CN109503770B - 一种具有高弛豫率的水溶性交联纳米聚合物及其合成方法和用途 - Google Patents

一种具有高弛豫率的水溶性交联纳米聚合物及其合成方法和用途 Download PDF

Info

Publication number
CN109503770B
CN109503770B CN201811213869.9A CN201811213869A CN109503770B CN 109503770 B CN109503770 B CN 109503770B CN 201811213869 A CN201811213869 A CN 201811213869A CN 109503770 B CN109503770 B CN 109503770B
Authority
CN
China
Prior art keywords
water
polymer
nano polymer
relaxation rate
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811213869.9A
Other languages
English (en)
Other versions
CN109503770A (zh
Inventor
何涛
刘建华
闫旭
陆杨
徐晓莉
陈志钧
谢云飞
丁晨璐
夏彬
汪翔
王金晨
甄兆新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201811213869.9A priority Critical patent/CN109503770B/zh
Publication of CN109503770A publication Critical patent/CN109503770A/zh
Application granted granted Critical
Publication of CN109503770B publication Critical patent/CN109503770B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • A61K49/128Linear polymers, e.g. dextran, inulin, PEG comprising multiple complex or complex-forming groups, being either part of the linear polymeric backbone or being pending groups covalently linked to the linear polymeric backbone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1857Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA
    • A61K49/186Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA the organic macromolecular compound being polyethyleneglycol [PEG]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种具有高弛豫率的水溶性交联纳米聚合物及其合成方法和用途,其中具有高弛豫率的水溶性交联纳米聚合物的结构通式如下:
Figure DDA0001833068950000011
其中x、y、z的数值区间分别为1‑500,w的数值区间为0.5‑100,n的数值区间为1‑100。本发明通过可逆加成‑断裂链转移聚合(RAFT聚合)的方法设计制备得到线性纳米聚合物,该方法制备得到的线性纳米聚合物既分子量可控,又继承了聚乙二醇甲基丙烯酸酯的优良的水溶性性能,还引入了DO3A的大环结构,为下一步的螯合Gd3+提供螯合位点。本发明最终得到的目标产物具有更高的弛豫率,测量值达到16.48mM‑1*S‑1,是市售Gd‑DO3A弛豫率(3.5mM‑1*S‑1)的将近4.7倍,具有更好的造影效果。

