CN109503659B - 氧杂螺环双膦配体及其在α,β-不饱和羧酸不对称氢化中的应用 - Google Patents

氧杂螺环双膦配体及其在α,β-不饱和羧酸不对称氢化中的应用 Download PDF

Info

Publication number
CN109503659B
CN109503659B CN201910005345.9A CN201910005345A CN109503659B CN 109503659 B CN109503659 B CN 109503659B CN 201910005345 A CN201910005345 A CN 201910005345A CN 109503659 B CN109503659 B CN 109503659B
Authority
CN
China
Prior art keywords
unsaturated carboxylic
oxaspiro
carboxylic acid
ligand
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910005345.9A
Other languages
English (en)
Other versions
CN109503659A (zh
Inventor
陈根强
黄佳明
郑勇鹏
马保德
张绪穆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Green Kate Pharmaceutical Technology Co ltd
Shenzhen Catalys Technology Co Ltd
Original Assignee
Kaitelisi Shenzhen Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaitelisi Shenzhen Technology Co ltd filed Critical Kaitelisi Shenzhen Technology Co ltd
Priority to CN201910005345.9A priority Critical patent/CN109503659B/zh
Publication of CN109503659A publication Critical patent/CN109503659A/zh
Application granted granted Critical
Publication of CN109503659B publication Critical patent/CN109503659B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/249Spiro-condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/30Preparation of optical isomers
    • C07C227/32Preparation of optical isomers by stereospecific synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/36Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by hydrogenation of carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/60Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明提供的一种氧杂螺环双磷配体,具有以下通式(I)的结构:
Figure DDA0001935216320000011
其中,通式(I)中:R1、R2、R3和R4相同,其为烷基、烷氧基、芳基、芳氧基或氢原子,所述R1、R2、R3和R4包括成环、不成环、任意两个成环或两两之间形成多环的形式;R5、R6为烷基、芳基或氢原子;R7、R8为烷基或苄基者芳基。本发明还提供了一种氧杂螺环双膦配体O‑SDP在α,β‑不饱和羧酸不对称氢化中的应用。其与钌的络合物在多种类型的α,β‑不饱和羧酸的不对称氢化中都表现出优异的活性和对映选择性,能够以高达99%的对映选择性得到手性羧酸产物。该合成方法可以应用与Paroxetine、Femoxetine、nipecotic acid以及Sacubitril等具有重要生物活性的化学分子的核心骨架的构建中。

