CN109534404B - 表面改性氧化钨纳米材料的制备方法及其产品和应用 - Google Patents

表面改性氧化钨纳米材料的制备方法及其产品和应用 Download PDF

Info

Publication number
CN109534404B
CN109534404B CN201811525822.6A CN201811525822A CN109534404B CN 109534404 B CN109534404 B CN 109534404B CN 201811525822 A CN201811525822 A CN 201811525822A CN 109534404 B CN109534404 B CN 109534404B
Authority
CN
China
Prior art keywords
tungsten oxide
nano
sno
heterojunction
modified tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811525822.6A
Other languages
English (en)
Other versions
CN109534404A (zh
Inventor
何丹农
尹桂林
葛美英
卢静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Original Assignee
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai National Engineering Research Center for Nanotechnology Co Ltd filed Critical Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority to CN201811525822.6A priority Critical patent/CN109534404B/zh
Publication of CN109534404A publication Critical patent/CN109534404A/zh
Application granted granted Critical
Publication of CN109534404B publication Critical patent/CN109534404B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0047Organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Composite Materials (AREA)
  • Food Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明提供一种表面改性氧化钨纳米材料的制备方法,所述方法包括:在纳米氧化钨表面,利用原子层沉积修饰一层SnO纳米层,形成异质结结构,能够有效提升WO3纳米材料的气体传感性能,所用的前驱源分别为N,N'‑二甲基乙二胺亚锡和水,沉积温度为150℃,沉积厚度为2‑10nm。该材料利用原子层沉积在WO3纳米颗粒表面沉积SnO层,形成WO3/SnO异质结,大幅提升了其对甲醛的气敏性能。

Description

表面改性氧化钨纳米材料的制备方法及其产品和应用
技术领域
本发明属于材料化学技术领域,涉及一种表面改性氧化钨纳米材料的制备方法及其产品和应用氧。钨异质结结构纳米材料的制备方法,该材料利用原子层沉积在WO3纳米颗粒表面沉积SnO层,形成WO3/SnO异质结,大幅提升了其对甲醛的气敏性能。
背景技术
在半导体气敏材料研究领域,氧化钨(WO3)因其易于调控,选择性强、稳定性好、灵敏度高等优点,长期成为研究热点。WO3纳米气敏材料的气敏机理可以用耗尽层模型进行解释。WO3表面的氧空穴可以成为导带的电子授体,从而使该材料成为n型半导体。在实际应用中,通过形成异质结可以提高其气敏性能。当两种不同的半导体材料接触以后,由于费米能级不同,界面处的费米能级会产生相对移动直至平衡,电荷转移通常会在界面处形成电荷耗尽层、势垒,而这种独特的特性会提高传感器的气敏响应。
发明内容
针对现有技术的不足,本发明目的在于提供一种表面改性氧化钨纳米材料的制备方法。
本发明的再一目的在于:提供一种上述方法制备的表面改性氧化钨纳米材料产品。
本发明的又一目的在于:提供一种上述产品的应用。
本发明目的通过下述方案实现:一种表面改性氧化钨纳米材料的制备方法,其特征在于利用原子层沉积技术在纳米WO3颗粒表面沉积SnO纳米层,形成异质结结构。
所述的利用原子层沉积技术在纳米WO3颗粒表面沉积SnO纳米层,所用的前驱源分别为N,N'-二甲基乙二胺亚锡和水,沉积温度为150℃,沉积厚度为2-10nm。
本发明提供一种表面改性氧化钨纳米材料,根据上述所述方法制备得到。
本发明提供一种表面改性氧化钨纳米材料在甲醛气体检测中的应用。
本发明提供一种简单的WO3异质结的方法,可大幅提高WO3纳米材料的气敏性能,且制备工艺简单,重复性、均匀性好,具有较为广泛的应用价值。该材料利用原子层沉积在WO3纳米颗粒表面沉积SnO层,形成WO3/SnO异质结,大幅提升了其对甲醛的气敏性能,大幅度降低了响应温度,提升了灵敏度。
附图说明
图1为实施例1所制备的WO3异质结纳米颗粒的气敏性能图。
具体实施方式
实施例1
(1)利用N,N'-二甲基乙二胺亚锡和水作为前驱源,在150℃条件下,利用原子层沉积技术在纳米WO3颗粒表面沉积SnO纳米层,沉积厚度为2nm。
实施例2
(1)利用N,N'-二甲基乙二胺亚锡和水作为前驱源,在150℃条件下,利用原子层沉积技术在纳米WO3颗粒表面沉积SnO纳米层,沉积厚度为5nm。
实施例3
(1)利用N,N'-二甲基乙二胺亚锡和水作为前驱源,在150℃条件下,利用原子层沉积技术在纳米WO3颗粒表面沉积SnO纳米层,沉积厚度为10nm。
本上述实施例1-3制得的粉体分散涂于六脚陶瓷管气敏测试元件上,测试对不同浓度为甲醛的响应,工作温度为160 ℃。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其它实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。

Claims (3)

1.一种表面改性氧化钨纳米材料的制备方法,其特征在于利用原子层沉积技术在纳米WO3颗粒表面沉积SnO纳米层,形成异质结结构;
所用的前驱源分别为N,N'-二甲基乙二胺亚锡和水,沉积温度为150℃,沉积厚度为2-10nm。
2.一种表面改性氧化钨纳米材料,其特征在于根据权利要求1所述方法制备得到。
3.一种根据权利要求2所述表面改性氧化钨纳米材料在甲醛气体检测中的应用。
CN201811525822.6A 2018-12-13 2018-12-13 表面改性氧化钨纳米材料的制备方法及其产品和应用 Active CN109534404B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811525822.6A CN109534404B (zh) 2018-12-13 2018-12-13 表面改性氧化钨纳米材料的制备方法及其产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811525822.6A CN109534404B (zh) 2018-12-13 2018-12-13 表面改性氧化钨纳米材料的制备方法及其产品和应用

Publications (2)

Publication Number Publication Date
CN109534404A CN109534404A (zh) 2019-03-29
CN109534404B true CN109534404B (zh) 2021-05-04

Family

ID=65854908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811525822.6A Active CN109534404B (zh) 2018-12-13 2018-12-13 表面改性氧化钨纳米材料的制备方法及其产品和应用

Country Status (1)

Country Link
CN (1) CN109534404B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038548A (zh) * 2019-05-10 2019-07-23 上海纳米技术及应用国家工程研究中心有限公司 一种n-p-n型三明治异质结纳米材料的制备方法及其产品和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294928A (zh) * 2008-06-13 2008-10-29 北京化工大学 MoO3-SnO2基掺杂的纳米复合金属氧化物及其制备方法
CN101415860A (zh) * 2006-03-29 2009-04-22 伊斯曼柯达公司 原子层沉积方法
CN108400300A (zh) * 2018-02-11 2018-08-14 长沙理工大学 一种二氧化钛/氮掺杂碳包覆SnO2复合电极材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5379147B2 (ja) * 2007-10-31 2013-12-25 本田技研工業株式会社 層状構造の燃料電池触媒及び集電体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415860A (zh) * 2006-03-29 2009-04-22 伊斯曼柯达公司 原子层沉积方法
CN101294928A (zh) * 2008-06-13 2008-10-29 北京化工大学 MoO3-SnO2基掺杂的纳米复合金属氧化物及其制备方法
CN108400300A (zh) * 2018-02-11 2018-08-14 长沙理工大学 一种二氧化钛/氮掺杂碳包覆SnO2复合电极材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Selective SnOx Atomic Layer Deposition Driven by Oxygen Reactants;Jung-Hoon Lee等;《ACS Appl. Mater. Interfaces》;20180910;第10卷;第33335-33342页 *
The effect of relative humidity on the NO2 sensitivity of a SnO2/WO3 heterojunction gas sensor;Z. Ling等;《Sensors and Actuators B》;20040724;第102卷;第102-106页 *
TiO2 nanoparticles-functionalized two-dimensional WO3 for high performance supercapacitors developed by facile two-step ALD process;Zhenyin Hai等;《Materials Today Communications》;20171231;第12卷;第55-62页 *

Also Published As

Publication number Publication date
CN109534404A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
Li et al. Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine
Huang et al. Enhanced gas-sensing performance of ZnO@ In2O3 core@ shell nanofibers prepared by coaxial electrospinning
Liu et al. Enhanced triethylamine sensing properties by designing an α-Fe2O3/α-MoO3 nanostructure directly grown on ceramic tubes
Park et al. Hydrogen sensing properties of multiple networked Nb2O5/ZnO core–shell nanorod sensors
Abdullah et al. A review on zinc oxide nanostructures: Doping and gas sensing
Yan et al. Au nanoparticles modified MoO3 nanosheets with their enhanced properties for gas sensing
CN109534404B (zh) 表面改性氧化钨纳米材料的制备方法及其产品和应用
CN104155414A (zh) 一种制造聚合物复合气体敏感薄膜的方法
CN113834863A (zh) 一种基于三维Ti3C2Tx/rGO复合褶皱球的室温高选择性NO2传感器及制备方法
CN110589875A (zh) 基于单层有序氧化锡纳米碗支化氧化锌纳米线结构的气敏纳米材料、制备工艺及其应用
Du et al. Hydrogen gas sensing properties of Pd/aC: Pd/SiO2/Si structure at room temperature
Chen et al. Good triethylamine sensing properties of Au@ MoS2 nanostructures directly grown on ceramic tubes
CN113511682A (zh) 掺杂wo3纳米线及其制备方法和气敏传感器
Bai et al. Formaldehyde sensor based on Ni-doped tetrapod-shaped ZnO nanopowder induced by external magnetic field
Ni et al. Enhanced acetone sensing performance of the ZnFe 2 O 4/SnO 2 nanocomposite
Jiao et al. Fabrication of new C/ZnO/ZnO composite material and their enhanced gas sensing properties
CN108931559B (zh) 一种硼掺杂石墨烯修饰Au@ZnO核壳异质结型三乙胺气敏传感器及其制备方法
Wu et al. Sub-ppm level ethanol detection based on the gas sensor of g-C3N4-ZnO-Zn2SnO4 nanocomposite
Shringi et al. Ag catalysts boosted NO2 gas sensing performance of RF sputtered α-Fe2O3 films
CN107884446B (zh) 一种基于多元金属氧化物敏感材料的乙醇气体传感器
Liu et al. Fabrication of C-doped WO 3 nanoparticle cluster arrays from PS-b-P4VP for room temperature H 2 sensing
CN101334413A (zh) 一种具有酒精气体敏感效应的碳薄膜/硅异质结材料及其制备方法
Wang et al. 2D SnSe2 micro-flower decorated with 0D In2O3 nanoparticles for low-temperature low-concentration TEA detection
CN114956196B (zh) 一种丙酮传感材料及其快速制备方法
CN110038548A (zh) 一种n-p-n型三明治异质结纳米材料的制备方法及其产品和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant