CN109540983A - 一种用于检测α2,6唾液酸化聚糖的新型电化学生物传感器 - Google Patents

一种用于检测α2,6唾液酸化聚糖的新型电化学生物传感器 Download PDF

Info

Publication number
CN109540983A
CN109540983A CN201910060619.4A CN201910060619A CN109540983A CN 109540983 A CN109540983 A CN 109540983A CN 201910060619 A CN201910060619 A CN 201910060619A CN 109540983 A CN109540983 A CN 109540983A
Authority
CN
China
Prior art keywords
electrode
solution
added
swcnhs
sial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910060619.4A
Other languages
English (en)
Other versions
CN109540983B (zh
Inventor
于超
何俊琳
李佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Medical University
Original Assignee
Chongqing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Medical University filed Critical Chongqing Medical University
Priority to CN201910060619.4A priority Critical patent/CN109540983B/zh
Publication of CN109540983A publication Critical patent/CN109540983A/zh
Application granted granted Critical
Publication of CN109540983B publication Critical patent/CN109540983B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Nanotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明成功开发了基于新型金纳米棒‑链霉亲和素(AuNPs‑SA)复合材料和羧基化单壁碳纳米角‑硫掺杂铂(c‑SWCNHs/S‑PtNC)的特异性超敏夹心电化学免疫传感器,用于检测人血清中的α2,6唾液酸化聚糖(α2,6‑sial‑Gs)。金纳米棒‑链霉亲和素(AuNPs‑SA)不仅能增加电极导电性,增强电子间转移,同时通过链霉亲和素和生物素系统为固载生物素标记的黑接骨木素(bio‑SNA)提供活性位点。此外,c‑SWCNHs/S‑PtNC对H2O2的还原具有优异的催化性能,并且Pt‑NH2和‑NH‑CO‑可有效捕获三氨基苯硼酸(M‑APBA)。本发明的优点在于线性范围宽。灵敏度高,特异性强,检测迅速,以及良好的可重复使用性,并且该发明可用于测量人血清中α2,6‑sial‑Gs含量,有在临床检测中有着巨大潜力。