Description

氧杂螺环双膦配体及其在α,β-不饱和羧酸不对称氢化中的 应用
技术领域
本发明涉及一种氧杂螺环双膦配体O-SDP及其在α,β-不饱和羧酸不对称氢化中的应用。
背景技术
手性羧酸及其手性羧酸衍生物片段在具有生物活性的药物分子和天然产物中广泛存在,在不对称催化领域具有很高的潜在应用价值。α,β-不饱和羧酸的催化不对称氢化是构建手性羧酸化合物最直接和最有效的方法之一。在过去的几十年间,伴随着手性双膦配体的发展,该领域取得了飞速的发展。Kagan小组合成的DIOP(参见Dang,T.P.;Kagan,H.B.J.Chem.Soc.D:Chem.Commun.1971,481.)、Noyori小组发展的BINAP(参见Miyashita,A.;Yasuda,A.;Takaya,H.;Toriumi,K.;Ito,T.;Souchi,T.;NoyoriR.;J.Am.Chem.Soc.,1980,102,7932;Kitamura,Masato;M.Tokunaga;T.Ohkuma;R.Noyori.Org.Syn.1998,9,589)以及Knowles小组发展的DIPAM(参见Vineyard,B.D.;Knowles,W.S.;Sabacky,M.J.;Bachman,G.L.;Weinkauff,D.J.,J.Am.Chem.Soc.1977,99,5946.)配体在双膦配体的发展历史中具有里程碑意义。它们在学术界和工业界得到了非常广泛的应用。随后各种各样的手性双膦配体被合成出来,例如SegePhos、DifluoPhos、SynPhos、Cn-TunePhos、TangPhos、DuanPhos、ZhangPhos、SKP、SDP、SFDP等。2007年,周其林小组发现SFDP的钌络合物在惕格酸以及α-甲基肉桂酸的氢化中表现出优异的活性和对映选择性(参见X.Cheng,Q.Zhang,J.-H.Xie,L.-X.Wang,Q.-L.Zhou,Angew.Chem.,Int.Ed.2005,44,1118-1121.),随后陈伟平小组发展的基于二茂铁骨架的ChenPhos和Trifer在α-甲基肉桂酸以及α-氧代-α,β-不饱和酸的氢化表现出很好的催化效果(参见a)W.Chen,P.J.McCormack,K.Mohammed,W.Mbafor,S.M.Roberts,J.Whittall,Angew.Chem.,Int.Ed.2007,46,4141-4144;b)W.Chen,F.Spindler,B.Pugin,U.Nettekoven,Angew.Chem.,Int.Ed.2013,52,8652-8656.),张绪穆小组也开发了基于二茂铁骨架的Wudaphos,其在α-丙烯酸衍生的氢化中表现出优异的活性和对映选择性(参见Chen,C.;Wang,H.;Zhang,Z.,Jin,S.;Wen,S.,Ji,J.,Chung,L.W.Dong,X.-Q.;Zhang,X.Chem.Sci.,2016,7,6669-6673.),但是这些配体的适用范围都很窄,为了取得优异的对映选择性,往往需要对配体进行复杂的结构修饰,仍然缺乏广泛适用于多种底物的手性双膦配体。周其林课题组发展的Ir-SIPhOX体系是一种底物适用范围广泛的催化体系(参见a)S.Li,S.F.Zhu,J.H.Xie,S.Song,C.M.Zhang,Q.L.Zhou,J.Am.Chem.Soc.2010,132,1172-1179;b)S.Li,S.F.Zhu,C.M.Zhang,S.Song,Q.L.Zhou,J.Am.Chem.Soc.2008,130,8584-8585;c)S.Song,S.F.Zhu,L.Y.Pu,Q.L.Zhou,Angew.Chem.,Int.Ed.2013,52,6072-6075;d)S.Song,S.F.Zhu,Y.B.Yu,Q.L.Zhou,Angew.Chem.,Int.Ed.2013,52,1556-1559;e)Q.Wang,Z.Zhang,C.Chen,H.Yang,Z.Han,X.-Q.Dong,X.Zhang,Org.Chem.Front.2017,4,627-630;f)S.F.Zhu,Q.L.Zhou,Acc.Chem.Res.2017,50,988-1001.)但是该体系对于环状四取代羧酸没有反应活性(参见a)S.Song,S.F.Zhu,Y.Li,Q.L.Zhou,Org.Lett.2013,15,3722-3725;b)A.Schumacher,M.G.Schrems,A.Pfaltz,Chem.-AsianJ.2011,17,13502-13509.),同该体系需要外加的碱来促进反应的进行,在一定程度上限制了该体系的应用范围。因此发展新型的手性配体应用于α,β-不饱和羧酸的不对称氢化具有非常重要的意义。
Figure BDA0001935216300000021
发明内容
鉴于现有技术需要改善的问题,本发明要解决的问题是提供了一种氧杂螺环双磷配体,其与钌的络合物在多种类型的α,β-不饱和羧酸的不对称氢化中都表现出优异的活性和对映选择性,能够以高达99%的对映选择性得到手性羧酸产物。
为了实现上述技术目的,本发明采用下述技术方案:
本发明提供的一种氧杂螺环双磷配体,具有以下通式(I)的结构:
Figure BDA0001935216300000031
其中,通式(I)中:
R1、R2、R3和R4相同,均为烷基、烷氧基、芳基、芳氧基或氢原子,所述R1、R2、R3和R4包括成环、不成环、任意两个成环或两两之间形成多环的形式;R5、R6为烷基、芳基或者氢原子;R7、R8为烷基、苄基或者芳基。
作为本发明进一步的改进,所述氧杂螺环双磷配体是(±)-氧杂螺环双膦配体、(+)-氧杂螺环双膦配体或(-)-氧杂螺环双膦配体。
作为本发明进一步的改进,所述氧杂螺环双磷配体包括下式化合物:
Figure BDA0001935216300000032
其中,R1、R2、R3、R4和R5为相同或不同的取代基,其包括氢基、烷基、氟代烷基、芳基或烷氧基;Ar为烷基、苄基或芳基。
作为本发明进一步的改进,其中Ar为苯基、烷基或烷氧基取代的苯基:
Figure BDA0001935216300000033
本发明的另一目的还包括提供了一种氧杂螺环双磷配体在α,β-不饱和羧酸不对称氢化中的应用,所述氧杂螺环双磷配体首先制成双膦醋酸钌络合物,所述双膦醋酸钌络合物在有机溶剂中实现α,β-不饱和羧酸不对称氢化,所述有机溶剂为甲醇、乙醇、三氟乙醇、六氟异丙醇、四氢呋喃、二氧六环、甲苯、苯、二氯甲烷、二氯乙烷、甲基叔丁基醚、乙醚或四氯化碳。
作为本发明进一步的改进,所述双膦醋酸钌络合物是下式化合物:
Figure BDA0001935216300000041
R=alkyl,fluoroalkyl or aryl,其中,R=烷基、氟代烷基或芳基。
作为本发明进一步的改进,所述双膦醋酸钌络合物包括经下述合成路线得到的产物:
Figure BDA0001935216300000042
其中,R=烷基、氟代烷基或芳基;
或为
Figure BDA0001935216300000043
其中,R=烷基、氟代烷基或芳基。
作为本发明进一步的改进,所述双膦醋酸钌络合物应用于沙库必曲中间体的不对称还原:
Figure BDA0001935216300000044
其中,R1为Boc、Ts、NS、Bn、PMB、PMP或Bz保护基,R2为H、烷基、取代烷基或芳基基团,其中所采用的配体为化合物1
Figure BDA0001935216300000051
更优选的结构为配体1a
Figure BDA0001935216300000052
其中催化剂的用量底物S/催化剂C=1到30000,进一步优选的催化剂的用量为底物S/催化剂C为1000到15000,进一步优选的催化剂用量为底物S/催化剂C=5000。
该反应所采用的溶剂,温度以及氢气压力不仅仅局限于甲醇,室温以及6个大气压,溶剂甲醇采用乙醇替代或采用与上述有机溶剂性质类似的其他有机溶剂;根据气候条件的变化,温度条件除采用室温条件外,在室温条件下的上下波动1-100摄氏度均可;气压条件同样根据气候变化情况,在6个大气压的上下波动1-100atm均可。
作为本发明进一步的改进,所述双膦醋酸钌络合物应用于抗抑郁药物paroxetine以及femoxetine中间体的不对称还原:
Figure BDA0001935216300000053
其中R1为Boc、Ts、NS、Bn、PMB、PMP或Bz保护基,R2为H、烷基、取代烷基或芳基基团,其中所采用的配体为1
Figure BDA0001935216300000054
更优选的结构为配体(R)-1a
Figure BDA0001935216300000055
其中催化剂的用量底物S/催化剂C=1到30000,进一步优选的催化剂的用量底物S/催化剂C=1000到15000,进一步优选的催化剂用量底物S/催化剂C=5000。
该反应所采用的溶剂,温度以及氢气压力不仅仅局限于甲醇,室温以及60个大气压。溶剂甲醇采用乙醇替代或采用与上述有机溶剂性质类似的其他有机溶剂;根据气候条件的变化,温度条件除采用室温条件外,在室温条件下的上下波动1-100摄氏度均可;气压条件同样根据气候变化情况,在60个大气压的上下波动1-100atm均可。
作为本发明进一步的改进,使用氧杂螺环双磷配体作为催化剂,反应路线如下:
Figure BDA0001935216300000061
其中,R1R2和R3=烷基、氟代烷基或芳基,烷氧基以及芳基氧基;X为O、N、S杂原子,n=0-10;其中所采用的配体为1
Figure BDA0001935216300000062
更优选的结构为配体(R)-1a
Figure BDA0001935216300000063
其中催化剂的用量底物S/催化剂C=1到30000,进一步优选的催化剂的用量底物S/催化剂C为1000到15000,进一步优选的催化剂用量底物S/催化剂C=5000。
该反应所采用的溶剂,温度以及氢气压力不仅仅局限于甲醇及室温条件。这些溶剂还包括但不局限于乙醇、三氟乙醇、六氟异丙醇、四氢呋喃、二氧六环、甲苯、苯、二氯甲烷、二氯乙烷、甲基叔丁基醚、乙醚、四氯化碳等;根据气候条件的变化,温度条件除采用室温条件外,在室温条件下的上下波动1-100摄氏度均可;气压条件同样根据气候变化情况,在60个大气压的上下波动1-100atm均可。
O-SDP尽管和SDP结构比较相似,但其具有十分独特的结构,它的咬合角是99.2度,大于已知的常见手性双膦配体如BINAP、MeO-BiPHEP、Segphos等。其与钌的络合物在多种类型的α,β-不饱和羧酸的不对称氢化中都表现出优异的活性和对映选择性,能够以高达99%的对映选择性得到手性羧酸产物。该合成方法可以应用与Paroxetine、Femoxetine、nipecotic acid以及Sacubitril等具有重要生物活性的化学分子的核心骨架的构建中。
本发明提供的一种氧杂螺环双膦配体O-SDP及其在α,β-不饱和羧酸不对称氢化中的应用,相对于现有技术的有益效果包括:
(1)该氧杂螺环化合物具有中心手性,因此有左旋氧杂螺环双膦配体和右旋氧杂螺环双膦配体,消旋的螺环双膦配体可以通过消旋的氧杂螺环二酚为原料合成得到。
(2)本发明可以作为手性配体用于不饱和羧酸的不对称氢化中,其与钌的络合物在甲基-肉桂酸的不对称氢化中可以得到大于99%的对映选择性即该化合物制成的双膦醋酸钌络合物在有机溶剂中对多种不饱和羧酸的氢化具有很高的活性和对映选择性,大于99%。
附图说明
图1是:本发明提供的一种氧杂螺环双膦配体O-SDP及其在α,β-不饱和羧酸不对称氢化中的应用的多种不同手性化合物的制备示意图、以及对应的转化率和对映选择性ee值。
图2是:本发明提供的一种氧杂螺环双膦配体O-SDP及其在α,β-不饱和羧酸不对称氢化中的应用的多种不同手性化合物的制备示意图、以及对应的转化率和对映选择性ee值。
图3是:本发明提供的一种氧杂螺环双膦配体O-SDP及其在α,β-不饱和羧酸不对称氢化中的应用中所制备的手性化合物在具有生物活性分子合成中的应用。
具体实施方式
下面通过实施例和附图对本发明加以说明,但本发明提供的一种氧杂螺环双膦配体O-SDP及其在α,β-不饱和羧酸不对称氢化中的应用并不仅限于以下实施例。
在手性合成技术领域,尽管O-SDP和SDP结构比较相似,但O-SDP具有十分独特的结构,它的咬合角是99.2度,大于已知的常见手性双膦配体如BINAP、MeO-BiPHEP、Segphos等。其与钌的络合物在多种类型的α,β-不饱和羧酸的不对称氢化中都表现出优异的活性和对映选择性,能够以高达99%的对映选择性得到手性羧酸产物,通过该途径的合成方法能够应用与Paroxetine、Femoxetine、nipecotic acid以及Sacubitril等具有重要生物活性的化学分子的核心骨架的构建中。
反应原理如下:
Figure BDA0001935216300000081
a(R)-1e was used as ligand and TFE as solvent.TFE:trifluoroethanol.bthe reaction was conducted at 10 atm.
a(R)-1e作为配位体,TFE作为溶剂,反应10小时。
Figure BDA0001935216300000082
上述yield表示产物。
Figure BDA0001935216300000091
实施例1:
催化剂Rh(1a)OAc2的制备:
在N2氛围下,向一个10mL单口瓶中加入[RuPhCl2]2(25mg,0.05mmol)、配体1a(61mg,0.103mmol),然后加入2mLDMF。100℃条件下反应3h。冷却至室温,然后加入1.5mL无水醋酸钠(0.111g,1.3mmol)的甲醇溶液。20Min后加入脱氧的去离子水。有灰色固体从反应体系中析出,过滤,减压除去溶剂和水即得到催化剂Rh(1a)OAc2(57mg,产率=71%)。
实施例2:
催化剂Rh(1a)(CF3CO)2的制备:
在N2氛围下,向一个10mL单口瓶中加入双-(2-甲基烯丙基)环辛-1,5-二烯钌(32mg,0.05mmol)、配体1a(61mg,0.103mmol),然后加入2mL丙酮。40℃条件下反应0.5h。然后加入三氟乙酸(33mg,0.3mmol),40℃条件下搅拌过夜,减压除去溶剂,然后加入1mL石油醚,过滤得到目标产物Rh(1a)(CF3CO)2(81mg,产率=88%)。
实施例3
(3R,4R)-1-(叔丁氧羰基)-4-苯基-3-羧酸3a的合成:
在N2氛围下,向氢化小瓶中加入2a(0.1mmol)、催化剂Ru(1a)OAc2(0.8mg,0.001mmol)以及1mL的甲醇。在60atm的氢气氛围下进行24h后,原料全部转化为产物。29.0mg,产物yield=95%,>99%ee,[α]25 D=+38.0(c=0.5,CHCl3),yellow oil.1H NMR(400MHz,CDCl3)δ7.29-7.24(m,2H,Ar),7.23-7.17(m,3H,Ar),4.44(d,J=12.7Hz,1H,CH2),4.26(d,J=9.0Hz,1H,CH2),3.16(d,J=11.1Hz,1H,CH),3.01-2.82(m,3H,CH2),2.55(dt,J=12.0,8.6Hz,1H,CH),1.68(dd,J=13.0,2.8Hz,1H,CH2),1.39(s,9H,CH3).13C NMR(101MHz,CDCl3)δ176.9,154.7,142.1,128.3,127.4,126.6,79.8,46.1,45.2,43.8,43.0,28.2,25.6.HRMS(ESI)calcd.for C17H22NO4[M-H]-:304.1554,Found:304.1556.HPLC条件:Daicel AD-3,进样量2μL(c=1mg/mL),Hexane/IPA=97/3,1.0mL/Min,208nm,tR(major)=29.6Min,tR(minor)=31.4Min。
实施例4
(3R,4R)-1-(叔丁氧羰基)-4-对甲基苯基-3-羧酸3b的合成:
在N2氛围下,向氢化小瓶中加入2b(0.1mmol)、催化剂Ru(1a)OAc2(0.8mg,0.001mmol)以及1mL的甲醇。在60atm的氢气氛围下进行24h后,原料全部转化为产物。31.0mg,产物yield=97%,>99%ee,[α]25 D=+47.1(c=0.5,CHCl3),yellow oil.1H NMR(400MHz,CDCl3)δ7.09(q,J=8.2Hz,4H,Ar),4.42(d,J=13.2Hz,1H,CH2),4.24(d,J=10.5Hz,1H,CH2),3.15(d,J=11.8Hz,1H,CH),3.00-2.78(m,3H,CH2),2.61-2.42(m,1H,CH),2.30(s,3H,CH3),1.67(dd,J=13.1,2.9Hz,1H,CH2),1.40(s,9H,CH3).13C NMR(101MHz,CDCl3)δ177.0,154.7,139.1,136.1,129.0,127.2,79.8,46.0,45.3,43.9,42.6,28.2,25.8,20.9.HRMS(ESI)calcd.for C18H24NO4[M-H]-:318.1711,Found:318.1713.HPLC条件:Daicel AD-3,进样量2μL(c=1mg/mL),Hexane/IPA=97/3,1.0mL/Min,220nm,tR(major)=18.9Min,tR(minor)=21.9Min。
实施例5
(3R,4R)-1-(叔丁氧羰基)-4-对甲氧基苯基-3-羧酸3c的合成:
在N2氛围下,向氢化小瓶中加入2c(0.1mmol)、催化剂Ru(1a)OAc2(0.8mg,0.001mmol)以及1mL的甲醇。在60atm的氢气氛围下进行24h后,原料全部转化为产物。32.2mg,产物yield=96%,99%ee,[α]25 D=+29.5(c=0.5,CHCl3),yellow solid.1H NMR(400MHz,CDCl3)δ7.14(d,J=8.7Hz,2H,Ar),6.84-6.78(m,2H,Ar),4.41(d,J=13.6Hz,1H,CH2),4.24(d,J=10.7Hz,1H,CH2),3.77(s,3H,CH3),3.14(d,J=11.4Hz,1H,CH),2.97-2.79(m,3H,CH2),2.51(qd,J=12.2,3.8Hz,1H,CH),1.66(dd,J=13.1,2.9Hz,1H,CH2),1.40(s,9H,CH3).13C NMR(101MHz,CDCl3)δ176.9,158.2,154.7,134.2,128.4,113.7,79.8,55.1,45.9,45.4,43.9,42.2,28.2,25.9.HRMS(ESI)calcd.for C18H24NO5[M-H]-:334.1660,Found:334.1662.HPLC条件:Daicel AS-3,进样量2μL(c=1mg/mL),Hexane/IPA=97/3,1.0mL/Min,230nm,tR(major)=16.5Min,tR(minor)=19.2Min。
实施例6
(3R,4R)-1-(叔丁氧羰基)-4-对氯苯基-3-羧酸3d的合成:
在N2氛围下,向氢化小瓶中加入2d(0.1mmol)、催化剂Ru(1a)OAc2(0.8mg,0.001mmol)以及1mL的甲醇。在60atm的氢气氛围下进行24h后,原料全部转化为产物。33.6mg,产物yield=99%,98%ee,[α]25 D=+47.9(c=0.5,CHCl3),white solid.1H NMR(500MHz,CDCl3)δ7.26(d,J=8.3Hz,2H,Ar),7.16(d,J=8.3Hz,2H,Ar),4.48(d,J=12.0Hz,1H,CH2),4.29(d,J=9.8Hz,1H,CH2),3.14(d,J=11.6Hz,1H,CH),2.93(ddd,J=42.0,23.0,10.6Hz,3H,CH2),2.53(dd,J=20.9,11.7Hz,1H),1.68(d,J=11.0Hz,1H,CH2),1.40(s,9H,CH3).13C NMR(126MHz,CDCl3)δ175.9,154.7,140.6,132.5,128.8,128.5,80.0,46.1,45.1,43.8,42.4,28.3,25.5.HRMS(ESI)calcd.for C17H21ClNO4[M-H]-:338.1165,Found:338.1169.HPLC条件:DaicelAS-3,进样量2μL(c=1mg/mL),Hexane/IPA=97/3,1.0mL/Min,208nm,tR(major)=9.0Min,tR(minor)=10.0Min。