Description

一种具有高弛豫率的水溶性交联纳米聚合物及其合成方法和 用途
技术领域
本发明涉及一种具有高弛豫率的水溶性交联纳米聚合物及其合成方法和用途。
背景技术
恶性疾病如癌症的早期有效诊断和治疗对挽救病人生命,提高生存质量至关重要。目前早期临床影像诊断以磁共振成像(MRI),正电子发射计算机断层扫描(PET),单光子发射计算机断层成像(SPECT)为代表。其中MRI也是一种发射断层成像,它对任意成像平面的识别力,对软组织的解析度和空间断层成像的分辨率均达到很高水平。成像过程无需用放射性同位素,因而更加安全。
MRI的基本原理是,通过测试调整体内水质子的纵向(自旋-点阵或纵向驰豫时间,longitudinalrelaxation time,T1)及横向(自旋-自旋或横向弛豫时间,transverserelaxation time,T2)弛豫时间,得到多种物理参数,如质子密度、T1、T2、扩散系数、磁化系数、化学位移等,然后重建人体信息。与CT、超声、PET等成像相比,MRI得到信息更加丰富,是医学影像中一个热门的研究方向。由于MRI对细胞的恶化过程中的代谢及病理变化的敏感度不高,需要联用外在造影剂(contrast agent)以提高诊断图像解析度和对比度,以区别正常细胞和病变细胞,所以新型高效造影剂的特性将直接影响MRI诊断图像的准确度和分别率。
基于T1机理的钆(Gadolinium,Gd)螯合物造影剂的研究是医学影像学中的前沿和热点。大多数T1造影剂均为小分子Gd螯合物,代表性的如已获FDA批准的Gd(DTPA)和Gd(DOTA)。虽然小分子有利于进入细胞内部实施准确诊断,但多数小分子T1造影剂尚有很多不完善之处,如敏感度不高(靶向性不好),对比度不理想,毒性较高,细胞组织内停留时间较短,体内排除较快等,因而药代动力学特征不理想,最终导致诊断成像窗期缩短。
水溶性交联纳米聚合物造影剂被越来越多地用于诊断和药物运载,很重要的原因是其可以模拟细胞环境的高亲和性和多价的相互作用。目前以聚合物纳米颗粒为主体的T1MRI造影剂的研究和临床应用已经越来越受到重视。聚合物纳米T1MRI造影剂具有较好的物理和化学稳定性,可以有效提高药代动力学,延长细胞组织停留时间,抵御体内酶降解,同时能降低肾小球和滑膜过滤以减少背景吸收。聚合物纳米诊断颗粒还具备别的优势,如可集多种影像手段于一身,实现多种图像诊断的联用;在纳米材料中可引入相应的治疗药物,在影像同时实现治疗药物的输送和释放,是一种用于核磁共振仪器探测人体内的肿瘤细胞及其他病变细胞的新型有机造影剂。该造影剂是由有机合成的纳米级球形聚合物,其表面有与人体内癌细胞及其他病变细胞相互作用的官能团,从而实现在仪器中显现人体病变细胞的造影图像。
发明内容
本发明旨在提供一种具有高弛豫率的水溶性交联纳米聚合物及其合成方法和用途,所要解决的技术问题是通过分子设计手段,合成一种具有高弛豫率的水溶性交联纳米聚合物,以作为磁共振成像造影剂使用。
本发明具有高弛豫率的水溶性交联纳米聚合物,其结构通式如下所示:
Figure BDA0001833068930000021
其中x、y、z的数值区间分别为1-500,w的数值区间为0.5-100,n的数值区间为1-100。
本发明具有高弛豫率的水溶性交联纳米聚合物的制备方法,是以聚乙二醇甲基丙烯酸酯(OEGMA-300)、甲基丙烯酸羟基乙基乙酸-1,4,7,10-四氮杂环十二烷-1,4,7-三乙酸三叔丁酯(HEMA-2BA-DO3A)、4-氰基-4-(硫代苯甲酰)戊酸为原料,以偶氮二异丁腈(AIBN)为引发剂,首先合成了亲水段的线性纳米聚合物;再以此亲水段的线性纳米聚合物、乙二醇二甲基丙烯酸酯(EGDMA)和甲基丙烯酸二乙氨基乙酯(DEAEMA)为原料,合成得到水溶性交联纳米聚合物;最后再对得到水溶性交联纳米聚合物在二氯甲烷(DCM)和三氟乙酸(TFA)条件下切断,异丙醇(IPA)和水的条件下,加入GdCl3·6H2O,进行Gd的螯合,透析后得到目标产物。
本发明,一方面,可以得到尺寸小于100nm的水溶性聚合物,另一方面,聚合物中Gd的引入,提高了整体聚合物的弛豫率,该纳米聚合物的弛豫率达到16.48mM-1·S-1,是市售Gd-DO3A弛豫率(3.5mM-1·S-1)的将近4.7倍。
