CN109502578A - 一种氧化钒—石墨烯插层复合材料的制备方法 - Google Patents

一种氧化钒—石墨烯插层复合材料的制备方法 Download PDF

Info

Publication number
CN109502578A
CN109502578A CN201811480608.3A CN201811480608A CN109502578A CN 109502578 A CN109502578 A CN 109502578A CN 201811480608 A CN201811480608 A CN 201811480608A CN 109502578 A CN109502578 A CN 109502578A
Authority
CN
China
Prior art keywords
graphene
vanadium oxide
composite material
preparation
intercalation composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811480608.3A
Other languages
English (en)
Inventor
黄晓梅
蔡澎
张虹影
廖艳艳
章路
李志辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Chinese Academy of Sciences
Institute of Urban Environment of CAS
Original Assignee
University of Chinese Academy of Sciences
Institute of Urban Environment of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Chinese Academy of Sciences, Institute of Urban Environment of CAS filed Critical University of Chinese Academy of Sciences
Priority to CN201811480608.3A priority Critical patent/CN109502578A/zh
Publication of CN109502578A publication Critical patent/CN109502578A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Abstract

本发明公开了一种氧化钒—石墨烯插层复合材料的制备方法。制备方法为:称取一定量的石墨烯,用超声波振荡使其在过氧化氢溶液中充分分散,形成石墨烯分散液。在0~5℃冰水浴下,将一定量的五氧化二钒少量多次地加入到石墨烯分散液中,直至形成氧化钒—石墨烯混合体系。将混合体系在高速搅拌机上恒温70℃搅拌。调节体系的pH值,充分陈化反应后形成暗红色的氧化钒—石墨烯凝胶。将凝胶于高温条件下反应一定时间,制得氧化钒—石墨烯复合物。用乙醇淋洗并抽滤、干燥后待测。本发明的氧化钒—石墨烯插层复合材料,具有十分均匀的层状结构及很高的结晶度,可确保两种材料之间良好的电接触效率,且有效防止石墨烯因聚合而发生性能退化,将是一种良好的电磁屏蔽材料。

