CN109523165A - 一种基于有限信息的电压暂降状态估计方法 - Google Patents

一种基于有限信息的电压暂降状态估计方法 Download PDF

Info

Publication number
CN109523165A
CN109523165A CN201811372703.1A CN201811372703A CN109523165A CN 109523165 A CN109523165 A CN 109523165A CN 201811372703 A CN201811372703 A CN 201811372703A CN 109523165 A CN109523165 A CN 109523165A
Authority
CN
China
Prior art keywords
voltage
node
sequence
phase
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811372703.1A
Other languages
English (en)
Other versions
CN109523165B (zh
Inventor
顾伟
张苏涵
邱海峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Liyang Research Institute of Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201811372703.1A priority Critical patent/CN109523165B/zh
Publication of CN109523165A publication Critical patent/CN109523165A/zh
Application granted granted Critical
Publication of CN109523165B publication Critical patent/CN109523165B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Abstract

本发明公开了一种基于有限信息的电压暂降状态估计方法,包括采集电网中任意节点的电压暂降监测数据与电网结构参数,将接地点视为虚拟节点,形成阻抗矩阵;结合阻抗矩阵,根据不同故障类型下故障序分量的边界条件,以监测点序电压表示其余节点的序电压,利用相序变换得到其余节点的暂降相电压方程;分析残压方程中的各序阻抗关系,利用不同故障类型下故障相序电压的变换关系,简化故障残压方程;基于任意点的电压暂降监测信息,推导各故障类型下的残压方程通式,从而得到全网的电压暂降状态分布。该方法根据实际监测信息分析的全网的电压暂降状态分布,计算简单且改善了传统的电压暂降状态估计方法的保守性,更符合工程实际。

Description

一种基于有限信息的电压暂降状态估计方法
技术领域
本发明属于电能质量监控与分析技术领域,具体来说,涉及一种基于有限信息的电压暂降状态估计方法。
背景技术
随着工业技术的发展,各类电能质量敏感型电力电子设备,如可调速驱动设备、可编程逻辑控制器以及个人计算机等在工业上得到了广泛使用,使得大量用户对电力系统的供电可靠性与电能质量提出了更高的要求。由于发生频次高、导致的经济损失大,电压暂降已经上升为电能质量中最受关注的问题之一,是现代工业负荷正常安全工作的主要干扰。因此对配电网中的电压暂降特性进行预测、评估具有十分重要的现实意义。
现有的电压暂降评估方法主要包括随机预估法和实时监测法。实时监测法通过在线监测电网中的电压暂降数据展开分析,但若要实现对复杂电网中的电压暂降准确评估,则往往需要较长的监测周期与大量的监测装置,经济成本高。随机预估法通过建立随机模型,对暂降特征进行随机预估。但由于随机模型的建立多依赖于系统参数与节点故障前电压,其时变特性使得该方法对于电网中电压暂降的评估偏保守。
我国对于电压暂降的研究起步较晚,对复杂电网中的电压暂降监测周期较短,缺乏长期的、可靠的电压暂降监测数据,严重影响了针对电压暂降问题的深入研究。因此,针对实时监测法和随机预估法的不足,利用有限的监测节点的监测信息,通过对复杂电网进行建模,实现对全网的电压暂降状态估计,从而为电压暂降的预防和治理提供理论指导,在工程应用中具有较大的实际意义。
发明内容
本发明所要解决的技术问题是:提供一种基于有限信息的电压暂降状态估计方法,该方法能够基于有限的监测信息对配电网的全网电压暂降状态进行估计,适用于工程实际,为工程人员精确计算电网的电压暂降水平和展开电压暂降治理措施提供有效帮助。
为解决上述技术问题,本发明实施例采用一种基于有限信息的电压暂降状态估计方法,该方法包括以下步骤:
步骤10)采集电网中任意节点的电压暂降监测数据与电网结构参数,将接地点视为虚拟节点,形成阻抗矩阵;
步骤20)结合阻抗矩阵,根据不同故障类型下故障序分量的边界条件,以监测点序电压表示其余节点的序电压,利用相序变换得到其余节点的暂降相电压方程;
步骤30)分析残压方程中的各序阻抗关系,利用不同故障类型下故障相序电压的变换关系,简化故障残压方程;
步骤40)基于任意点的电压暂降监测信息,推导各故障类型下的残压方程通式,从而得到全网的电压暂降状态分布。
作为优选例,所述的步骤10)具体包括:
步骤101)采集电网中任意节点k的暂降监测数据,所述样本包括ABC三相暂降电压,利用相序变换得到监测点的暂降序电压,具体为:
式中,代表监测点k的零序暂降电压,代表监测点k的正序暂降电压,代表监测点k的负序暂降电压。代表监测点k的A相暂降电压,代表监测点k的B相暂降电压,代表监测点k的C相暂降电压。α=ej120°为计算因子。
步骤102)采集配电网结构参数,将接地点视为虚拟节点,形成考虑计及负荷的阻抗矩阵,假设配网中原有总节点数为n,接地点为节点n+1。虚拟节点与电网中任意负荷节点i的互导纳可表示为
式中,为负荷节点i的故障前电压,Si为节点i的负荷功率。虚拟节点i的互阻抗可表示为:
式中,l为系统中的负荷节点总数。通过求逆,可以得到含虚拟节点的配电网阻抗矩阵,可表示为:
式中,Znet为原始的阻抗矩阵,Znet,g和Zg,net为虚拟节点和电网节点的互阻抗,Zg,g为虚拟节点的自阻抗。
作为优选例,所述的步骤20)具体包括:
步骤201)以监测点序电压表示其余节点的序电压(以节点m为例),故障时节点k的暂降序电压可表示为
式中,f为故障节点,为节点k和节点f之间的正序互阻抗,为节点k和节点f之间的负序互阻抗,为节点k和节点f之间的零序互阻抗。为正序故障电流,为负序故障电流,为零序故障电流,为监测点k的故障前电压。根据监测点k的序电压方程代替故障电流,可得到节点m的各序暂降电压,表示为:
式中,为节点m和节点f之间的正序互阻抗,为节点m和节点f之间的负序互阻抗,为节点m和节点f之间的零序互阻抗。代表节点m的零序暂降电压,代表节点m的正序暂降电压,代表节点m的负序暂降电压。
步骤202)根据不同故障类型下的故障特征边界条件,利用相序变换得到其余节点的暂降相电压方程,具体包括:
(1)单相接地短路
系统发生单相接地故障时,故障序分量边界条件可表示为
以A相为例,节点m的暂降相电压可表示为
(2)两相相间短路
系统发生两相相间故障时,故障序分量边界条件可表示为
节点m的A相暂降电压可表示为
(3)两相接地短路
系统发生两相接地短路时,故障序分量边界条件可表示为
节点m的A相暂降电压表达式与式(10)类似。
(4)三相短路故障
节点m的A相暂降电压可表示为
作为优选例,所述的步骤30)具体包括:
步骤301)根据导纳矩阵的特点,研究对地支路对阻抗矩阵中各序阻抗的影响关系。由于负荷导纳远小于线路导纳,原始的各序导纳矩阵中元素几乎不受对地支路影响,因此近似有
式中,c为线路零序导纳和正序导纳之比,为常数;为零序原始导纳矩阵,为正序原始导纳矩阵,为负序原始导纳矩阵。求逆可得到原始的各序阻抗矩阵关系,即
从而,可以得到原始阻抗矩阵中各序阻抗关系如下
步骤302)利用原始阻抗矩阵中的各序阻抗关系,简化不同故障类型下的暂降电压方程。首先,以A相为例,建立不同故障类型下以序电压描述的相电压计算式
式中,SLGF代表单相接地短路,DLGF代表相间接地短路,LLF代表相间短路故障,TPF代表三相短路故障。将式(18)和式(19)分别代入式(10)、式(12)和式(15),并结合故障边界条件,得到不同故障类型下的暂降电压计算通式
式中,(X=A,B,C)为监测点k的X相暂降电压,为节点m的X相暂降电压,为节点m的故障前电压。
作为优选例,所述的步骤40)具体包括:根据电压暂降监测数据,遍历配电网中其余各节点,利用式(20)计算全网的电压暂降水平。
有益效果:
与现有技术相比,该方法能够基于有限的监测数据对全网的电压暂降状态进行评估,计算结果更符合工程实际。传统的电压暂降状态评估方法所建立的残压方程十分复杂,且短路电流的计算往往涉及高阶方程的求解。本实施例的方法能够以电压暂降监测信息反应不同故障特征,以监测信息代替短路电流计算从而得到暂降状态计算通式,计算简单且精度较高。
附图说明
图1为本发明实施例的流程图。
图2(a)为本发明实施例中ABC相短路时采集的电压暂降样本数据波形图。
图2(b)为本发明实施例中BC相相间短路时采集的电压暂降样本数据波形图。
图2(c)为本发明实施例中BC相接地短路时采集的电压暂降样本数据波形图。
图2(d)为本发明实施例中A相接地短路时采集的电压暂降样本数据波形图。
具体实施方式
下面结合实例和附图,对本发明实施例的技术方案做进一步的说明。
如图1所示,本发明实施例提供一种基于有限信息的电压暂降状态估计方法,包括以下步骤:
步骤10)采集电网中任意节点的电压暂降监测数据与电网结构参数,将接地点视为虚拟节点,形成阻抗矩阵;
步骤20)结合阻抗矩阵,根据不同故障类型下故障序分量的边界条件,以监测点序电压表示其余节点的序电压,利用相序变换得到其余节点的暂降相电压方程;
步骤30)分析残压方程中的各序阻抗关系,利用不同故障类型下故障相序电压的变换关系,简化故障残压方程;
步骤40)基于任意点的电压暂降监测信息,推导各故障类型下的残压方程通式,从而得到全网的电压暂降状态分布。
在上述实施例中,所述的步骤10)具体包括:
步骤101)采集电网中任意节点k的暂降监测数据,所述样本包括ABC三相暂降电压,利用相序变换得到监测点的暂降序电压,具体为:
式中,代表监测点k的零序暂降电压,代表监测点k的正序暂降电压,代表监测点k的负序暂降电压。代表监测点k的A相暂降电压,代表监测点k的B相暂降电压,代表监测点k的C相暂降电压。α=ej120°为计算因子。
步骤102)采集配电网结构参数,将接地点视为虚拟节点,形成考虑计及负荷的阻抗矩阵,假设配网中原有总节点数为n,接地点为节点n+1。虚拟节点与电网中任意负荷节点i的互导纳可表示为
式中,为负荷节点i的故障前电压,Si为节点i的负荷功率。虚拟节点i的互阻抗可表示为:
式中,l为系统中的负荷节点总数。通过求逆,可以得到含虚拟节点的配电网阻抗矩阵,可表示为:
式中,Znet为原始的阻抗矩阵,Znet,g和Zg,net为虚拟节点和电网节点的互阻抗,Zg,g为虚拟节点的自阻抗。
在上述实施例中,所述的步骤20)具体包括:
步骤201)包括:以监测点序电压表示其余节点的序电压(以节点m为例),故障时节点k的暂降序电压可表示为
式中,f为故障节点,为节点k和节点f之间的正序互阻抗,为节点k和节点f之间的负序互阻抗,为节点k和节点f之间的零序互阻抗。为正序故障电流,为负序故障电流,为零序故障电流,为监测点k的故障前电压。根据监测点k的序电压方程代替故障电流,可得到节点m的各序暂降电压,表示为:
式中,为节点m和节点f之间的正序互阻抗,为节点m和节点f之间的负序互阻抗,为节点m和节点f之间的零序互阻抗。代表节点m的零序暂降电压,代表节点m的正序暂降电压,代表节点m的负序暂降电压。
步骤202)根据不同故障类型下的故障特征边界条件,利用相序变换得到其余节点的暂降相电压方程,具体包括:
(1)单相接地短路
系统发生单相接地故障时,故障序分量边界条件可表示为
以A相为例,节点m的暂降相电压可表示为
(2)两相相间短路
系统发生两相相间故障时,故障序分量边界条件可表示为
节点m的A相暂降电压可表示为
(3)两相接地短路
系统发生两相接地短路时,故障序分量边界条件可表示为
节点m的A相暂降电压表达式与式(10)类似。
(4)三相短路故障
节点m的A相暂降电压可表示为
在上述实施例中,所述的步骤30)具体包括:
步骤301)根据导纳矩阵的特点,研究对地支路对阻抗矩阵中各序阻抗的影响关系。由于负荷导纳远小于线路导纳,原始的各序导纳矩阵中元素几乎不受对地支路影响,因此近似有
式中,c为线路零序导纳和正序导纳之比,为常数;为零序原始导纳矩阵,为正序原始导纳矩阵,为负序原始导纳矩阵。求逆可得到原始的各序阻抗矩阵关系,即
从而,可以得到原始阻抗矩阵中各序阻抗关系如下
步骤302)利用原始阻抗矩阵中的各序阻抗关系,简化不同故障类型下的暂降电压方程。首先,以A相为例,建立不同故障类型下以序电压描述的相电压计算式
式中,SLGF代表单相接地短路,DLGF代表相间接地短路,LLF代表相间短路故障,TPF代表三相短路故障。将式(18)和式(19)分别代入式(10)、式(12)和式(15),并结合故障边界条件,得到不同故障类型下的暂降电压计算通式
式中,(X=A,B,C)为监测点k的X相暂降电压,为节点m的X相暂降电压,为节点m的故障前电压。
在上述实施例中,所述的步骤40)具体包括:根据电压暂降监测数据,遍历配电网中其余各节点,利用式(20)计算全网的电压暂降水平。
本发明实施例的电压暂降状态评估方法,利用有限的节点电压暂降监测信息描述其余节点的暂降电压,进而根据配电网系统阻抗矩阵中线路阻抗矩阵部分的各序阻抗关系,对不同故障类型下的暂降电压方程进行简化,从而得到不同故障类型下的暂降相电压计算通式。现有技术中,电压暂降状态评估主要通过实时监测法和随机预估法实现,实施监测法所需周期长、成本高,不利于大范围推广;随机预估法一般通过建立残压方程对暂降状态进行评估,计算复杂且评估结果偏保守。本实施例方法能够基于有限的电压暂降监测信息对短路故障引起的电压暂降进行准确评估,计算简单,适用于工程实际,为工程人员评估全网电压暂降水平、开展电压暂降治理措施提供有效帮助。
下面举一具体实施例。
以某10kV配电网为例,在某馈线节点k设置电压测量装置进行电压暂降数据采集。仿真中依次设置ABC相短路、BC相相间短路、BC相接地短路和A相接地短路,形成电压暂降波形。
执行本发明实施例的电压暂降状态估计方法,包括一下步骤:
步骤10)采集电网中任意节点的电压暂降监测数据,包括ABC相短路、BC相相间短路、BC相接地短路和A相接地短路4中故障引起的电压暂降相电压。本实例采集的电压暂降样本数据如图2所示,图中横坐标表示暂降数据的采样点数,纵坐标表示电压幅值的标幺值。图2(a)为ABC相短路时采集的电压暂降相电压波形图;图2(b)为BC相相间短路时采集的电压暂降相电压波形图;图2(c)为BC相接地短路时采集的电压暂降相电压波形图;图2(d)为A相接地短路时采集的电压暂降相电压波形图。
步骤20)结合阻抗矩阵,根据不同故障类型下故障序分量的边界条件,以监测点序电压表示其余节点的序电压,利用相序变换得到其余节点的暂降相电压方程;
步骤30)分析残压方程中的各序阻抗关系,利用不同故障类型下故障相序电压的变换关系,简化故障残压方程;
步骤40)推导各故障类型下的残压方程通式,根据采集点的暂降相电压,计算配电网任意节点m的电压暂降状态,表1中故障相电压暂降幅值计算值与仿真值的结果对比验证了本方法的准确性。
表1 DTW距离计算结果
故障类型 TPF DLGF LLF SLGF
仿真值 0.5722 0.6249 0.6564 0.7157
估计值 0.5894 0.6488 0.6772 0.7442
以上显示和描述了本发明的基本原理、主要特征和优点。本领域的技术人员应该了解,本发明不受上述具体实施例的限制,上述具体实施例和说明书中的描述只是为了进一步说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护的范围由权利要求书及其等效物界定。

Claims (5)

1.一种基于有限信息的电压暂降状态估计方法,其特征在于,该方法包括以下步骤:
步骤10)采集电网中任意节点的电压暂降监测数据与电网结构参数,将接地点视为虚拟节点,形成阻抗矩阵;
步骤20)结合阻抗矩阵,根据不同故障类型下故障序分量的边界条件,以监测点序电压表示其余节点的序电压,利用相序变换得到其余节点的暂降相电压方程;
步骤30)分析残压方程中的各序阻抗关系,利用不同故障类型下故障相序电压的变换关系,简化故障残压方程;
步骤40)基于任意点的电压暂降监测信息,推导各故障类型下的残压方程通式,从而得到全网的电压暂降状态分布。
2.根据权利要求1所述的基于有限信息的电压暂降状态估计方法,其特征在于,所述的步骤10)具体包括:
步骤101)采集电网中任意节点k的暂降监测数据,所述样本包括ABC三相暂降电压,利用相序变换得到监测点的暂降序电压,具体为:
式中,代表监测点k的零序暂降电压,代表监测点k的正序暂降电压,代表监测点k的负序暂降电压,代表监测点k的A相暂降电压,代表监测点k的B相暂降电压,代表监测点k的C相暂降电压,a=ej120°为计算因子;
步骤102)采集配电网结构参数,将接地点视为虚拟节点,形成考虑计及负荷的阻抗矩阵,假设配网中原有总节点数为n,接地点为节点n+1,虚拟节点与电网中任意负荷节点i的互导纳可表示为
式中,为负荷节点i的故障前电压,Si为节点i的负荷功率,虚拟节点i的互阻抗可表示为:
式中,l为系统中的负荷节点总数;通过求逆,可以得到含虚拟节点的配电网阻抗矩阵,可表示为:
式中,Znet为原始的阻抗矩阵,Znet,g和Zg,net为虚拟节点和电网节点的互阻抗,Zg,g为虚拟节点的自阻抗。
3.根据权利要求2所述的基于有限信息的电压暂降状态估计方法,其特征在于,所述的步骤201)包括:以监测点序电压表示其余节点的序电压,以节点m为例,故障时节点k的暂降序电压可表示为
式中,f为故障节点,为节点k和节点f之间的正序互阻抗,为节点k和节点f之间的负序互阻抗,为节点k和节点f之间的零序互阻抗,为正序故障电流,为负序故障电流,为零序故障电流,为监测点k的故障前电压,根据监测点k的序电压方程代替故障电流,可得到节点m的各序暂降电压,表示为:
式中,为节点m和节点f之间的正序互阻抗,为节点m和节点f之间的负序互阻抗,为节点m和节点f之间的零序互阻抗。代表节点m的零序暂降电压,代表节点m的正序暂降电压,代表节点m的负序暂降电压;
步骤202)根据不同故障类型下的故障特征边界条件,利用相序变换得到其余节点的暂降相电压方程,具体包括:
(1)单相接地短路
系统发生单相接地故障时,故障序分量边界条件可表示为
以A相为例,节点m的暂降相电压可表示为
(2)两相相间短路
系统发生两相相间故障时,故障序分量边界条件可表示为
节点m的A相暂降电压可表示为
(3)两相接地短路
系统发生两相接地短路时,故障序分量边界条件可表示为
节点m的A相暂降电压表达式与式(10)类似;
(4)三相短路故障
节点m的A相暂降电压可表示为
4.根据权利要求3所述的基于有限信息的电压暂降状态估计方法,其特征在于,所述的步骤30)包括:
步骤301)根据导纳矩阵的特点,研究对地支路对阻抗矩阵中各序阻抗的影响关系;由于负荷导纳远小于线路导纳,原始的各序导纳矩阵中元素几乎不受对地支路影响,因此近似有
式中,c为线路零序导纳和正序导纳之比,为常数;Ynet 0为零序原始导纳矩阵,Ynet 1为正序原始导纳矩阵,Ynet 2为负序原始导纳矩阵。求逆可得到原始的各序阻抗矩阵关系,即
从而,可以得到原始阻抗矩阵中各序阻抗关系如下
步骤302)利用原始阻抗矩阵中的各序阻抗关系,简化不同故障类型下的暂降电压方程,首先,以A相为例,建立不同故障类型下以序电压描述的相电压计算式
式中,SLGF代表单相接地短路,DLGF代表相间接地短路,LLF代表相间短路故障,TPF代表三相短路故障;将式(18)和式(19)分别代入式(10)、式(12)和式(15),并结合故障边界条件,得到不同故障类型下的暂降电压计算通式
式中,为监测点k的X相暂降电压,为节点m的X相暂降电压,为节点m的故障前电压。
5.根据权利要求4所述的基于有限信息的电压暂降状态估计方法,其特征在于,所述的步骤40)包括:根据电压暂降监测数据,遍历配电网中其余各节点,利用式(20)计算全网的电压暂降水平。
CN201811372703.1A 2018-11-19 2018-11-19 一种基于有限信息的电压暂降状态估计方法 Active CN109523165B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811372703.1A CN109523165B (zh) 2018-11-19 2018-11-19 一种基于有限信息的电压暂降状态估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811372703.1A CN109523165B (zh) 2018-11-19 2018-11-19 一种基于有限信息的电压暂降状态估计方法

Publications (2)

Publication Number Publication Date
CN109523165A true CN109523165A (zh) 2019-03-26
CN109523165B CN109523165B (zh) 2022-03-04

Family

ID=65778492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811372703.1A Active CN109523165B (zh) 2018-11-19 2018-11-19 一种基于有限信息的电压暂降状态估计方法

Country Status (1)

Country Link
CN (1) CN109523165B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109995050A (zh) * 2019-05-15 2019-07-09 广东电网有限责任公司 计及电压暂降经济损失不确定性的补偿设备优化配置方法
CN110034567A (zh) * 2019-05-15 2019-07-19 广东电网有限责任公司 基于传播特性的配电网短路型电压暂降特征量计算方法
CN113013879A (zh) * 2021-03-31 2021-06-22 国网福建省电力有限公司电力科学研究院 基于Neo4j的配电网电压暂降影响域分析方法及其可视化系统
CN113009279A (zh) * 2021-03-05 2021-06-22 四川大川云能科技有限公司 基于Neo4j的配电网电压暂降故障定位及其可视化系统
CN113281584A (zh) * 2021-04-21 2021-08-20 东南大学溧阳研究院 一种基于修正参数的电压暂降源定位方法
CN113848421A (zh) * 2021-09-15 2021-12-28 国网安徽省电力有限公司电力科学研究院 一种考虑变压器阻抗电压降落的电压暂降获取方法及装置
CN114611278A (zh) * 2022-03-03 2022-06-10 四川大学 一种多阶段电压暂降状态估计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080040808A (ko) * 2006-11-03 2008-05-09 피에스케이 주식회사 순간 정전에 대한 내성을 처리하는 반도체 제조 장치 및 그방법
CN103576053A (zh) * 2013-10-09 2014-02-12 国家电网公司 一种基于有限电能质量监测点的电压暂降源定位方法
CN107884682A (zh) * 2017-11-23 2018-04-06 国网山东省电力公司枣庄供电公司 基于故障点与监测点距离的配电网故障定位方法
CN108226713A (zh) * 2018-02-05 2018-06-29 山东大学 一种电压暂降的同心松弛凹陷域分析方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080040808A (ko) * 2006-11-03 2008-05-09 피에스케이 주식회사 순간 정전에 대한 내성을 처리하는 반도체 제조 장치 및 그방법
CN103576053A (zh) * 2013-10-09 2014-02-12 国家电网公司 一种基于有限电能质量监测点的电压暂降源定位方法
CN107884682A (zh) * 2017-11-23 2018-04-06 国网山东省电力公司枣庄供电公司 基于故障点与监测点距离的配电网故障定位方法
CN108226713A (zh) * 2018-02-05 2018-06-29 山东大学 一种电压暂降的同心松弛凹陷域分析方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109995050A (zh) * 2019-05-15 2019-07-09 广东电网有限责任公司 计及电压暂降经济损失不确定性的补偿设备优化配置方法
CN110034567A (zh) * 2019-05-15 2019-07-19 广东电网有限责任公司 基于传播特性的配电网短路型电压暂降特征量计算方法
CN109995050B (zh) * 2019-05-15 2020-06-26 广东电网有限责任公司 计及电压暂降经济损失不确定性的补偿设备优化配置方法
CN113009279A (zh) * 2021-03-05 2021-06-22 四川大川云能科技有限公司 基于Neo4j的配电网电压暂降故障定位及其可视化系统
CN113009279B (zh) * 2021-03-05 2024-03-22 四川大川云能科技有限公司 基于Neo4j的配电网电压暂降故障定位及其可视化系统
CN113013879A (zh) * 2021-03-31 2021-06-22 国网福建省电力有限公司电力科学研究院 基于Neo4j的配电网电压暂降影响域分析方法及其可视化系统
CN113281584A (zh) * 2021-04-21 2021-08-20 东南大学溧阳研究院 一种基于修正参数的电压暂降源定位方法
CN113848421A (zh) * 2021-09-15 2021-12-28 国网安徽省电力有限公司电力科学研究院 一种考虑变压器阻抗电压降落的电压暂降获取方法及装置
CN113848421B (zh) * 2021-09-15 2024-04-19 国网安徽省电力有限公司电力科学研究院 一种考虑变压器阻抗电压降落的电压暂降获取方法及装置
CN114611278A (zh) * 2022-03-03 2022-06-10 四川大学 一种多阶段电压暂降状态估计方法
CN114611278B (zh) * 2022-03-03 2022-09-13 四川大学 一种多阶段电压暂降状态估计方法

Also Published As

Publication number Publication date
CN109523165B (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
CN109523165A (zh) 一种基于有限信息的电压暂降状态估计方法
Bíscaro et al. Integrated fault location and power-quality analysis in electric power distribution systems
Yu et al. A new PMU-based fault location algorithm for series compensated lines
Al-Mohammed et al. A fully adaptive PMU-based fault location algorithm for series-compensated lines
Zhang et al. Measurement and modeling of delays in wide-area closed-loop control systems
US20150073735A1 (en) Method for adaptive fault location in power system networks
CN102135571B (zh) 超高压/特高压多回路输电线路零序阻抗抗干扰测量方法
CN103412242B (zh) 一种基于快速独立分量分析和互信息的谐波源定位方法
CN106054023B (zh) 一种输电线路单端测距中估计两侧系统阻抗的方法
CN105098763A (zh) 一种基于wams和ems的暂态电压稳定在线评估方法
CN105044649B (zh) 一种电流互感器误差水平动态检测方法及系统
Mousavi-Seyedi et al. Application of WAMS and SCADA data to online modeling of series-compensated transmission lines
CN104820133A (zh) 一种三相非对称输电线路阻抗参数在线测量方法
CN106814265A (zh) 一种光伏逆变器发电效率测试系统
CN107328996A (zh) 抗差输电线路正序参数辨识方法
CN105548781A (zh) 母线短路容量测试方法、装置及系统
CN103592528A (zh) 一种基于动态轨迹灵敏度的光伏逆变器模型参数辨识方法
CN103995948A (zh) 一种基于多项式模型的振荡中心电压预测方法
CN106526347A (zh) 一种基于数模混合仿真的光伏逆变器低电压穿越评估方法
CN110333394A (zh) 一种低压配电网线路阻抗估计方法
CN108828292B (zh) 考虑接地排影响的氧化锌避雷器阻性电流在线监测方法
Jiang et al. PMU-aided voltage security assessment for a wind power plant
Liao et al. A fault location method based on traveling wave natural frequency used on±800kV UHVDC transmission lines
CN109494743A (zh) 基于矩阵重构的电力系统电网谐波状态的估计方法
CN103972889B (zh) 一种配电线路阻抗在线辨识方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20201201

Address after: 213300 room 428, building a, 218 Hongkou Road, Kunlun Street, Liyang City, Changzhou City, Jiangsu Province (in Zhongguancun Science and Technology Industrial Park, Jiangsu Province)

Applicant after: Liyang Research Institute of Southeast University

Applicant after: SOUTHEAST University

Address before: Four pailou Nanjing Xuanwu District of Jiangsu Province, No. 2 210096

Applicant before: SOUTHEAST University

GR01 Patent grant
GR01 Patent grant