本发明具有高弛豫率的水溶性交联纳米聚合物的制备方法,包括如下步骤:
步骤1:在氮气保护下,将聚乙二醇甲基丙烯酸酯、甲基丙烯酸羟基乙基乙酸-1,4,7,10-四氮杂环十二烷-1,4,7-三乙酸三叔丁酯(HEMA-2BA-DO3A)和4-氰基-4-(硫代苯甲酰)戊酸加入置有有机溶剂的配有聚合装置的聚合瓶中,同时加入偶氮二异丁腈作为引发剂,充氮冷冻除空气多次以除去聚合瓶中的氧气,然后升温至50-100℃搅拌反应2-48小时,反应结束后在0℃的正己烷中沉降,过滤收集沉淀物,于20-80℃真空干燥后得到亲水段的线性纳米聚合物;
步骤2:以步骤1获得的线性纳米聚合物为原料,在配有聚合装置的聚合瓶中加入DEAEMA和EGDMA,再加入有机溶剂,充氮冷冻除空气多次,然后升温至50-100℃反应时间2-48h,反应结束后在0℃的正己烷中沉降,过滤收集沉淀物,于20-80℃真空干燥后得到水溶性交联纳米聚合物;
步骤3:将步骤2得到的0.5-3g水溶性交联纳米聚合物在5-50ml的二氯甲烷(DCM)和1-20ml的三氟乙酸(TFA)条件下切断,以异丙醇(IPA)和水为混合溶剂,加入1-10gGdCl3·6H2O进行Gd的螯合,透析后得到目标产物。
步骤1中,所述有机溶剂选自四氢呋喃、氯仿或二氧六烷。
步骤1中,聚乙二醇甲基丙烯酸酯、甲基丙烯酸羟基乙基乙酸-1,4,7,10-四氮杂环十二烷-1,4,7-三乙酸三叔丁酯、4-氰基-4-(硫代苯甲酰)戊酸和偶氮二异丁腈的摩尔比为20-200:10-100:0.5-10:0.1-1。
步骤2中,DEAEMA和EGDMA的摩尔比为20-200:0.5-10。
步骤2中,有机溶剂选自四氢呋喃、N,N-二甲基甲酰胺或二氧六烷。
步骤3中,混合溶剂中IPA和水的体积百分比为90-50:10-50。
步骤3中,透析时使用1000D-12000D的透析袋。
本发明反应过程如下:
步骤1中,线性纳米聚合物的合成过程如下:
Figure BDA0001833068930000031
步骤2中,水溶性交联纳米聚合物的合成过程如下:
Figure BDA0001833068930000041
步骤3中,水溶性交联纳米聚合物的羧化和Gd3+的螯合过程如下:
Figure BDA0001833068930000042
本发明具有高弛豫率的水溶性交联纳米聚合物的用途,是作为核磁共振成像造影剂的应用。
与已有技术相比,本发明的有益效果体现在:
1、本发明通过可逆加成-断裂链转移聚合(RAFT聚合)的方法设计制备得到线性纳米聚合物,该方法制备得到的线性纳米聚合物既分子量可控,又继承了聚乙二醇甲基丙烯酸酯的优良的水溶性性能,还引入了DO3A的大环结构,为下一步的螯合Gd3+提供螯合位点。
2、本发明制备过程使用的原料及溶剂都比较环保,没有使用对环境污染大的材料,合成的纳米聚合物的后处理也简单容易,且溶剂可以重复使用,是一种环境友好型材料。
3、本发明制备工艺简单,成本低廉,收率超过80%。得到的目标产物粒径为10-200nm,能够在水中稳定分布和存在。
4、本发明最终得到的目标产物具有更高的弛豫率,测量值达到16.48mM-1*S-1,是市售Gd-DO3A弛豫率(3.5mM-1*S-1)的将近4.7倍,具有更好的造影效果。
附图说明
图1是本发明目标产物的结构模拟图。
图2是本发明目标产物在透射电子显微镜(TEM)下的透射电镜图,标尺为100nm,由图2可以看出,水溶性交联纳米聚合物的分布均匀,大小较为规整,尺寸大小约为40nm。
图3是本发明目标产物在动态光散射(DLS)中的粒径分布图。由图3可以看出,水溶性交联纳米聚合物的粒径分布较好,尺寸大小约为40nm。
图4是本发明目标产物的弛豫率图。由图4可以看出,水溶性交联纳米聚合物的弛豫率测量分布规整,线性拟合度较好,斜率大小代表其弛豫率,弛豫率大小达到了16.48mM-1*S-1,是市售Gd-DO3A弛豫率(3.5mM-1*S-1)的将近4.7倍。
具体实施方式
实施例1:
1、氮气保护下,将6g(0.02mol)聚乙二醇甲基丙烯酸酯、2.72g(0.004mol)甲基丙烯酸羟基乙基乙酸-1,4,7,10-四氮杂环十二烷-1,4,7-三乙酸三叔丁酯(HEMA-2BA-DO3A)和56mg(0.0002mol)的4-氰基-4-(硫代苯甲酰)戊酸加入史莱克管中,加入20ml二氧六烷作溶剂,同时加入3.28mg(0.00002mol)偶氮二异丁腈作为引发剂,油泵抽气-液氮冷冻-氮气充气三个循环,每个循环做10次;循环结束后升温至70℃搅拌反应12小时,反应结束后在0℃的正己烷中沉降,过滤收集沉淀物,于80℃真空干燥后得到线性纳米聚合物,产率90%。
2、以4.37g步骤1获得的线性纳米聚合物为原料,在配有双排管、搅拌磁子的史莱克管中加入15.8mg(0.000018mol)EGDMA、1.64g(0.01mol)DEAEMA和溶剂二氧六烷,抽气-冷冻-充气三个循环,每个循环做10次;循环结束后,升温至70℃反应12h,反应结束后在0℃的正己烷中沉降,过滤收集沉淀物,于80℃真空干燥后得到水溶性交联纳米聚合物,产率72%。
3、将步骤2获得的水溶性交联纳米聚合物在20ml二氯甲烷(DCM)和10ml三氟乙酸(TFA)条件下切断,旋转蒸发,干燥后得到产物,产率92%;将得到的产物溶解在14ml异丙醇(IPA)和6ml水的条件下,加入3.71g(0.01mol)GdCl3*6H2O,进行Gd的螯合,透析得到目标产物,产率82%。
实施例2:
1、氮气保护下,将3g(0.01mol)聚乙二醇甲基丙烯酸酯、1.36g(0.002mol)甲基丙烯酸羟基乙基乙酸-1,4,7,10-四氮杂环十二烷-1,4,7-三乙酸三叔丁酯(HEMA-2BA-DO3A)和28mg(0.0002mol)的4-氰基-4-(硫代苯甲酰)戊酸加入史莱克管中,加入10ml二氧六烷作溶剂,同时加入3.28mg(0.00004mol)偶氮二异丁腈作为引发剂,油泵抽气-液氮冷冻-氮气充气三个循环,每个循环做10次;循环结束后,升温至80℃搅拌反应12小时,反应结束后在0℃的正己烷中沉降,过滤收集沉淀物,于80℃真空干燥后得到线性纳米聚合物,产率92%。
2、以2.68g步骤1获得的线性纳米聚合物为原料,在配有双排管、搅拌磁子的史莱克管中加入7.9mg(0.000009mol)EGDMA和0.82g(0.005mol)的DEAEMA,并加入二氧六烷作溶剂,抽气-冷冻-充气三个循环,每个循环做10次;循环结束后,升温至80℃反应12h,反应结束后在0℃的正己烷中沉降,过滤收集沉淀物,于80℃真空干燥后得到水溶性交联纳米聚合物,产率76%。
3、将步骤2获得的水溶性交联纳米聚合物在10ml二氯甲烷(DCM)和5ml三氟乙酸(TFA)条件下切断,旋转蒸发,干燥后得到产物,产率92%;将得到的产物溶解在16ml异丙醇(IPA)和4ml水的条件下,加入1.85g(0.005mol)GdCl3*6H2O,进行Gd的螯合,透析得到目标产物,产率83%。
实施例3:
1、氮气保护下,将6g(0.02mol)聚乙二醇甲基丙烯酸酯、2.72g(0.004mol)甲基丙烯酸羟基乙基乙酸-1,4,7,10-四氮杂环十二烷-1,4,7-三乙酸三叔丁酯(HEMA-2BA-DO3A)和56mg(0.0002mol)的4-氰基-4-(硫代苯甲酰)戊酸加入史莱克管中,加入20ml N,N-二甲基甲酰胺作溶剂,同时加入3.28mg(0.00002mol)偶氮二异丁腈作为引发剂,油泵抽气-液氮冷冻-氮气充气三个循环,每个循环做10次;循环结束后,升温至80℃搅拌反应10小时,反应结束后在0℃的正己烷中沉降,过滤收集沉淀物,于80℃真空干燥后得到线性纳米聚合物,产率92%。
2、以4.37g步骤1获得的线性纳米聚合物为原料,在配有双排管、搅拌磁子的史莱克管中加入15.8mg(0.000018mol)EGDMA、1.64g(0.01mol)DEAEMA,并加入10ml的N,N-二甲基甲酰胺作溶剂,抽气-冷冻-充气三个循环,每个循环做10次;循环结束后,升温至80℃反应12h,反应结束后在0℃的正己烷中沉降,过滤收集沉淀物,于80℃真空干燥后得到水溶性交联纳米聚合物,产率75%。
3、将步骤2获得的水溶性交联纳米聚合物在20ml二氯甲烷(DCM)和10ml三氟乙酸(TFA)条件下切断,旋转蒸发,干燥后得到产物,产率90%;将得到的产物溶解在18ml异丙醇(IPA)和2ml水的条件下,加入3.71g(0.01mol)GdCl3*6H2O,进行Gd的螯合,透析得到目标产物,产率86%。

Claims (10)

1.一种具有高弛豫率的水溶性交联纳米聚合物,其特征在于其结构通式如下:
Figure FDA0002881551750000011
其中x、y、z的数值区间分别为1-500,w的数值区间为0.5-100,n的数值区间为1-100。
2.一种权利要求1所述的具有高弛豫率的水溶性交联纳米聚合物的合成方法,其特征在于:
以聚乙二醇甲基丙烯酸酯、甲基丙烯酸羟基乙基乙酸-1,4,7,10-四氮杂环十二烷-1,4,7-三乙酸三叔丁酯、4-氰基-4-(硫代苯甲酰)戊酸为原料,以偶氮二异丁腈为引发剂,首先合成了亲水段的线性纳米聚合物;再以此亲水段的线性纳米聚合物、乙二醇二甲基丙烯酸酯和甲基丙烯酸二乙氨基乙酯为原料,合成得到水溶性交联纳米聚合物;最后再对得到水溶性交联纳米聚合物在二氯甲烷和三氟乙酸条件下切断,异丙醇和水的条件下,加入GdCl3·6H2O,进行Gd的螯合,透析后得到目标产物。
3.根据权利要求2所述的合成方法,其特征在于包括如下步骤:
步骤1:在氮气保护下,将聚乙二醇甲基丙烯酸酯、甲基丙烯酸羟基乙基乙酸-1,4,7,10-四氮杂环十二烷-1,4,7-三乙酸三叔丁酯和4-氰基-4-(硫代苯甲酰)戊酸加入置有有机溶剂的配有聚合装置的聚合瓶中,同时加入偶氮二异丁腈作为引发剂,充氮冷冻除空气多次以除去聚合瓶中的氧气,然后升温至50-100℃搅拌反应2-48小时,反应结束后在0℃的正己烷中沉降,过滤收集沉淀物,于20-80℃真空干燥后得到亲水段的线性纳米聚合物;
步骤2:以步骤1获得的线性纳米聚合物为原料,在配有聚合装置的聚合瓶中加入DEAEMA和EGDMA,再加入有机溶剂,充氮冷冻除空气多次,然后升温至50-100℃反应时间2-48h,反应结束后在0℃的正己烷中沉降,过滤收集沉淀物,于20-80℃真空干燥后得到水溶性交联纳米聚合物;
步骤3:将步骤2得到的0.5-3g水溶性交联纳米聚合物在5-50ml的二氯甲烷和1-20ml的三氟乙酸条件下切断,以异丙醇和水为混合溶剂,加入1-10g GdCl3·6H2O进行Gd的螯合,透析后得到目标产物。
4.根据权利要求3所述的合成方法,其特征在于:
步骤1中,所述有机溶剂选自四氢呋喃、氯仿或二氧六烷。
5.根据权利要求3所述的合成方法,其特征在于:
步骤1中,聚乙二醇甲基丙烯酸酯、甲基丙烯酸羟基乙基乙酸-1,4,7,10-四氮杂环十二烷-1,4,7-三乙酸三叔丁酯、4-氰基-4-(硫代苯甲酰)戊酸和偶氮二异丁腈的摩尔比为20-200:10-100:0.5-10:0.1-1。
6.根据权利要求3所述的合成方法,其特征在于:
步骤2中,有机溶剂选自四氢呋喃、N,N-二甲基甲酰胺或二氧六烷。
7.根据权利要求3所述的合成方法,其特征在于:
步骤2中,DEAEMA和EGDMA的摩尔比为20-200:0.5-10。
8.根据权利要求3所述的合成方法,其特征在于:
步骤3中,混合溶剂中IPA和水的体积百分比为90-50:10-50。
9.根据权利要求3所述的合成方法,其特征在于:
步骤3中,透析时使用1000D-12000D的透析袋。
10.一种权利要求1所述的具有高弛豫率的水溶性交联纳米聚合物的用途,其特征在于:所述水溶性交联纳米聚合物在制备核磁共振成像造影剂中的应用。
CN201811213869.9A 2018-10-18 2018-10-18 一种具有高弛豫率的水溶性交联纳米聚合物及其合成方法和用途 Active CN109503770B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811213869.9A CN109503770B (zh) 2018-10-18 2018-10-18 一种具有高弛豫率的水溶性交联纳米聚合物及其合成方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811213869.9A CN109503770B (zh) 2018-10-18 2018-10-18 一种具有高弛豫率的水溶性交联纳米聚合物及其合成方法和用途

Publications (2)

Publication Number Publication Date
CN109503770A CN109503770A (zh) 2019-03-22
CN109503770B true CN109503770B (zh) 2021-03-09

Family

ID=65746682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811213869.9A Active CN109503770B (zh) 2018-10-18 2018-10-18 一种具有高弛豫率的水溶性交联纳米聚合物及其合成方法和用途

Country Status (1)

Country Link
CN (1) CN109503770B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393544A (zh) * 2020-03-02 2020-07-10 合肥工业大学 一种具有靶向核磁共振造影和荧光成像功能的聚合物、制备方法及应用
CN112940157B (zh) * 2021-03-22 2023-01-10 南方医科大学 一种钆螯合物及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19525924A1 (de) * 1995-07-04 1997-01-09 Schering Ag Kaskaden-Polymer-Komplexe, Verfahren zu ihrer Herstellung und diese enthaltende pharmazeutische Mittel
JP4432000B2 (ja) * 1996-12-23 2010-03-17 ブラッコ・リサーチ・ソシエテ・アノニム 患者の消化管の視覚化におけるmri造影の増加用組成物
CN106916318B (zh) * 2017-02-20 2019-11-26 四川大学华西医院 一种可生物降解的核交联含钆配合物的聚合物及其制备方法和用途
CN108084106A (zh) * 2018-01-22 2018-05-29 合肥工业大学 一种含do3a的双烯烃交联剂及其制备纳米聚合物基造影剂的应用

Also Published As

Publication number Publication date
CN109503770A (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
An et al. Paramagnetic hollow silica nanospheres for in vivo targeted ultrasound and magnetic resonance imaging
Wang et al. Biodegradable core crosslinked star polymer nanoparticles as 19 F MRI contrast agents for selective imaging
Jin et al. An ultrasmall and metabolizable PEGylated NaGdF 4: Dy nanoprobe for high-performance T 1/T 2-weighted MR and CT multimodal imaging
Zhou et al. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties
Yan et al. Self-assembled magnetic fluorescent polymeric micelles for magnetic resonance and optical imaging
Xing et al. A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging
CN106390143B (zh) 肿瘤靶向核磁共振/荧光双模态成像造影剂及其制备和应用
Zhu et al. Surface modification of Gd nanoparticles with pH-responsive block copolymers for use as smart MRI contrast agents
CN104689338B (zh) 肿瘤靶向性酸敏前药与磁性纳米粒子偶联物的制法及应用
Yin et al. Biocompatible folate-modified Gd 3+/Yb 3+-doped ZnO nanoparticles for dualmodal MRI/CT imaging
CN103143043B (zh) 一种Fe3O4/Au复合纳米颗粒的制备方法
Adkins et al. High relaxivity MRI imaging reagents from bimodal star polymers
Fu et al. Functional polymers as metal-free magnetic resonance imaging contrast agents
CN109503770B (zh) 一种具有高弛豫率的水溶性交联纳米聚合物及其合成方法和用途
Wang et al. Magneto-fluorescent nanoparticles with high-intensity NIR emission, T 1-and T 2-weighted MR for multimodal specific tumor imaging
CN104436220A (zh) 一种壳聚糖磁性纳米微球的制备方法及其用途
Luo et al. The design of a multifunctional dendrimer-based nanoplatform for targeted dual mode SPECT/MR imaging of tumors
Liu et al. Smart polymeric particle encapsulated gadolinium oxide and europium: theranostic probes for magnetic resonance/optical imaging and antitumor drug delivery
US20180161461A1 (en) Rare Earth Oxide Particles and Use Thereof in Particular In Imaging
CN101845112B (zh) 一种基于高分子纳米粒子的高灵敏性核磁共振成像造影剂的制备方法
Lu et al. Polydopamine-coated NaGdF 4: Dy for T 1/T 2-weighted MRI/CT multimodal imaging-guided photothermal therapy
Gao et al. An acidic pH-triggered polymeric micelle for dual-modality MR and optical imaging
Asadi et al. Polymer-grafted superparamagnetic iron oxide nanoparticles as a potential stable system for magnetic resonance imaging and doxorubicin delivery
CN109568608B (zh) 一种多聚糖基纳米粒子造影剂及其制备方法
Ye et al. A neutral polydisulfide containing Gd (III) DOTA monoamide as a redox‐sensitive biodegradable macromolecular MRI contrast agent

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant