩散制造晶体管的方法
CN102005508A (zh) * 2010-10-25 2011-04-06 湖南大学 一种连续制备晶体硅太阳能电池pn结及减反膜的方法
US20110183504A1 (en) * 2010-01-25 2011-07-28 Innovalight, Inc. Methods of forming a dual-doped emitter on a substrate with an inline diffusion apparatus
CN102403203A (zh) * 2011-11-18 2012-04-04 浙江正国太阳能科技有限公司 晶体硅太阳能电池选择性发射极的磷扩散方法
CN103022265A (zh) * 2013-01-10 2013-04-03 英利集团有限公司 太阳能电池片及其扩散方法
CN103165760A (zh) * 2013-04-01 2013-06-19 南通大学 一种太阳能电池的选择性掺杂方法
CN103632935A (zh) * 2013-11-29 2014-03-12 英利集团有限公司 N 型硅片的硼扩散方法、晶体硅太阳能电池及其制作方法
CN104868013A (zh) * 2015-04-15 2015-08-26 山西潞安太阳能科技有限责任公司 太阳能晶硅电池扩散工艺
CN105702809A (zh) * 2016-04-07 2016-06-22 南昌大学 一种低温气相沉积固态扩散源制备用于太阳电池的掺杂硅的方法
CN105789382A (zh) * 2016-05-20 2016-07-20 浙江晶科能源有限公司 改善掺硼晶体硅太阳电池光致衰减的方法
WO2016129372A1 (ja) * 2015-02-10 2016-08-18 三菱電機株式会社 太陽電池の製造方法および太陽電池
CN107749396A (zh) * 2017-10-26 2018-03-02 江西硅辰科技有限公司 一种扩散制结晶体硅太阳电池用的等离子刻边方法
CN108010972A (zh) * 2017-11-09 2018-05-08 润峰电力有限公司 一种mcce制绒多晶黑硅硅片扩散方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383284A (zh) * 2008-10-23 2009-03-11 杭州杭鑫电子工业有限公司 一种硅单晶薄片氧化单面预扩散制造晶体管的方法
US20110183504A1 (en) * 2010-01-25 2011-07-28 Innovalight, Inc. Methods of forming a dual-doped emitter on a substrate with an inline diffusion apparatus
CN102005508A (zh) * 2010-10-25 2011-04-06 湖南大学 一种连续制备晶体硅太阳能电池pn结及减反膜的方法
CN102403203A (zh) * 2011-11-18 2012-04-04 浙江正国太阳能科技有限公司 晶体硅太阳能电池选择性发射极的磷扩散方法
CN103022265A (zh) * 2013-01-10 2013-04-03 英利集团有限公司 太阳能电池片及其扩散方法
CN103165760A (zh) * 2013-04-01 2013-06-19 南通大学 一种太阳能电池的选择性掺杂方法
CN103632935A (zh) * 2013-11-29 2014-03-12 英利集团有限公司 N 型硅片的硼扩散方法、晶体硅太阳能电池及其制作方法
WO2016129372A1 (ja) * 2015-02-10 2016-08-18 三菱電機株式会社 太陽電池の製造方法および太陽電池
CN104868013A (zh) * 2015-04-15 2015-08-26 山西潞安太阳能科技有限责任公司 太阳能晶硅电池扩散工艺
CN105702809A (zh) * 2016-04-07 2016-06-22 南昌大学 一种低温气相沉积固态扩散源制备用于太阳电池的掺杂硅的方法
CN105789382A (zh) * 2016-05-20 2016-07-20 浙江晶科能源有限公司 改善掺硼晶体硅太阳电池光致衰减的方法
CN107749396A (zh) * 2017-10-26 2018-03-02 江西硅辰科技有限公司 一种扩散制结晶体硅太阳电池用的等离子刻边方法
CN108010972A (zh) * 2017-11-09 2018-05-08 润峰电力有限公司 一种mcce制绒多晶黑硅硅片扩散方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
卜方等: "《2016-2017各行业专利技术现状及其发展趋势报告》", 30 April 2017, 北京:知识产权出版社 *
陈鹏: "晶体硅太阳电池中的光衰减研究", 《中国博士学位论文全文数据库》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066896A (zh) * 2021-03-16 2021-07-02 常州比太科技有限公司 一种太阳能电池发射结制备方法
CN116053333A (zh) * 2022-08-31 2023-05-02 江苏杰太光电技术有限公司 一种太阳能电池发射极制备方法
WO2024164866A1 (zh) * 2023-02-10 2024-08-15 通威太阳能(眉山)有限公司 一种太阳电池及其制备方法

Also Published As

Publication number Publication date
CN109545673B (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
CN109449246B (zh) 一种硅晶体片磷扩散方法
CN109216498A (zh) 一种双面隧穿氧化钝化高效n型双面电池的制备方法
CN110233180A (zh) P型背面隧穿氧化钝化接触太阳能电池的制备方法
US20220238748A1 (en) Solar cell and preparation method therefor, method for processing n-type doped silicon film, and semiconductor device
CN206864484U (zh) 一种钝化接触太阳能电池
CN109545673A (zh) 一种晶体硅太阳电池用无氧扩散方法
CN207705205U (zh) 一种背接触太阳能电池
CN114335237B (zh) 一种晶体硅太阳能电池的制备方法及晶体硅太阳能电池
JP2012506629A (ja) 半導体デバイス製造方法、半導体デバイス、及び半導体デバイス製造設備
CN111146311A (zh) 一种硼扩散方法及n型太阳能电池片制备方法
CN113903833A (zh) 一种TOPCon电池LPCVD工艺
CN115394863A (zh) 一种太阳电池及其制备方法
CN110767772B (zh) 局域接触钝化太阳电池的制备方法
WO2024160214A1 (zh) 太阳电池及其制备方法
TW201701492A (zh) 太陽能電池的製造方法
EP4365966A1 (en) Bifacial solar cell and preparation method therefor
CN110739366B (zh) 一种修复perc太阳能电池背膜激光开槽损伤的方法
CN113808927A (zh) 一种TOPCon电池磷扩散工艺
CN111477696B (zh) 一种基于钝化接触的太阳能电池片及其制备方法
JP6346022B2 (ja) 薄膜形成方法および太陽電池素子の製造方法
CN208225893U (zh) 一种多晶掺镓太阳电池
CN114464707B (zh) 一种氢等离子体处理制备n型电池选择性发射极的方法
CN117153950B (zh) 一种低温硼激活方法
CN114188436B (zh) 一种硅基底制备方法及太阳能电池
CN111952375B (zh) 一种感应结太阳电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant