CN109534793A - 含假蓝宝石晶体的低密度石油压裂支撑剂及其制备方法 - Google Patents

含假蓝宝石晶体的低密度石油压裂支撑剂及其制备方法 Download PDF

Info

Publication number
CN109534793A
CN109534793A CN201811631195.4A CN201811631195A CN109534793A CN 109534793 A CN109534793 A CN 109534793A CN 201811631195 A CN201811631195 A CN 201811631195A CN 109534793 A CN109534793 A CN 109534793A
Authority
CN
China
Prior art keywords
sapphirine
mass percentage
fracturing propping
low
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811631195.4A
Other languages
English (en)
Other versions
CN109534793B (zh
Inventor
任强
任宇涵
武秀兰
海鸥
郑金乐
杨恩龙
赵宇靖
尹博杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongchuan Hengsheng Science & Technology Material Co ltd
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201811631195.4A priority Critical patent/CN109534793B/zh
Publication of CN109534793A publication Critical patent/CN109534793A/zh
Application granted granted Critical
Publication of CN109534793B publication Critical patent/CN109534793B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • C04B2235/321Dolomites, i.e. mixed calcium magnesium carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Dental Preparations (AREA)

Abstract

本发明公开了含假蓝宝石晶体的低密度石油压裂支撑剂及其制备方法。该陶粒石油压裂支撑剂含硬度较高、性能优异假蓝宝石晶体结构,且视密度<2.80g·cm‑3,按照重量比,由30~50份的滑石、40~60份的铝矾土、1~5份的粘土和5~15份的复合矿化剂按照一定比例混合,再制成球料,烧结温度为1300~1340℃,保温时间为15~30分钟,产品自然冷却至室温。制作出的成品在30~50目时,52MPa下破碎率<8%。具有抗压强度高、密度低、生产成本低等优点。

Description

含假蓝宝石晶体的低密度石油压裂支撑剂及其制备方法
技术领域
本发明石油支撑剂技术领域,具体涉及一种含假蓝宝石晶体的低密度石油压裂支撑剂及其制备方法。
背景技术
陶粒压裂支撑剂是以铝矾土为主要原料,通过各种加工工艺,烧结制备而成的一种颗粒。其使用过程如下:在高压泵的作用下,陶粒压裂支撑剂与压裂液一起被注入粘附到地层的裂缝岩壁上,在裂缝闭合之前撑开裂缝,汇集成一个高导流通道,使地层油气沿着通道流向地面。
一直以来石油支撑剂通常是采用高铝原料(如高铝矾土)作为主要原料生产。目前,随着铝矾土资源的日益减少,人们已越来越多地开始尝试采用包括粉煤灰、煤矸石等在内的各种固体废弃物。冶炼高碳铬铁合金尾渣是一种用大小不同粒度铬矿混合,在矿热炉1800℃~2000℃的高温熔炼将高碳铬铁合金提取后剩下的固体结晶体,其主要物相是镁铝尖晶石,呈黑色颗粒状。冶炼高碳铬铁合金尾渣中含有有毒的Cr6+离子,它的大量堆放,不仅会危害环境,还会危害人的身体健康。虽然人们在治理冶炼高碳铬铁合金尾渣中提出很多办法,但并没有从根本上解决问题。目前并没有以冶炼高碳铬铁合金尾渣为主要原料制备石油压裂支撑剂,根据冶炼高碳铬铁合金尾渣化学组成特点,配合铝矾土、粘土和复合矿化剂制备石油压裂支撑剂对于降低成本和环境保护具有十分重要的意义。
发明内容
本发明提供了含假蓝宝石晶体的低密度石油压裂支撑剂,其特征在于:按照重量比,由30~50份的滑石、40~60份的铝矾土、1~5份的粘土和5~15份的复合矿化剂烧制而成,所述复合矿化剂为方解石、白云石、铁矿石、钾长石和氧化铬按照重量比为0~20:10~20:20~40:0~15:5~25的比例混合而成,该陶粒石油压裂支撑剂视密度<2.80g·cm-3
滑石由SiO2和MgO组成,SiO2的质量百分含量为60%~65%,MgO的质量百分含量为28~33%,烧失量为3%~7%,以上组分百分比之和为100%。
铝矾土由SiO2和Al2O3组成,SiO2的质量百分含量为8%~10%,Al2O3的质量百分含量为68%~72%,烧失量为12%~14%,以上组分百分比之和为100%。
粘土为一种结合力强的塑性粘土,具体由SiO2和Al2O3组成,SiO2的质量百分含量为40%~45%,Al2O3的质量百分含量为35%~40%,烧失量为12%~14%,以上组分百分比之和为100%。
5.根据权利要求1~4任一项所述的含假蓝宝石晶体的低密度石油压裂支撑剂的制备方法,其具体步骤如下:
步骤1:按照重量比,称取30~50份的滑石、40~60份的铝矾土、1~5份的粘土和5~15份的复合矿化剂,进行混料;
步骤2:将混料后的各组成原料按照比例混合后进行球磨,直至混合料的粒径D50达到3.4μm,粒径分布在1~8μm;
步骤3:将步骤二中球磨后得到的细粉导入成球机中,然后一边喷洒雾化水一边使细粉随成球机旋转,使之逐步团聚成球,最终成为质地密实、表面光滑的球状支撑剂颗粒;
步骤4:步骤3所得的支撑剂颗粒烧制成型得到产品。
步骤4中,烧制成型具体为:将造好的支撑剂颗粒送入窑炉内,在空气气氛中,先以10~12℃/min的升温速率将温度升高到1200℃,而后以1~2℃/min的升温速率将温度升高到1300~1340℃,并保温15~30min,最后自然冷却至常温即制得产品。
步骤1中,复合矿化剂为方解石、白云石、铁矿石、钾长石和氧化铬按照重量比为0~20:10~20:20~40:0~15:5~25的比例混合而成。
与现有技术相比,本发明具有以下有益的技术效果:
本发明提供的含假蓝宝石晶体的低密度石油压裂支撑剂改进了原料、辅料的成分及配比,且适量粘土的加入能有效加强成品的圆球度,提升成品的倒流能力;同时加入复合矿化剂有利于低温烧结,进一步降低生产成本。制作出的成品在30~50目时,52MPa下破碎率<8%,视密度<2.8g·cm-3。具有抗压强度高、密度低、生产成本低等优点。
附图说明
图1图1是假蓝宝石陶粒XRD衍射图。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
含假蓝宝石晶体的低密度石油压裂支撑剂,其特征在于:按照重量比,由30~50份的滑石、40~60份的铝矾土、1~5份的粘土和5~15份的复合矿化剂烧制而成,所述复合矿化剂为方解石、白云石、铁矿石、钾长石和氧化铬按照重量比为0~20:10~20:20~40:0~15:5~25的比例混合而成,该陶粒石油压裂支撑剂视密度<2.80g·cm-3
滑石由SiO2和MgO组成,SiO2的质量百分含量为60%~65%,MgO的质量百分含量为28~33%,烧失量为3%~7%,以上组分百分比之和为100%。
铝矾土由SiO2和Al2O3组成,SiO2的质量百分含量为8%~10%,Al2O3的质量百分含量为68%~72%,烧失量为12%~14%,以上组分百分比之和为100%。
粘土为一种结合力强的塑性粘土,具体由SiO2和Al2O3组成,SiO2的质量百分含量为40%~45%,Al2O3的质量百分含量为35%~40%,烧失量为12%~14%,以上组分百分比之和为100%。
含假蓝宝石晶体的低密度石油压裂支撑剂的制备方法,其具体步骤如下:
步骤1:按照重量比,称取30~50份的滑石、40~60份的铝矾土、1~5份的粘土和5~15份的复合矿化剂,进行混料;
步骤2:将混料后的各组成原料按照比例混合后进行球磨,直至混合料的粒径D50达到3.4μm,粒径分布在1~8μm;
步骤3:将步骤二中球磨后得到的细粉导入成球机中,然后一边喷洒雾化水一边使细粉随成球机旋转,使之逐步团聚成球,最终成为质地密实、表面光滑的球状支撑剂颗粒;
步骤4:步骤3所得的支撑剂颗粒烧制成型得到产品。
步骤4中,烧制成型具体为:将造好的支撑剂颗粒送入窑炉内,在空气气氛中,先以10~12℃/min的升温速率将温度升高到1200℃,而后以1~2℃/min的升温速率将温度升高到1300~1340℃,并保温15~30min,最后自然冷却至常温即制得产品。
步骤1中,复合矿化剂为方解石、白云石、铁矿石、钾长石和氧化铬按照重量比为0~20:10~20:20~40:0~15:5~25的比例混合而成。
在本发明中,以滑石和铝矾土为原料,配合粘土和复合矿化剂,同时对混合料进行球磨处理,从而保证了在陶瓷系统中引入强度和硬度大于莫来石相的假蓝宝石晶体,达到支撑剂的使用性能指标。另外,与粘土配合作用,可有效保证支撑剂半成品(生料球)的强度和表面硬度,有利于防止生料球在输送和干燥过程中产生脱粉、继而导致表面粗糙、圆球度降低。最后,适量比例的复合矿化剂能有效的降低陶粒石油压裂支撑剂的烧结温度,降低生产成本。
实施例1
一种含假蓝宝石晶体的低密度石油压裂支撑剂,该陶粒石油压裂支撑剂含硬度较高、性能优异假蓝宝石晶体结构,且视密度<2.80g·cm-3,按照重量比,由30份的滑石、60份的铝矾土、4份的粘土和6份的复合矿化剂烧制而成,所述复合矿化剂为方解石、白云石、铁矿石、钾长石和氧化铬按照0:10:20:0:5的比例混合而成。
所述滑石中,SiO2的质量百分含量为60%,MgO的质量百分含量为28%,烧失量为3%。
所述铝矾土中,SiO2的质量百分含量为8%,Al2O3的质量百分含量为68%,烧失量为12%。
所述粘土为一种结合力强的塑性粘土,其中,SiO2的质量百分含量为43%,Al2O3的质量百分含量为35%,烧失量为12%。
上述含假蓝宝石晶体的低密度石油压裂支撑剂的制备方法。首先,按照所述的比例选用并称取各组成物料进行混料,将处理后的各组成原料按照比例混合后进行球磨,直至混合料的粒径D50达到3.4μm,粒径分布在1~8μm;将球磨后得到的细粉导入成球机中,然后边喷洒雾化水边使超细粉随成球机旋转,使之逐步团聚成球,最终成为质地密实、表面光滑的球状颗粒,最后烧制成型。烧制成型是指:将造好的支撑剂颗粒送入窑炉内,在空气气氛中,先以12℃/min的升温速率将温度升高到1200℃,而后以2℃/min的升温速率将温度升高到1340℃,并保温30min,最后自然冷却至常温即制得产品。
实施例2
一种含假蓝宝石晶体的低密度石油压裂支撑剂,该陶粒石油压裂支撑剂含硬度较高、性能优异假蓝宝石晶体结构,且视密度<2.80g·cm-3,按照重量比,由40份的滑石、50份的铝矾土、4份的粘土和6份的复合矿化剂烧制而成,所述复合矿化剂为方解石、白云石、铁矿石、钾长石和氧化铬按照2:11:22:2:7的比例混合而成。
所述滑石中,SiO2的质量百分含量为61%,MgO的质量百分含量为29%,烧失量为4%。
所述铝矾土中,SiO2的质量百分含量为9%,Al2O3的质量百分含量为70%,烧失量为13%。
所述粘土为一种结合力强的塑性粘土,其中,SiO2的质量百分含量为40%,Al2O3的质量百分含量为35%,烧失量为14%。
上述含假蓝宝石晶体的低密度石油压裂支撑剂的制备方法。首先,按照所述的比例选用并称取各组成物料进行混料,将处理后的各组成原料按照比例混合后进行球磨,直至混合料的粒径D50达到3.4μm,粒径分布在1~8μm;将球磨后得到的细粉导入成球机中,然后边喷洒雾化水边使超细粉随成球机旋转,使之逐步团聚成球,最终成为质地密实、表面光滑的球状颗粒,最后烧制成型。烧制成型是指:将造好的支撑剂颗粒送入窑炉内,在空气气氛中,先以12℃/min的升温速率将温度升高到1200℃,而后以2℃/min的升温速率将温度升高到1340℃,并保温30min,最后自然冷却至常温即制得产品。
实施例3
一种含假蓝宝石晶体的低密度石油压裂支撑剂,该陶粒石油压裂支撑剂含硬度较高、性能优异假蓝宝石晶体结构,且视密度<2.80g·cm-3,按照重量比,由50份的滑石、40份的铝矾土、4份的粘土和6份的复合矿化剂烧制而成,所述复合矿化剂为方解石、白云石、铁矿石、钾长石和氧化铬按照5:15:30:7:15的比例混合而成。
所述滑石中,SiO2的质量百分含量为64%,MgO的质量百分含量为29%,烧失量为6%。
所述铝矾土中,SiO2的质量百分含量为10%,Al2O3的质量百分含量为70%,烧失量为13%。
所述粘土为一种结合力强的塑性粘土,其中,SiO2的质量百分含量为43%,Al2O3的质量百分含量为37%,烧失量为13%。
上述含假蓝宝石晶体的低密度石油压裂支撑剂的制备方法。首先,按照所述的比例选用并称取各组成物料进行混料,将处理后的各组成原料按照比例混合后进行球磨,直至混合料的粒径D50达到3.4μm,粒径分布在1~8μm;将球磨后得到的细粉导入成球机中,然后边喷洒雾化水边使超细粉随成球机旋转,使之逐步团聚成球,最终成为质地密实、表面光滑的球状颗粒,最后烧制成型。烧制成型是指:将造好的支撑剂颗粒送入窑炉内,在空气气氛中,先以12℃/min的升温速率将温度升高到1200℃,而后以2℃/min的升温速率将温度升高到1340℃,并保温30min,最后自然冷却至常温即制得产品。
实施例4
一种含假蓝宝石晶体的低密度石油压裂支撑剂,该陶粒石油压裂支撑剂含硬度较高、性能优异假蓝宝石晶体结构,且视密度<2.80g·cm-3,按照重量比,由49份的滑石、40份的铝矾土、4份的粘土和7份的复合矿化剂烧制而成,所述复合矿化剂为方解石、白云石、铁矿石、钾长石和氧化铬按照15:13:28:14:21的比例混合而成。
所述滑石中,SiO2的质量百分含量为65%,MgO的质量百分含量为30%,烧失量为6%。
所述铝矾土中,SiO2的质量百分含量为9%,Al2O3的质量百分含量为69%,烧失量为13%。
所述粘土为一种结合力强的塑性粘土,其中,SiO2的质量百分含量为43%,Al2O3的质量百分含量为37%,烧失量为12%。
上述含假蓝宝石晶体的低密度石油压裂支撑剂的制备方法。首先,按照所述的比例选用并称取各组成物料进行混料,将处理后的各组成原料按照比例混合后进行球磨,直至混合料的粒径D50达到3.4μm,粒径分布在1~8μm;将球磨后得到的细粉导入成球机中,然后边喷洒雾化水边使超细粉随成球机旋转,使之逐步团聚成球,最终成为质地密实、表面光滑的球状颗粒,最后烧制成型。烧制成型是指:将造好的支撑剂颗粒送入窑炉内,在空气气氛中,先以12℃/min的升温速率将温度升高到1200℃,而后以2℃/min的升温速率将温度升高到1340℃,并保温30min,最后自然冷却至常温即制得产品。
实施例5
一种含假蓝宝石晶体的低密度石油压裂支撑剂,该陶粒石油压裂支撑剂含硬度较高、性能优异假蓝宝石晶体结构,且视密度<2.80g·cm-3,按照重量比,由49份的滑石、40份的铝矾土、4份的粘土和7份的复合矿化剂烧制而成,所述复合矿化剂为方解石、白云石、铁矿石、钾长石和氧化铬按照18:20:35:11:7的比例混合而成。
所述滑石中,SiO2的质量百分含量为63%,MgO的质量百分含量为33%,烧失量为5%。
所述铝矾土中,SiO2的质量百分含量为10%,Al2O3的质量百分含量为71%,烧失量为13%。
所述粘土为一种结合力强的塑性粘土,其中,SiO2的质量百分含量为40%,Al2O3的质量百分含量为38%,烧失量为13%。
上述含假蓝宝石晶体的低密度石油压裂支撑剂的制备方法。首先,按照所述的比例选用并称取各组成物料进行混料,将处理后的各组成原料按照比例混合后进行球磨,直至混合料的粒径D50达到3.4μm,粒径分布在1~8μm;将球磨后得到的细粉导入成球机中,然后边喷洒雾化水边使超细粉随成球机旋转,使之逐步团聚成球,最终成为质地密实、表面光滑的球状颗粒,最后烧制成型。烧制成型是指:将造好的支撑剂颗粒送入窑炉内,在空气气氛中,先以12℃/min的升温速率将温度升高到1200℃,而后以2℃/min的升温速率将温度升高到1320℃,并保温30min,最后自然冷却至常温即制得产品。
实施例6
一种含假蓝宝石晶体的低密度石油压裂支撑剂,该陶粒石油压裂支撑剂含硬度较高、性能优异假蓝宝石晶体结构,且视密度<2.80g·cm-3,按照重量比,由49份的滑石、40份的铝矾土、4份的粘土和7份的复合矿化剂烧制而成,所述复合矿化剂为方解石、白云石、铁矿石、钾长石和氧化铬按照11:19:31:14:23的比例混合而成。
所述滑石中,SiO2的质量百分含量为65%,MgO的质量百分含量为27%,烧失量为5%。
所述铝矾土中,SiO2的质量百分含量为8%,Al2O3的质量百分含量为69%,烧失量为14%。
所述粘土为一种结合力强的塑性粘土,其中,SiO2的质量百分含量为42%,Al2O3的质量百分含量为39%,烧失量为12%。
上述含假蓝宝石晶体的低密度石油压裂支撑剂的制备方法。首先,按照所述的比例选用并称取各组成物料进行混料,将处理后的各组成原料按照比例混合后进行球磨,直至混合料的粒径D50达到3.4μm,粒径分布在1~8μm;将球磨后得到的细粉导入成球机中,然后边喷洒雾化水边使超细粉随成球机旋转,使之逐步团聚成球,最终成为质地密实、表面光滑的球状颗粒,最后烧制成型。烧制成型是指:将造好的支撑剂颗粒送入窑炉内,在空气气氛中,先以12℃/min的升温速率将温度升高到1200℃,而后以2℃/min的升温速率将温度升高到1300℃,并保温30min,最后自然冷却至常温即制得产品。
实施例7
一种含假蓝宝石晶体的低密度石油压裂支撑剂,该陶粒石油压裂支撑剂含硬度较高、性能优异假蓝宝石晶体结构,且视密度<2.80g·cm-3,按照重量比,由49份的滑石、40份的铝矾土、4份的粘土和7份的复合矿化剂烧制而成,所述复合矿化剂为方解石、白云石、铁矿石、钾长石和氧化铬按照7:17:31:8:13的比例混合而成。
所述滑石中,SiO2的质量百分含量为64%,MgO的质量百分含量为28%,烧失量为4%。
所述铝矾土中,SiO2的质量百分含量为8%,Al2O3的质量百分含量为69%,烧失量为12%。
所述粘土为一种结合力强的塑性粘土,其中,SiO2的质量百分含量为43%,Al2O3的质量百分含量为39%,烧失量为13%。
上述含假蓝宝石晶体的低密度石油压裂支撑剂的制备方法。首先,按照所述的比例选用并称取各组成物料进行混料,将处理后的各组成原料按照比例混合后进行球磨,直至混合料的粒径D50达到3.4μm,粒径分布在1~8μm;将球磨后得到的细粉导入成球机中,然后边喷洒雾化水边使超细粉随成球机旋转,使之逐步团聚成球,最终成为质地密实、表面光滑的球状颗粒,最后烧制成型。烧制成型是指:将造好的支撑剂颗粒送入窑炉内,在空气气氛中,先以12℃/min的升温速率将温度升高到1200℃,而后以2℃/min的升温速率将温度升高到1340℃,并保温15min,最后自然冷却至常温即制得产品。
实施例8
一种含假蓝宝石晶体的低密度石油压裂支撑剂,该陶粒石油压裂支撑剂含硬度较高、性能优异假蓝宝石晶体结构,且视密度<2.80g·cm-3,按照重量比,由49份的滑石、40份的铝矾土、4份的粘土和7份的复合矿化剂烧制而成,所述复合矿化剂为方解石、白云石、铁矿石、钾长石和氧化铬按照13:16:33:12:7)的比例混合而成。
所述滑石中,SiO2的质量百分含量为64%,MgO的质量百分含量为28%,烧失量为5%。
所述铝矾土中,SiO2的质量百分含量为8%,Al2O3的质量百分含量为70%,烧失量为14%。
所述粘土为一种结合力强的塑性粘土,其中,SiO2的质量百分含量为44%,Al2O3的质量百分含量为38%,烧失量为14%。
上述含假蓝宝石晶体的低密度石油压裂支撑剂的制备方法。首先,按照所述的比例选用并称取各组成物料进行混料,将处理后的各组成原料按照比例混合后进行球磨,直至混合料的粒径D50达到3.4μm,粒径分布在1~8μm;将球磨后得到的细粉导入成球机中,然后边喷洒雾化水边使超细粉随成球机旋转,使之逐步团聚成球,最终成为质地密实、表面光滑的球状颗粒,最后烧制成型。烧制成型是指:将造好的支撑剂颗粒送入窑炉内,在空气气氛中,先以12℃/min的升温速率将温度升高到1200℃,而后以1℃/min的升温速率将温度升高到1340℃,并保温30min,最后自然冷却至常温即制得产品。
实施例9
一种含假蓝宝石晶体的低密度石油压裂支撑剂,该陶粒石油压裂支撑剂含硬度较高、性能优异假蓝宝石晶体结构,且视密度<2.80g·cm-3,按照重量比,由49份的滑石、40份的铝矾土、4份的粘土和7份的复合矿化剂烧制而成,所述复合矿化剂为方解石、白云石、铁矿石、钾长石和氧化铬按照3:15:30:11:14)的比例混合而成。
所述滑石中,SiO2的质量百分含量为64%,MgO的质量百分含量为29%,烧失量为5%。
所述铝矾土中,SiO2的质量百分含量为8%~10%,Al2O3的质量百分含量为68%,烧失量为13%。
所述粘土为一种结合力强的塑性粘土,其中,SiO2的质量百分含量为41%,Al2O3的质量百分含量为36%,烧失量为14%。
上述含假蓝宝石晶体的低密度石油压裂支撑剂的制备方法。首先,按照所述的比例选用并称取各组成物料进行混料,将处理后的各组成原料按照比例混合后进行球磨,直至混合料的粒径D50达到3.4μm,粒径分布在1~8μm;将球磨后得到的细粉导入成球机中,然后边喷洒雾化水边使超细粉随成球机旋转,使之逐步团聚成球,最终成为质地密实、表面光滑的球状颗粒,最后烧制成型。烧制成型是指:将造好的支撑剂颗粒送入窑炉内,在空气气氛中,先以10℃/min的升温速率将温度升高到1200℃,而后以2℃/min的升温速率将温度升高到1340℃,并保温30min,最后自然冷却至常温即制得产品。
本发明提供的含假蓝宝石晶体的低密度石油压裂支撑剂改进了原料、辅料的成分及配比,且适量粘土的加入能有效加强成品的圆球度,提升成品的倒流能力;同时加入复合矿化剂有利于低温烧结,进一步降低生产成本。制作出的成品在30~50目时,52MPa下破碎率<8%,视密度<2.8g·cm-3。具有抗压强度高、密度低、生产成本低等优点。

Claims (7)

1.含假蓝宝石晶体的低密度石油压裂支撑剂,其特征在于:按照重量比,由30~50份的滑石、40~60份的铝矾土、1~5份的粘土和5~15份的复合矿化剂烧制而成,所述复合矿化剂为方解石、白云石、铁矿石、钾长石和氧化铬按照重量比为0~20:10~20:20~40:0~15:5~25的比例混合而成,该陶粒石油压裂支撑剂视密度<2.80g·cm-3
2.根据权利要求1所述的含假蓝宝石晶体的低密度石油压裂支撑剂,其特征在于:所述滑石由SiO2和MgO组成,SiO2的质量百分含量为60%~65%,MgO的质量百分含量为28~33%,烧失量为3%~7%,以上组分百分比之和为100%。
3.根据权利要求1所述的含假蓝宝石晶体的低密度石油压裂支撑剂,其特征在于:所述铝矾土由SiO2和Al2O3组成,SiO2的质量百分含量为8%~10%,Al2O3的质量百分含量为68%~72%,烧失量为12%~14%,以上组分百分比之和为100%。
4.根据权利要求1所述的含假蓝宝石晶体的低密度石油压裂支撑剂,其特征在于:所述粘土为一种结合力强的塑性粘土,具体由SiO2和Al2O3组成,SiO2的质量百分含量为40%~45%,Al2O3的质量百分含量为35%~40%,烧失量为12%~14%,以上组分百分比之和为100%。
5.根据权利要求1~4任一项所述的含假蓝宝石晶体的低密度石油压裂支撑剂的制备方法,其具体步骤如下:
步骤1:按照重量比,称取30~50份的滑石、40~60份的铝矾土、1~5份的粘土和5~15份的复合矿化剂,进行混料;
步骤2:将混料后的各组成原料按照比例混合后进行球磨,直至混合料的粒径D50达到3.4μm,粒径分布在1~8μm;
步骤3:将步骤2中球磨后得到的细粉导入成球机中,然后一边喷洒雾化水一边使细粉随成球机旋转,使之逐步团聚成球,最终成为质地密实、表面光滑的球状支撑剂颗粒;
步骤4:将步骤3所得的支撑剂颗粒烧制成型得到产品。
6.根据权利要求5所述的含假蓝宝石晶体的低密度石油压裂支撑剂的制备方法,其特征在于:所述步骤4中,烧制成型具体为:将造好的支撑剂颗粒送入窑炉内,在空气气氛中,先以10~12℃/min的升温速率将温度升高到1200℃,而后以1~2℃/min的升温速率将温度升高到1300~1340℃,并保温15~30min,最后自然冷却至常温即制得产品。
7.根据权利要求5所述的含假蓝宝石晶体的低密度石油压裂支撑剂的制备方法,其特征在于:所述步骤1中,复合矿化剂为方解石、白云石、铁矿石、钾长石和氧化铬按照重量比为0~20:10~20:20~40:0~15:5~25的比例混合而成。
CN201811631195.4A 2018-12-29 2018-12-29 含假蓝宝石晶体的低密度石油压裂支撑剂及其制备方法 Active CN109534793B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811631195.4A CN109534793B (zh) 2018-12-29 2018-12-29 含假蓝宝石晶体的低密度石油压裂支撑剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811631195.4A CN109534793B (zh) 2018-12-29 2018-12-29 含假蓝宝石晶体的低密度石油压裂支撑剂及其制备方法

Publications (2)

Publication Number Publication Date
CN109534793A true CN109534793A (zh) 2019-03-29
CN109534793B CN109534793B (zh) 2021-07-13

Family

ID=65831167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811631195.4A Active CN109534793B (zh) 2018-12-29 2018-12-29 含假蓝宝石晶体的低密度石油压裂支撑剂及其制备方法

Country Status (1)

Country Link
CN (1) CN109534793B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875346A (zh) * 2020-08-12 2020-11-03 贵州宝鑫实业有限公司 一种生物陶粒及其制备方法
RU2739180C1 (ru) * 2019-06-20 2020-12-21 Общество с ограниченной ответственностью "Платинус" Способ получения магнийсиликатного проппанта и проппант
CN116536039A (zh) * 2023-05-06 2023-08-04 郑州德赛尔陶粒有限公司 一种轻质耐酸的高强度压裂支撑剂及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0112350A1 (de) * 1982-06-19 1984-07-04 Battelle Institut E V Verfahren zur herstellung eines bohrlochstützmittels.
CN1608732A (zh) * 2004-08-31 2005-04-27 王永福 一种网孔支撑剂
CN101560382A (zh) * 2009-06-05 2009-10-21 清镇庄子铝铁矿山 一种高强度陶粒支撑剂及其制备方法
CN101717628A (zh) * 2009-11-20 2010-06-02 渑池县方圆实业有限责任公司 低密度陶粒支撑剂及其制备方法
CN101824315A (zh) * 2010-05-11 2010-09-08 宜兴东方石油支撑剂有限公司 一种超低密度支撑剂及其制备方法
CN102092950A (zh) * 2010-12-16 2011-06-15 沈阳化工大学 一种以滑石和膨润土为原料制备微晶玻璃的方法
CN102732245A (zh) * 2012-07-10 2012-10-17 中国石油天然气股份有限公司 一种低密度陶粒支撑剂及其制备方法
CN102942916A (zh) * 2012-11-13 2013-02-27 垣曲县刚玉陶粒有限责任公司 一种超低密度陶粒支撑剂及其制备方法
US20150068745A1 (en) * 2011-01-07 2015-03-12 Frank O'Brien Ceramic proppants
CN105733551A (zh) * 2016-01-29 2016-07-06 红安县生伦冶金矿产科技实业有限公司 一种环保节能型石油压裂支撑剂的制备方法
WO2017197161A1 (en) * 2016-05-13 2017-11-16 Saint-Gobain Ceramics & Plastics, Inc. Proppant materials for additive delivery
CN108603102A (zh) * 2016-02-19 2018-09-28 尼卡石油科技有限公司 陶粒支撑剂及其制造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0112350A1 (de) * 1982-06-19 1984-07-04 Battelle Institut E V Verfahren zur herstellung eines bohrlochstützmittels.
CN1608732A (zh) * 2004-08-31 2005-04-27 王永福 一种网孔支撑剂
CN101560382A (zh) * 2009-06-05 2009-10-21 清镇庄子铝铁矿山 一种高强度陶粒支撑剂及其制备方法
CN101717628A (zh) * 2009-11-20 2010-06-02 渑池县方圆实业有限责任公司 低密度陶粒支撑剂及其制备方法
CN101824315A (zh) * 2010-05-11 2010-09-08 宜兴东方石油支撑剂有限公司 一种超低密度支撑剂及其制备方法
CN102092950A (zh) * 2010-12-16 2011-06-15 沈阳化工大学 一种以滑石和膨润土为原料制备微晶玻璃的方法
US20150068745A1 (en) * 2011-01-07 2015-03-12 Frank O'Brien Ceramic proppants
CN102732245A (zh) * 2012-07-10 2012-10-17 中国石油天然气股份有限公司 一种低密度陶粒支撑剂及其制备方法
CN102942916A (zh) * 2012-11-13 2013-02-27 垣曲县刚玉陶粒有限责任公司 一种超低密度陶粒支撑剂及其制备方法
CN105733551A (zh) * 2016-01-29 2016-07-06 红安县生伦冶金矿产科技实业有限公司 一种环保节能型石油压裂支撑剂的制备方法
CN108603102A (zh) * 2016-02-19 2018-09-28 尼卡石油科技有限公司 陶粒支撑剂及其制造方法
WO2017197161A1 (en) * 2016-05-13 2017-11-16 Saint-Gobain Ceramics & Plastics, Inc. Proppant materials for additive delivery

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIULAN WU 等: "Preparation and characterization of ceramic proppants with low", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
Y ZHOU等: "Optimization Method of a Low Cost, High Performance", 《INTERNATIONAL CONFERENCE ON MATERIALS SCIENCES AND NANOMATERIALS》 *
崔冰峡 等: "陶粒压裂支撑剂研究进展", 《硅酸盐通报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2739180C1 (ru) * 2019-06-20 2020-12-21 Общество с ограниченной ответственностью "Платинус" Способ получения магнийсиликатного проппанта и проппант
CN111875346A (zh) * 2020-08-12 2020-11-03 贵州宝鑫实业有限公司 一种生物陶粒及其制备方法
CN116536039A (zh) * 2023-05-06 2023-08-04 郑州德赛尔陶粒有限公司 一种轻质耐酸的高强度压裂支撑剂及其制备方法

Also Published As

Publication number Publication date
CN109534793B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN109534793A (zh) 含假蓝宝石晶体的低密度石油压裂支撑剂及其制备方法
CN110467470A (zh) 一种利用电镀污泥烧结建筑陶粒的制备方法
CN104446041B (zh) 一种铜冶炼二次渣生产矿渣微粉的方法
CN103602804B (zh) 一种高性能的球团矿粘结剂
CN106883838A (zh) 一种超低密度高强度的玻化瓷球支撑剂及其制备方法
CN103045854B (zh) 用于铬铁合金冶炼生产的铬粉矿的预处理方法
CN104926131A (zh) 一种钒钛磁铁矿尾矿微晶玻璃及其制备方法
CN105906318A (zh) 利用煤矸石制备低密度陶粒支撑剂及其制备方法
CN101831286A (zh) 低密度高强度陶粒支撑剂及其生产方法
CN103288425A (zh) 一种利用废矿渣制备页岩气专用压裂支撑剂的方法
CN103288426A (zh) 一种利用工业废料制备页岩气专用压裂支撑剂的方法
CN102329119B (zh) 一种高性能混凝土掺合料及其制备方法
CN111116070A (zh) 一种利用铁尾矿制备的免烧骨料及其制备方法
CN107057705B (zh) 一种重金属污染土壤修复材料、制备方法和用途
CN105331354A (zh) 一种用钢渣生产的压裂陶粒支撑剂及制备方法
CN110066126A (zh) 建筑材料用铁尾矿陶粒及其制备方法
CN110950644A (zh) 一种钢渣烧结砖及其制备方法
CN109652055A (zh) 含假蓝宝石晶体的复相陶粒石油压裂支撑剂及其制备方法
CN114292081B (zh) 一种无水泥低碳混凝土及其制备方法
CN113800941B (zh) 一种利用铬污染土壤制备陶粒的方法及陶粒
CN107382107B (zh) 一种利用镁渣、锰渣制备硫铝酸盐水泥熟料的方法
CN106587675B (zh) 一种高活性镍渣基水泥混合材及其制备方法
CN111620673A (zh) 一种高强度低密度陶粒支撑剂及其制备方法
CN108358481A (zh) 一种风化细砂岩基水泥及其制备方法
CN113955958B (zh) 一种环保型高强度水泥及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240430

Address after: 727000 Dongjiahe Circular Economy Industrial Park, Yaozhou District, Tongchuan City, Shaanxi Province

Patentee after: TONGCHUAN HENGSHENG SCIENCE & TECHNOLOGY MATERIAL CO.,LTD.

Country or region after: China

Address before: 710021 Shaanxi city of Xi'an province Weiyang University Park

Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY

Country or region before: China