Description

一种用于检测α2,6唾液酸化聚糖的新型电化学生物传感器
技术领域:
本发明涉及一种在临床上定量检测α2,6唾液酸化聚糖的电化学免疫传感器的制备方法及应用,尤其是基于金纳米棒-链霉亲和素纳米粒子复合材料及羧基化单壁碳纳米角-硫掺杂铂纳米复合材料作为信号探针制备的生物传感器,用于检测α2,6唾液酸聚糖,属于电化学检测领域。
背景技术:
α2,6唾液酸化聚糖(α2,6-sial-Gs)是一种广谱肿瘤标志物,与肿瘤的增殖、转移、扩散及肿瘤的抗原性等恶性行为密切相关。在癌细胞凋亡过程中,α2,6-sial-Gs在糖苷酶的水解作用下脱落并释放进入血液循环,从而使血清中的α2,6-sial-Gs水平显著升高。因此,α2,6-sial-Gs的检测对于肿瘤的临床诊断、疗效观察和预后判断有着非常重要的临床价值。
用于α2,6-sial-Gs定量检测的常规方法包括气相色谱-质谱联用,高效液相色谱-质谱联用和毛细管电泳。然而这些方法需要昂贵的设备和材料,并且所检测样品必须经过复杂的前处理来消除其他的干扰物,除此之外,须由技术人员在专门的实验室进行分析。近年来,电化学免疫传感器技术作为新兴的检测技术,具有快速、灵敏度高、操作简单、稳定性好等特点,并且已广泛应用于生化分析、环境监测、临床研究和食品质量检测等领域,这种方法对α2,6-sial-Gs的检测提供了新的研究思路。
在电化学免疫传感器分析技术中,为了提高检测的灵敏度和缩短响应时间,满足临床上痕量物质的定量快速检测,目前多采用“三明治”型的传感器反应模式。其原理是基于构建负载生物素标记黑接骨木素(bio-SNA)-被测目标(α2,6-sial-Gs)-三氨基苯硼酸(M-APBA)夹心免疫复合物的分析方法,其中bio-SNA和M-APBA可以特异性识别α2,6-sial-Gs。如何简便、快速的实现对目标物质进行检测是将其推广应用的重要标准。为实现这一目的,电极修饰材料和纳米信标的选择显得尤为重要。近年来,由于金纳米棒(AuNR)具有良好的导电性和优良的物理化学性能,在电化学生物传感技术中广泛应用。同时,为了增加抗体的固载量,本课题采用链霉亲和素(SA),它是四聚体蛋白,大小为66KDa。一分子链霉亲和素可以高度特异性地与四分子生物素结合。基于以上优点,本实验采用AuNRs-SA作为电极修饰材料增加导电性和抗体的固载量。同时,本课题拟采用首次合成的硫掺杂铂(S-PtNC)作为纳米信标,由于其具有良好的催化性能和大量的吸收/活性位点,可以放大电化学免疫传感器电信号,为了增加S-PtNC的固载量,采用了比表面积大的羧基化单壁碳纳米角(c-SWCNHs)结合S-PtNC形成c-SWCNHs/S-PtNC纳米复合材料,不仅增加了催化性,也可以与M-APBA通过金属-氨基和羧基-氨基配位结合,通过bio-SNA和M-APBA对α2,6-sial-Gs的特异性结合实现夹心型免疫传感器的构建。
该项目建立了一个简单、快速的检测方法实现了对α2,6-sial-Gs的特异、超灵敏检测。为肿瘤的临床诊断、疗效观察和预后判断提供依据。
发明内容:
1.本发明的目的是用于检测α2,6-sial-Gs的电化学免疫传感器的制备方法与应用,为肿瘤的临床诊断、疗效观察和预后判断提供依据,其特征包括以下步骤:
(1)金纳米棒-链霉亲和素(AuNPs-SA)纳米复合材料的制备;
(2)羧基化单壁碳纳米角-硫掺杂铂-三氨基苯硼酸(c-SWCNHs/S-PtNC/M-APBA)纳米信标的制备;
(3)建立电化学免疫传感器,检测α2,6-sial-Gs,绘制标准曲线。
2.本发明所述c-SWCNHs/S-PtNC纳米复合材料的制备过程具体包括以下步骤,其特征包括以下步骤:
(1)AuNRs-SA复合材料的制备:
首先将2.5mL 0.5mM的氯金酸(HAuCl4)溶液与2.5mL 0.2mM的十六烷基三甲基溴化铵(CTAB)溶液混合;加入300mL 0.01mM硼氢化钠(NaBH4)并快速混合2分钟,合成金粒种子。然后,将5mL 0.2mM的HAuCl4溶液加入到5mL 1mM的CTAB溶液中;将4mM 0.15mL的硝酸银(AgNO3)加入到溶液中并反应5分钟;再加入70μL 0.079mM的抗坏血酸(AA),使溶液反应2分钟。然后,将12mL制备的金粒种子加入该溶液中并剧烈搅拌20秒并使其在25℃下反应2小时。之后,通过以5000rpm离心30分钟收集AuNRs,洗涤3次并溶解在200μL超纯水中。然后,将40μL 1mg/mL-1链霉亲和素(SA)加入溶液中并摇动过夜。最后,洗涤3次后,将最终的沉淀物分散在200μL超纯水中进一步使用。
(2)c-SWCNHs/S-PtNC的制备:
将1mL 2.5mg mL-1羧基化单壁碳纳米角(c-SWCNHs)溶液超声处理5分钟;然后,加入5mL氯铂酸钾(K2PtCl4)和6mL 0.1mM亚甲蓝(MB)在90℃下加热下加热搅拌5小时。最后,将混合物以10000rpm离心5分钟,洗涤三次并溶解在1mL超纯水中,供下一步使用。
(3)c-SWCNHs/S-PtNC/M-APBA纳米信标的制备:
将1mL c-SWCNHs/S-PtNC复合物,50μL 50mg mL-1 1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)和50μL 50mg mL-1 N-羟基琥珀酰亚胺(NHS)在4℃轻微混合30分钟。接下来,将50μL 50mg mL-1的三氨基苯硼酸(M-APBA)加入到混合物中并继续搅拌4小时;然后,将100μL 0.25wt% BSA溶液加入混合物中并在4℃下轻微混合1小时,封闭活性位点。随后,将所得溶液离心,彻底洗涤以除去未结合的M-APBA,再分散于1mL超纯水中得到纳米信标,然后在4℃下储存以供进一步使用。
3.根据权利要求1所述的建立电化学免疫传感器,检测α2,6-sial-Gs,绘制标准曲线,其特征在于包括以下步骤:
(1)分别用0.3和0.05μm的Al2O3粉末将电极抛光成镜面,然后分别按超纯水、无水乙醇、超纯水的顺序超声电极各5min,室温干燥备用;
(2)将10μL电极修饰材料金纳米棒-链霉亲和素(AuNRs-SA)复合材料滴加在电极表面,在室温条件下干燥。
(3)将8μL的骨接黑木素(bio-SNA)第一抗体溶液(0.2mg mL-1)结合到干燥的电极表面,在37℃孵育1.5h。
(4)用超纯水将孵育后的电极冲洗干净后滴加6μL,0.25%的BSA溶液室温孵育30min。
(5)用超纯水将电极冲洗干净后将不同浓度的α2,6-sial-Gs滴加在电极上并置于30℃孵育2.5h。
(6)在干燥后的电极上滴加10μLc-SWCNHs/S-PtNC/M-APBA置于37℃孵育2h。
(7)将孵育后的电极用超纯水冲洗干净后置于室温条件干燥。
(8)将电极置于5mL,0.1M PBS(0.1M Na2HPO4,0.1M KH2PO4,0.1M KCl)中进行表征,每隔20s加入20μL,2mM H2O2,测量其计时电流变化电流值。
(9)根据所得电流变化值与α2,6-sial-Gs浓度呈线性关系,绘制工作曲线。
与现有技术相比,本发明的一种定量检测α2,6-sial-Gs的电化学免疫传感器的制备方法与应用,其突出的特点是:
(1)将AuNRs-SA作为电极修饰材料引入到电化学免疫传感器的制备中,提高了传感器的比表面积,以及导电性,加快电子传递,进而提高了电化学免疫传感器的灵敏度和生物相容性;同时引入生物素-链霉亲和素系统可以固载更多的bio-SNA,增加免疫反应效率,减少捕获抗体的时间,进一步提高传感器的灵敏度;
(2)首次合成的c-SWCNHs/S-PtNC作为纳米信标信号材料,良好的导电性、结合位点以及催化性,可以产生、放大信号;
(3)本方法制备的电化学免疫传感器可为肿瘤的临床诊断、疗效观察和预后判断提供有效信息
(4)本方法制备的电化学免疫传感器由于利用抗体抗原之间的特异性结合,具有良好的特异性,其制备过程简单、检测步骤较少,检测速度较快,便于实现商品化,有利于推进转化医学的发展。
附图说明:
图1为本发明的电化学免疫传感器的构建示意图。
图2为本发明的电极修饰材料和信号材料的不同合成步骤的场发射扫描电镜图、透射电镜图、EDS图和XPS图。
图3为本发明的电化学免疫传感器在检测α2,6-sial-Gs时得到的计时电流变化电流与浓度的线性关系。
具体实施方式:
下面结合具体实施例对本发明进行进一步阐述,应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。
实施例1
步骤1.将1mL 2.5mg mL-1羧基化单壁碳纳米角(c-SWCNHs)溶液超声处理5分钟;然后,加入5mL氯铂酸钾(K2PtCl4)和6mL 0.1mM亚甲蓝(MB)在90℃下加热下加热搅拌5小时。最后,将混合物以10000rpm离心5分钟,洗涤三次并溶解在1mL超纯水中,最后置于真空干燥箱中干燥待用。
步骤2.分别用0.3和0.05μm的Al2O3粉末将电极抛光成镜面,然后分别按超纯水、无水乙醇、超纯水的顺序超声电极各5min,室温干燥备用;
步骤3.将10μL电极修饰材料金纳米棒-链霉亲和素(AuNRs-SA)滴加在电极表面,室温干燥;
步骤4.将8μL的骨接黑木素(bio-SNA)第一抗体溶液(0.2mg mL-1)结合到干燥的电极表面,在37℃孵育1.5h;
步骤5.用超纯水将电极冲洗干净后将不同浓度的α2,6-sial-Gs滴加在电极上并置于30℃孵育2.5h;
步骤6.在干燥后的电极上滴加10μLc-SWCNHs/S-PtNC/M-APBA置于37℃孵育2h;
步骤7.将孵育后的电极用超纯水冲洗干净后置于室温条件干燥;
步骤8.将电极置于5mL,0.1M PBS(0.1M Na2HPO4,0.1M KH2PO4,0.1M KCl)中进行表征,每隔20s加入20μL,2mMH2O2,测量其计时电流变化电流值;
步骤9.将不同浓度的目标PCSK9滴加在电极上并置于37°孵育60min;
步骤10.在干燥后的电极上滴加8μLPt-PMB-Ab2纳米信标并置于37℃孵育60min;
步骤11.将孵育后的电极用清洗缓冲液冲洗干净后置于氮气中干燥;
步骤12.根据所得电流变化值与α2,6-sial-Gs浓度呈线性关系,绘制工作曲线;测定结果表明α2,6-sial-Gs浓度在100fg mL-1到100ng mL-1范围内成线性关系,线性相关系数为0.9995,检测限为0.69fg mL-1
步骤13.将本发明上述传感器于4℃保存,间断检测传感器电流响应,储存28天后电流响应仍为初始电流的89.63%,表示传感器具有良好的稳定性;
步骤14.本发明取同一批次制备的免疫传感器5支,在相同条件下对10pg□mL-1的α2,6-sial-Gs分别进行测定,每一支电极测定3次,结果响应电流的相对标准偏差为0.4796%,说明构建的传感器批内差异小,传感器重现性良好。
步骤15.将本发明上述传感器在血液中其他生物分子存在的条件下检测α2,6-sial-Gs,结果其他生物分子的存在不影响α2,6-sial-Gs电流的改变,说明传感器的特异性好,可以很好区分目标分子。
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提条件下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (3)