实施例7
(3R,4R)-1-(叔丁氧羰基)-4-对氟苯基-3-羧酸3e的合成:
在N2氛围下,向氢化小瓶中加入2e(0.1mmol)、催化剂Ru(1a)OAc2(0.8mg,0.001mmol)以及1mL的甲醇。在60atm的氢气氛围下进行24h后,原料全部转化为产物。31.4mg,产物yield=97%,99%ee,[α]25 D=+35.2(c=0.5,CHCl3),yellow solid.1H NMR(400MHz,CDCl3)δ7.18(dd,J=8.4,5.4Hz,2H,Ar),6.96(t,J=8.7Hz,2H,Ar),4.45(d,J=12.9Hz,1H,CH2),4.28(d,J=9.3Hz,1H,CH2),3.14(d,J=10.9Hz,1H,CH),2.99-2.80(m,3H,CH2),2.53(dd,J=20.9,12.0Hz,1H,CH),1.66(dd,J=13.0,2.5Hz,1H,CH2),1.39(s,9H,CH3).13C NMR(101MHz,CDCl3)δ176.8,161.6(d,J=243.5Hz),154.7,137.8(d,J=2.9Hz),128.9(d,J=7.9Hz),115.1(d,J=20.9Hz),79.9,46.0,45.4,43.8,42.3,28.2,25.7.19FNMR(376MHz,CDCl3)δ-116.3.HRMS(ESI)calcd.for C17H21FNO4[M-H]-:322.1460,Found:322.1464.HPLC条件:DaicelAS-3,进样量2μL(c=1mg/mL),Hexane/IPA=98/2,0.8mL/Min,208nm,tR(major)=15.0Min,tR(minor)=19.6Min。
实施例8
(3R,4R)-1-(叔丁氧羰基)-4-间甲氧基苯基-3-羧酸3f的合成:
在N2氛围下,向氢化小瓶中加入2f(0.1mmol)、催化剂Ru(1a)OAc2(0.8mg,0.001mmol)以及1mL的甲醇。在60atm的氢气氛围下进行24h后,原料全部转化为产物。32.2mg,产物yield=96%,98%ee,[α]25 D=+50.3(c=0.5,CHCl3),yellow solid.1H NMR(400MHz,CDCl3)δ7.18(t,J=7.9Hz,1H,Ar),6.84-6.72(m,3H,Ar),4.43(d,J=12.9Hz,1H,CH2),4.24(d,J=11.1Hz,1H,CH2),3.74(s,3H,CH3),3.15(d,J=11.0Hz,1H,CH3),3.00-2.82(m,3H,CH2),2.53(dt,J=20.7,10.2Hz,1H,CH),1.68(dd,J=12.9,2.5Hz,1H,CH2),1.40(s,9H,CH3).13C NMR(101MHz,CDCl3)δ176.6,159.5,154.7,143.8,129.3,119.7,113.3,112.0,79.8,55.0,46.0,45.2,44.0,43.1,28.2,25.8.HRMS(ESI)calcd.forC18H24NO5[M-H]-:334.1660,Found:334.1664.HPLC条件:Daicel OJ-3,进样量2μL(c=1mg/mL),Hexane/IPA=95/5,1.0mL/Min,208nm,tR(major)=15.1Min,tR(minor)=17.9Min。
实施例9
(3R,4R)-1-(叔丁氧羰基)-4-邻氟苯基-3-羧酸3g的合成:
在N2氛围下,向氢化小瓶中加入2g(0.1mmol)、催化剂Ru(1a)OAc2(0.8mg,0.001mmol)以及1mL的甲醇。在60atm的氢气氛围下进行24h后,原料全部转化为产物。30.4mg,产物yield=94%,97%ee,[α]25 D=+16.9(c=0.5,CHCl3),yellow solid.1H NMR(400MHz,CDCl3)δ7.29-7.23(m,1H,Ar),7.19(tdd,J=7.3,5.4,1.6Hz,1H,Ar),7.08-6.97(m,2H,Ar),4.50(d,J=14.1Hz,1H,CH2),4.33(d,J=11.3Hz,1H,CH2),3.29(dt,J=12.7,3.9Hz,1H,CH2),3.15(d,J=12.9Hz,1H,CH),2.96(s,1H,CH2),2.87(t,J=11.8Hz,1H,CH2),2.62(tt,J=12.6,6.4Hz,1H,CH),1.59(dd,J=13.0,2.6Hz,1H,CH2),1.41(s,9H,CH3).13CNMR(101MHz,CDCl3)δ176.0,160.7(d,J=243.4Hz),154.7,128.9(d,J=13.7Hz),128.7(d,J=3.7Hz),128.2(d,J=8.6Hz),124.0(d,J=3.6Hz),115.0(d,J=22.4Hz),79.9,46.3,44.1,43.3,36.0,36.0,28.3,24.7.19F NMR(376MHz,CDCl3)δ-119.0.HRMS(ESI)calcd.forC17H21FNO4[M-H]-:322.1460,Found:322.1463.HPLC条件:DaicelAD-3,进样量2μL(c=1mg/mL),Hexane/IPA=97/3,1.0mL/Min,208nm,tR(major)=15.2Min,tR(minor)=20.8Min。
实施例10
(3R,4R)-1-(叔丁氧羰基)-4-邻甲氧基苯基-3-羧酸3h的合成:
在N2氛围下,向氢化小瓶中加入2h(0.1mmol)、催化剂Ru(1a)OAc2(0.8mg,0.001mmol)以及1mL的甲醇。在60atm的氢气氛围下进行24h后,原料全部转化为产物。31.8mg,产物yield=95%,>99%ee,[α]25 D=+84.8(c=0.5,CHCl3),white solid.1H NMR(400MHz,CDCl3)δ7.29-7.23(m,1H),7.19(tdd,J=7.3,5.4,1.6Hz,1H),7.08-6.97(m,2H),4.50(d,J=14.1Hz,1H),4.33(d,J=11.3Hz,1H),3.74(s,3H,CH3),3.29(dt,J=12.7,3.9Hz,1H),3.15(d,J=12.9Hz,1H),2.96(s,1H),2.87(t,J=11.8Hz,1H),2.62(tt,J=12.6,6.4Hz,1H),1.59(dd,J=13.0,2.6Hz,1H),1.41(s,9H).13C NMR(101MHz,CDCl3)δ176.0,161.9,159.5,154.7,129.0,128.9,128.7,128.7,128.2,128.1,124.0,124.0,115.1,114.8,79.9,46.3,44.1,43.3,36.0,36.0,28.3,24.7.HRMS(ESI)calcd.forC18H24NO5[M-H]-:334.1660,Found:334.1664.HPLC条件:DaicelAD-3,进样量2μL(c=1mg/mL),Hexane/IPA=97/3,1.0mL/Min,220nm,tR(major)=23.4Min,tR(minor)=24.9Min。
实施例11
(3R,4R)-4-甲基-1-对甲苯磺酰基哌啶-3-羧酸3i的合成:
在N2氛围下,向氢化小瓶中加入2i(0.1mmol)、催化剂Ru(1a)OAc2(0.8mg,0.001mmol)以及1mL的甲醇。在60atm的氢气氛围下进行24h后,原料全部转化为产物。29.1mg,产物yield=98%,98%ee,[α]25 D=+23.3(c=0.5,CHCl3),white solid.1H NMR(400MHz,CDCl3)δ7.66(d,J=8.2Hz,2H,Ar),7.34(d,J=8.0Hz,2H,Ar),3.49(dd,J=11.4,2.3Hz,1H,CH2),3.35-3.26(m,1H,CH2),2.83(ddd,J=15.5,13.6,6.9Hz,2H,CH),2.72(td,J=11.4,3.0Hz,1H,CH),2.44(s,3H,CH3),1.84(qd,J=9.0,4.3Hz,1H,CH2),1.74-1.65(m,1H,CH2),0.86(d,J=7.1Hz,3H,CH3).13C NMR(101MHz,CDCl3)δ177.2,143.6,133.1,129.7,127.6,44.4,43.2,42.1,30.4,28.6,21.5,13.9.HRMS(ESI)calcd.for C14H18NO4S[M-H]-:296.0962,Found:296.0963.HPLC条件:Daicel OJ-3,进样量2μL(c=1mg/mL),Hexane/IPA=95/5,1.0mL/Min,208nm,tR(major)=41.0Min,tR(minor)=43.9Min。
实施例12
(3R)-1-(叔丁氧羰基)哌啶-3-羧酸3j的合成:
在N2氛围下,向氢化小瓶中加入2j(0.1mmol)、催化剂Ru(1a)OAc2(0.8mg,0.001mmol)以及1mL的甲醇。在60atm的氢气氛围下进行24h后,原料全部转化为产物。22.0mg,产物yield=96%,96%ee,[α]25 D=-43.2(c=0.5,CHCl3),white solid.1H NMR(400MHz,CDCl3)δ4.10(s,1H),3.95-3.83(m,1H),3.04(s,1H),2.92-2.78(m,1H),2.55-2.41(m,1H),2.07(dd,J=12.6,3.6Hz,1H),1.78-1.57(m,2H),1.46(s,10H).13C NMR(101MHz,CDCl3)δ178.9,154.7,79.9,45.4,43.6,41.1,28.3,27.1,24.1.HPLC条件:DaicelAD-3,进样量2μL(c=1mg/mL),Hexane/IPA=97/3,1.0mL/Min,210nm,tR(major)=13.3Min,tR(minor)=13.9Min。
实施例13
(1S,2R)-2-对甲氧基苯基环己烷-1-羧酸3k的合成:
在N2氛围下,向氢化小瓶中加入2k(0.1mmol)、催化剂Ru(1a)OAc2(0.8mg,0.001mmol)以及1mL的甲醇。在60atm的氢气氛围下进行24h后,原料全部转化为产物。22.0mg,产物yield=96%,96%ee,[α]25 D=-43.2(c=0.5,CHCl3),白色固体whitesolid.1H NMR(400MHz,CDCl3)δ4.10(s,1H),3.95-3.83(m,1H),3.04(s,1H),2.92-2.78(m,1H),2.55-2.41(m,1H),2.07(dd,J=12.6,3.6Hz,1H),1.78-1.57(m,2H),1.46(s,10H).13CNMR(101MHz,CDCl3)δ178.9,154.7,79.9,45.4,43.6,41.1,28.3,27.1,24.1.HPLC条件:Daicel AD-3,进样量2μL(c=1mg/mL),Hexane/IPA=97/3,1.0mL/Min,208nm,tR(major)=17.5Min,tR(minor)=19.6Min。
实施例14
(S)-2-苯氧基丁酸5a的合成:
在N2氛围下,向氢化小瓶中加入4a(0.1mmol)、催化剂Ru(1a)OAc2(0.8mg,0.001mmol)以及1mL的甲醇。在60atm的氢气氛围下进行24h后,原料全部转化为产物。22.0mg,产物yield=96%,96%ee,[α]25 D=-43.2(c=0.5,CHCl3),白色固体whitesolid.1H NMR(400MHz,CDCl3)δ4.10(s,1H),3.95-3.83(m,1H),3.04(s,1H),2.92-2.78(m,1H),2.55-2.41(m,1H),2.07(dd,J=12.6,3.6Hz,1H),1.78-1.57(m,2H),1.46(s,10H).13CNMR(101MHz,CDCl3)δ178.9,154.7,79.9,45.4,43.6,41.1,28.3,27.1,24.1.HPLC条件:Daicel AD-3,进样量2μL(c=1mg/mL),Hexane/IPA=97/3,1.0mL/Min,220nm,tR(minor)=12.1Min,tR(major)=13.9Min。
实施例15
Sacubitril中间体6的氢化:
在N2氛围下,分别向两个氢化小瓶中加入6(1mmol)、催化剂Ru(1a)OAc2(0.16mg,0.0002mmol),最后分别加入5mL的二氯乙烷和三氟乙醇。在氢气氛围下进行24h后,原料全部转化为产物。通过HPLC确定化合物7的非对映异构体体比例为98/2,化合物8的非对映异构体比例为>99/1。HPLC条件:Daicel AS-3,进样量2μL(c=1mg/mL),Hexane/IPA=92/8,1.0mL/Min,220nm,tR(7)=8.253Min,tR(8)=10.281Min。
应当理解,这些实施例的用途仅用于说明本发明而非意欲限制本发明的保护范围。此外,也应理解,在阅读了本发明的技术内容之后,本领域技术人员可以对本发明作各种改动、修改和/或变型,所有的这些等价形式同样落于本申请所附权利要求书所限定的保护范围之内。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。

Claims (4)

1.氧杂螺环双磷配体在α,β-不饱和羧酸不对称氢化中的应用,所述氧杂螺环双磷配体制成双膦醋酸钌络合物,所述双膦醋酸钌络合物在有机溶剂中实现α,β-不饱和羧酸不对称氢化,其特征在于,所述双膦醋酸钌络合物应用于沙库必曲中间体的不对称还原:该反应在室温(rt)条件下进行,其中TFE为三氟乙醇,H2是指6标准大气压(atm)下的氢气,
Figure FDA0003010555640000011
或者,所述双膦醋酸钌络合物应用于抗抑郁药物(+)-paroxetine(帕罗西汀)以及(-)-femoxetine(非莫西汀)中间体的不对称还原:该反应中的H2是指60标准大气压(atm)下的氢气,
Figure FDA0003010555640000012
其中,结构式6、7、8、2a、3a、2e、3e所示的化合物中的R1为叔丁氧羰基Boc、对甲基苯磺酰基Ts、对硝基苯磺酰基NS、苄基Bn、对甲氧基苄基PMB、对甲氧基苯基PMP或苯甲酰基Bz保护基,R2为H、烷基、取代烷基或芳基基团,其中,
所述氧杂螺环双磷配体结构为配体(R)-1a:
Figure FDA0003010555640000013
2.根据权利要求1所述的氧杂螺环双磷配体在α,β-不饱和羧酸不对称氢化中的应用,其特征在于,催化剂的用量底物S/催化剂C=1到30000。
3.根据权利要求2所述的氧杂螺环双磷配体在α,β-不饱和羧酸不对称氢化中的应用,其特征在于,催化剂的用量为底物S/催化剂C为1000到15000。
4.根据权利要求3所述的氧杂螺环双磷配体在α,β-不饱和羧酸不对称氢化中的应用,其特征在于,催化剂用量为底物S/催化剂C=5000。
CN201910005345.9A 2019-01-03 2019-01-03 氧杂螺环双膦配体及其在α,β-不饱和羧酸不对称氢化中的应用 Active CN109503659B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910005345.9A CN109503659B (zh) 2019-01-03 2019-01-03 氧杂螺环双膦配体及其在α,β-不饱和羧酸不对称氢化中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910005345.9A CN109503659B (zh) 2019-01-03 2019-01-03 氧杂螺环双膦配体及其在α,β-不饱和羧酸不对称氢化中的应用

Publications (2)

Publication Number Publication Date
CN109503659A CN109503659A (zh) 2019-03-22
CN109503659B true CN109503659B (zh) 2021-06-18

Family

ID=65757367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910005345.9A Active CN109503659B (zh) 2019-01-03 2019-01-03 氧杂螺环双膦配体及其在α,β-不饱和羧酸不对称氢化中的应用

Country Status (1)

Country Link
CN (1) CN109503659B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112538010B (zh) * 2019-09-20 2023-08-11 凯特立斯(深圳)科技有限公司 一种青蒿素类化合物合成关键中间体的制备方法
CN113321600B (zh) * 2020-02-28 2024-06-14 四川科伦药物研究院有限公司 制备手性联芳基取代的4-氨基-丁酸及其衍生物的方法
AU2021314955A1 (en) 2020-07-28 2023-03-30 Jazz Pharmaceuticals Ireland Limited Fused bicyclic Raf inhibitors and methods for use thereof
IL300110A (en) * 2020-07-28 2023-03-01 Jazz Pharmaceuticals Ireland Ltd Chiral synthesis of RAF inhibitors in compressed cyclics
CN111961080B (zh) * 2020-08-26 2022-07-29 南方科技大学 氧杂螺环膦-噁唑啉配体及其制备方法和应用
CN113150031A (zh) * 2021-04-22 2021-07-23 南方科技大学 氧杂螺环手性磷酸及其制备方法和应用
CN115724781A (zh) * 2021-08-30 2023-03-03 凯特立斯(深圳)科技有限公司 一种合成乌帕替尼关键手性中间体的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1439643A (zh) * 2003-02-21 2003-09-03 南开大学 螺环双膦配体
CN1562926A (zh) * 2004-04-14 2005-01-12 南开大学 新型螺环双膦配体及其在不对称催化氢化中的应用
JP2010053049A (ja) * 2008-08-26 2010-03-11 Chiba Univ ジホスフィン化合物、その遷移金属錯体およびその遷移金属錯体を含む触媒並びにホスフィンオキシド化合物及びジホスフィンオキシド化合物
WO2017135897A1 (en) * 2016-02-02 2017-08-10 Agency For Science, Technology And Research A catalyst for the carbonylation of alkenes
CN110128471A (zh) * 2018-02-08 2019-08-16 凯特立斯(深圳)科技有限公司 氧杂螺环双膦配体的合成与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1439643A (zh) * 2003-02-21 2003-09-03 南开大学 螺环双膦配体
CN1562926A (zh) * 2004-04-14 2005-01-12 南开大学 新型螺环双膦配体及其在不对称催化氢化中的应用
JP2010053049A (ja) * 2008-08-26 2010-03-11 Chiba Univ ジホスフィン化合物、その遷移金属錯体およびその遷移金属錯体を含む触媒並びにホスフィンオキシド化合物及びジホスフィンオキシド化合物
WO2017135897A1 (en) * 2016-02-02 2017-08-10 Agency For Science, Technology And Research A catalyst for the carbonylation of alkenes
CN110128471A (zh) * 2018-02-08 2019-08-16 凯特立斯(深圳)科技有限公司 氧杂螺环双膦配体的合成与应用

Also Published As

Publication number Publication date
CN109503659A (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
CN109503659B (zh) 氧杂螺环双膦配体及其在α,β-不饱和羧酸不对称氢化中的应用
Takizawa et al. P-chirogenic organocatalysts: application to the aza-Morita–Baylis–Hillman (aza-MBH) reaction of ketimines
EP0918781B1 (en) Asymmetric synthesis catalyzed by transition metal complexes with cyclic chiral phosphine ligands
JP5671456B2 (ja) 3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途
US7378560B2 (en) Ruthenium complex and process for producing tert-alkyl alcohol therewith
KR100384411B1 (ko) 키랄리간드인헤테로방향족디포스핀
WO1997047633A9 (en) Asymmetric synthesis catalyzed by transition metal complexes with cyclic chiral phosphine ligands
DE4330730A1 (de) Neue Bisphosphine für asymmetrische Hydrierkatalysatoren
IL194219A (en) Process for preparation of enantiomerically enriched cyclic b- aryl or heteroaryl carboxylic acids
US20040229846A1 (en) P-chiral phospholanes and phosphocyclic compounds and their use in asymmetric catalytic reactions
US20210340168A1 (en) OXA-SPIRODIPHOSPHINE LIGAND AND METHOD FOR ASYMMETRIC HYDROGENATION OF alpha, beta-UNSATURATED CARBOXYLIC ACIDS
Chen et al. Synthesis of Enantioenriched 1, 2‐cis Disubstituted Cycloalkanes by Convergent NiH Catalysis
EP0582668A1 (en) Chiral tridentate bis(phospholane) ligands
EP1503979B1 (en) Process for hydrogenating unactivated imines using ruthenium complexes as catalysts
JP3310056B2 (ja) 光学活性4−メチル−2−オキセタノンの製造方法
EP1601635B1 (en) Process for producing optically active alcohol in the presence of rhodium, a chiral ferrocenyldiphosphine and an optically active diamine
CN108530481B (zh) 一种吲哚酮膦酰肼化合物及其衍生物的制备方法
CN105384623B (zh) 手性α‑取代丙酸类化合物的制备方法
US7135582B2 (en) Transition metal complex having diphosphine compound as ligand
JPH0816078B2 (ja) 光学活性フェニル酢酸誘導体の製造法
CA2549929C (en) Asymmetric imine hydrogenation processes
EP2183259B1 (en) Paracyclophane-based ligands, their preparation and use in catalysis
JP5232374B2 (ja) 2位に置換基を有する光学活性キヌクリジノール類の製造方法
JP4713134B2 (ja) 光学活性アルキルフタリド類の製造方法
JPH0873400A (ja) 光学活性シクロプロパンカルボン酸誘導体の製造法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221220

Address after: 518129 room 603, building 4, Yunli intelligent park, No. 4, fanfa Road, Bantian street, Longgang District, Shenzhen City, Guangdong Province

Patentee after: SHENZHEN CATALYS TECHNOLOGY Co.,Ltd.

Patentee after: Shenzhen Green Kate Pharmaceutical Technology Co.,Ltd.

Address before: 518000 Guangdong Shenzhen Longgang District Bantian street Bantian developed road 4 Yun Li intelligent garden 4 6 floor 03 room.

Patentee before: SHENZHEN CATALYS TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right