1.一种用于检测α2,6唾液酸聚糖的双响应电化学生物传感器制备方法,其特征在于包括以下步骤:
(1)金纳米棒-链霉亲和素(AuNPs-SA)纳米复合材料的制备;
(2)羧基化单壁碳纳米角-硫掺杂铂-三氨基苯硼酸(c-SWCNHs/S-PtNC/M-APBA)纳米信标的制备;
(3)建立电化学免疫传感器,检测α2,6-sial-Gs,绘制标准曲线。
2.根据权利要求1所述羧基化单壁碳纳米角-硫掺杂铂材料的制备过程,其特征包括以下步骤:
(1)AuNRs-SA复合材料的制备:
首先将2.5mL 0.5mM的氯金酸(HAuCl4)溶液与2.5mL 0.2mM的十六烷基三甲基溴化铵(CTAB)溶液混合;加入300mL 0.01mM硼氢化钠(NaBH4)并快速混合2分钟,合成金粒种子。然后,将5mL 0.2mM的HAuCl4溶液加入到5mL 1mM的CTAB溶液中;将4mM 0.15mL的硝酸银(AgNO3)加入到溶液中并反应5分钟;再加入70μL 0.079mM的抗坏血酸(AA),使溶液反应2分钟。然后,将12mL制备的金粒种子加入该溶液中并剧烈搅拌20秒并使其在25℃下反应2小时。之后,通过以5000rpm离心30分钟收集AuNRs,洗涤3次并溶解在200μL超纯水中。然后,将40μL 1mg/mL-1链霉亲和素(SA)加入溶液中并摇动过夜。最后,洗涤3次后,将最终的沉淀物分散在200μL超纯水中进一步使用。
(2)c-SWCNHs/S-PtNC的制备:
将1mL 2.5mg mL-1羧基化单壁碳纳米角(c-SWCNHs)溶液超声处理5分钟;然后,加入5mL氯铂酸钾(K2PtCl4)和6mL 0.1mM亚甲蓝(MB)在90℃下加热下加热搅拌5小时。最后,将混合物以10000rpm离心5分钟,洗涤三次并溶解在1mL超纯水中,供下一步使用。
(3)c-SWCNHs/S-PtNC/M-APBA纳米信标的制备:
将1mL c-SWCNHs/S-PtNC复合物,50μL 50mg mL-11-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)和50μL 50mg mL-1N-羟基琥珀酰亚胺(NHS)在4℃轻微混合30分钟。接下来,将50μL 50mg mL-1的三氨基苯硼酸(M-APBA)加入到混合物中并继续搅拌4小时;然后,将100μL 0.25wt%BSA溶液加入混合物中并在4℃下轻微混合1小时,封闭活性位点。随后,将所得溶液离心,彻底洗涤以除去未结合的M-APBA,再分散于1mL超纯水中得到纳米信标,然后在4℃下储存以供进一步使用。
3.根据权利要求1所述的建立电化学免疫传感器,检测α2,6-sial-Gs,绘制标准曲线,其特征在于包括以下步骤:
(1)分别用0.3和0.05μm的Al2O3粉末将电极抛光成镜面,然后分别按超纯水、无水乙醇、超纯水的顺序超声电极各5min,室温干燥备用;
(2)将10μL电极修饰材料金纳米棒-链霉亲和素(AuNRs-SA)复合材料滴加在电极表面,在室温条件下干燥。
(3)将8μL的骨接黑木素(bio-SNA)第一抗体溶液(0.2mg mL-1)结合到干燥的电极表面,在37℃孵育1.5h。
(4)用超纯水将孵育后的电极冲洗干净后滴加6μL,0.25%的BSA溶液室温孵育30min。
(5)用超纯水将电极冲洗干净后将不同浓度的α2,6-sial-Gs滴加在电极上并置于30℃孵育2.5h。
(6)在干燥后的电极上滴加10μLc-SWCNHs/S-PtNC/M-APBA置于37℃孵育2h。
(7)将孵育后的电极用超纯水冲洗干净后置于室温条件干燥。
(8)将电极置于5mL,0.1M PBS(0.1M Na2HPO4,0.1M KH2PO4,0.1M KCl)中进行表征,每隔20s加入20μL,2mM H2O2,测量其计时电流变化电流值。
(9)根据所得电流变化值与α2,6-sial-Gs浓度呈线性关系,绘制工作曲线。
CN201910060619.4A 2019-01-22 2019-01-22 一种用于检测α2,6唾液酸化聚糖的新型电化学生物传感器 Expired - Fee Related CN109540983B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910060619.4A CN109540983B (zh) 2019-01-22 2019-01-22 一种用于检测α2,6唾液酸化聚糖的新型电化学生物传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910060619.4A CN109540983B (zh) 2019-01-22 2019-01-22 一种用于检测α2,6唾液酸化聚糖的新型电化学生物传感器

Publications (2)

Publication Number Publication Date
CN109540983A true CN109540983A (zh) 2019-03-29
CN109540983B CN109540983B (zh) 2021-09-03

Family

ID=65838318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910060619.4A Expired - Fee Related CN109540983B (zh) 2019-01-22 2019-01-22 一种用于检测α2,6唾液酸化聚糖的新型电化学生物传感器

Country Status (1)

Country Link
CN (1) CN109540983B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433182A (zh) * 2021-05-17 2021-09-24 重庆医科大学 一种柔性葡萄糖传感器及其检测葡萄糖方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107389949A (zh) * 2017-09-06 2017-11-24 重庆医科大学 一种用于pcsk9蛋白检测的电化学免疫传感器制备方法
CN107723340A (zh) * 2017-09-06 2018-02-23 重庆医科大学 一种用于cyp2c19*2检测的电化学传感器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107389949A (zh) * 2017-09-06 2017-11-24 重庆医科大学 一种用于pcsk9蛋白检测的电化学免疫传感器制备方法
CN107723340A (zh) * 2017-09-06 2018-02-23 重庆医科大学 一种用于cyp2c19*2检测的电化学传感器

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
LIU, FEI ET AL.: "A novel strategy of procalcitonin detection based on multi-nanomaterials of single-walled carbon nanohorns–hollow Pt nanospheres/PAMAM as signal tags", 《RSC ADVANCES》 *
LIU, FEI ET AL.: "Procalcitonin sensitive detection based on graphene–gold nanocomposite film sensor platform and single-walled carbon nanohorns/hollow Pt chains complex as signal tags", 《BIOSENSORS AND BIOELECTRONICS》 *
YANG, FAN ET AL.: "Highly sensitive impedimetric immunosensor based on single-walled carbon nanohorns as labels and bienzyme biocatalyzed precipitation as enhancer for cancer biomarker detection", 《BIOSENSORS AND BIOELECTRONICS》 *
YUGE, R. ET AL.: "Preferential Deposition of Pt Nanoparticles Inside Single-Walled Carbon Nanohorns", 《ADVANCED MATERIALS》 *
ZHANG, CHENGLI ET AL.: "Cerium dioxide-doped carboxyl fullerene as novel nanoprobe and catalyst in electrochemical biosensor for amperometric detection of the CYP2C19*2 allele in human serum", 《BIOSENSORS AND BIOELECTRONICS》 *
ZHANG, WEI ET AL.: "Two-photon fluorescence imaging of sialylated glycans in vivo based on a sialic acid imprinted conjugated polymer nanoprobe", 《CHEMICAL COMMUNICATIONS》 *
ZHENGSHAN GAO ET AL.: "Electrochemical Immunosensor for Monocyte Chemoattractant Protein-1 Detection Based on Pt Nanoparticles Functionalized Single-walled Carbon Nanohorns", 《INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433182A (zh) * 2021-05-17 2021-09-24 重庆医科大学 一种柔性葡萄糖传感器及其检测葡萄糖方法

Also Published As

Publication number Publication date
CN109540983B (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
CN103116023B (zh) 用于检测肿瘤标志物的电化学发光免疫传感器及其制备方法和应用
Rong et al. Metal ions doped chitosan–poly (acrylic acid) nanospheres: Synthesis and their application in simultaneously electrochemical detection of four markers of pancreatic cancer
Lai et al. One-step electrochemical immunosensing for simultaneous detection of two biomarkers using thionine and ferrocene as distinguishable signal tags
CN104297479B (zh) 检测肿瘤标志物电致化学发光免疫传感器的制备及应用
CN109839501B (zh) 一种测定循环肿瘤细胞的电致化学发光免疫传感器及其制备方法与应用
CN102980925A (zh) 一种夹心型电化学免疫传感器、其制备方法及其用途
CN105675697A (zh) 一种基于纳米探针c60的癌胚抗原的电化学免疫传感器的构建方法
Cao et al. Electrochemical immunosensor based on binary nanoparticles decorated rGO-TEPA as magnetic capture and Au@ PtNPs as probe for CEA detection
CN105954339B (zh) 一种基于CeO2@Cu2O/Au@Pt的夹心型免疫传感器的制备方法及应用
CN112986348B (zh) 一种基于过渡金属硫化物的双模式电化学生物传感器的制备与应用
CN108896638B (zh) 一种基于二氧化钛掺杂石墨烯负载海参状金钯核壳纳米粒子的免疫传感器的制备方法及应用
CN104569420B (zh) 适配体修饰的纳米银探针及其应用
CN106198699B (zh) 制备两种二抗共轭物及其用于同时检测甲胎蛋白和癌胚抗原的方法
CN105115961A (zh) 一种纳米复合材料的电化学发光传感器的制备方法
Shi et al. Glypican-3 electrochemical aptasensor based on reduced graphene oxide‐chitosan‐ferrocene deposition of platinum–palladium bimetallic nanoparticles
CN106093396A (zh) 一种基于Au‑GQD@PtPd的免疫传感器的制备方法及应用
CN114235907B (zh) 用于非小细胞肺癌cyfra21-1检测的电化学发光免疫传感器及检测方法
Yang et al. Electrogenerated chemiluminescence biosensing for the detection of prostate PC-3 cancer cells incorporating antibody as capture probe and ruthenium complex-labelled wheat germ agglutinin as signal probe
CN104297478A (zh) 一种基于酸中心复合物的免疫传感器的制备方法及应用
CN113720887A (zh) 一种肿瘤细胞快检电化学生物传感器及其制备方法和应用
Dong et al. Zirconium dioxide as electrochemiluminescence emitter for D-dimer determination based on dual-quenching sensing strategy
Wang et al. Detection of two markers for pancreatic cancer (CEA, CA199) based on a nano-silicon sphere-cyclodextrin recognition platform
CN104133059B (zh) 一种合金负载分子筛电化学免疫传感器的制备方法及应用
CN106093390A (zh) 一种PtCu@g‑C3N4/rGO标记的电化学免疫传感器的制备方法及应用
CN111766290B (zh) 一种基于三维碳化钛-二硫化钼复合物生物传感器的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210903