Description

一种氧化钒—石墨烯插层复合材料的制备方法
技术领域
本发明涉及无机化合物的制备方法技术领域,更具体涉及一种氧化钒—石墨烯插层复合材料的制备方法。
背景技术
石墨烯(graphene)由碳原子以sp2杂化连接形成二维蜂窝状网格片层结构,其中C—C之间的σ键键长仅有1.42 Å,是迄今发现的键能最强的键之一。石墨烯片层平面之外为π键,决定了片层之间的弱相互作用。石墨烯独特的二维结构和优异的电磁学、光学性质,如其作为电荷载体所表现出的巨大内在流动性、零有效质量,其可以维持比铜高六个数量级的电流密度、及对气体的不渗透等性质,吸引了世界科学家的高度关注。钒的氧化物与石墨烯类似,也具有很典型的层状结构,能生成多种配位多面体和氧化态,可制备得到多种晶相。灵活多变的结构使氧化钒在许多领域具有广泛的应用。其典型的层状结构利于有机基团或无机金属等客体分子或离子的嵌入和脱出,且其极低的电子热导率,使其在锂离子电池、电磁屏蔽材料等方面的应用倍受关注。石墨烯在电磁屏蔽材料方面已得到初步的应用。然而,将石墨烯制成电磁屏蔽材料时,通常需要加入物理粘合剂或助剂,制成具有一定粘性的胶状物粘附在电磁源(或保护箱体)的表面,所加入的粘合剂和助剂往往导电能力较差,降低了石墨烯的电磁屏蔽性能。
参考文献:
[1] Allen, M.J., V.C. Tung, and R.B. Kaner, Honeycomb carbon: a review ofgraphene. Chemical Reviews, 2010. 110(1): p. 132.
[2] Geim, A.K., Graphene: status and prospects. Science, 2009. 324(5934):p. 1530-4.
[3] Yin, H., et al., Morphology-control of VO2 (B) nanostructures inhydrothermal synthesis and their field emission properties. Applied SurfaceScience, 2011. 257(21): p. 8840-8845.
[4] Kudo, T., et al., Amorphous V2O5 /carbon composites aselectrochemical supercapacitor electrodes. Solid State Ionics, 2002. 152(8):p. 833-841。
发明内容
为了克服上述现有技术的不足,本发明提供了一种氧化钒—石墨烯插层复合材料的制备方法,将石墨烯与五氧化二钒进行反应。与现有的技术方法相比,一方面石墨烯与五氧化二钒两者互相“取长补短”、“优势互补”,形成了特殊的插层复合材料。另一方面,所生成的复合材料是在溶液中进行的,且生成物具有一定粘性,便于喷涂或刷涂于电磁源的表面,避免加入其它物理粘合剂。且在这种插层复合材料体系中,石墨烯与氧化钒形成十分均匀的层状结构,具有很高的结晶度,可确保两种材料之间良好的电接触效率,且有效防止石墨烯因聚合而发生性能退化,将是一种良好的电磁屏蔽材料。
本发明所采用的技术方案是:将一定量的石墨烯先在过氧化氢溶液中充分分散,形成石墨烯分散液,再在0~5℃冰水浴下与五氧化二钒形成氧化钒—石墨烯混合体系,调节混合体系的pH值,充分陈化后于高温条件下反应一定时间,制得氧化钒—石墨烯复合物。
附图说明
图1为本发明产品的透射电镜图。
图2为本发明产品的X射线衍射图。
图3为本发明产品的拉曼光谱图。
图4为本发明产品的红外吸收谱图。
具体实施方式
下面结合附图对本发明进一步说明。
称取一定量的石墨烯,用超声波振荡使其在过氧化氢溶液中充分分散,形成石墨烯分散液。在0~5℃冰水浴下,将一定量的五氧化二钒少量多次地加入到石墨烯分散液中,直至形成氧化钒—石墨烯混合体系。将混合体系在高速搅拌机上恒温70℃搅拌。调节体系的pH值,充分陈化反应后形成暗红色的氧化钒—石墨烯凝胶。将凝胶于高温条件下反应一定时间,制得氧化钒—石墨烯复合物。用乙醇淋洗并抽滤、干燥后待测。
实施例:
称取1.819 g石墨烯,并用超声波振荡使其在114.0 g 30%过氧化氢溶液中充分分散,形成石墨烯分散液。
准确称取1.819 g (10 mmol)五氧化二钒粉末,在0~5℃冰水浴下,将V2O5少量多次地加入到上述石墨烯分散液中,并不断搅拌,直至形成暗红色的氧化钒—石墨烯混合体系。将混合体系在高速搅拌机上恒温70℃搅拌2小时。
用盐酸溶液和氢氧钠溶液调节体系的pH值,将其置于50℃下不断振荡,充分陈化反应后形成暗红色的氧化钒—石墨烯凝胶。
将凝胶于180℃条件下反应10小时,制得墨绿色的氧化钒—石墨烯复合物。将固液混合物用乙醇淋洗并抽滤,于105℃干燥后进行表征。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种氧化钒—石墨烯插层复合材料的制备方法,其特征在于:所述制备方法为:称取一定量的石墨烯,用超声波振荡使其在过氧化氢溶液中充分分散,形成石墨烯分散液;在0~5℃冰水浴下,将一定量的五氧化二钒少量多次地加入到石墨烯分散液中,直至形成氧化钒—石墨烯混合体系;将混合体系在高速搅拌机上恒温70℃搅拌;调节体系的pH值,充分陈化反应后形成暗红色的氧化钒—石墨烯凝胶;将凝胶于高温条件下反应一定时间,制得氧化钒—石墨烯复合物;用乙醇淋洗并抽滤、干燥后待测。
2.根据权利要求1所述的一种氧化钒—石墨烯插层复合材料的制备方法,其特征在于:所述的反应物是石墨烯和过氧化氢溶液。
3.根据权利要求1所述的一种氧化钒—石墨烯插层复合材料的制备方法,其特征在于:所述的反应物是V2O5
4.根据权利要求1所述的一种氧化钒—石墨烯插层复合材料的制备方法,其特征在于:V2O5少量多次地加入到上述石墨烯分散液中,直至形成氧化钒—石墨烯混合体系。
5.根据权利要求1所述的一种氧化钒—石墨烯插层复合材料的制备方法,其特征在于:氧化钒—石墨烯凝胶在100~600℃的高温条件下反应。
6.根据权利要求1所述的一种氧化钒—石墨烯插层复合材料的制备方法,其特征在于:氧化钒—石墨烯凝胶在高温条件下反应时间为2~48小时。
7.根据权利要求1所述的一种氧化钒—石墨烯插层复合材料的制备方法,其特征在于:所述的干燥温度为60~150℃;所述的烘干时间为2~48小时。
8.根据权利要求1所述的一种氧化钒—石墨烯插层复合材料的制备方法,其特征在于:所述的高温条件可以是在高温裂解炉、管式炉或水热反应釜中高温反应。
CN201811480608.3A 2018-12-05 2018-12-05 一种氧化钒—石墨烯插层复合材料的制备方法 Pending CN109502578A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811480608.3A CN109502578A (zh) 2018-12-05 2018-12-05 一种氧化钒—石墨烯插层复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811480608.3A CN109502578A (zh) 2018-12-05 2018-12-05 一种氧化钒—石墨烯插层复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN109502578A true CN109502578A (zh) 2019-03-22

Family

ID=65751788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811480608.3A Pending CN109502578A (zh) 2018-12-05 2018-12-05 一种氧化钒—石墨烯插层复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN109502578A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322442A (zh) * 2022-08-23 2022-11-11 中国科学院深圳先进技术研究院 一种具有温度响应特性的电磁屏蔽复合材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208631A (zh) * 2011-04-27 2011-10-05 北京化工大学 超长单晶v2o5纳米线/石墨烯正极材料及制备方法
CN105870426A (zh) * 2016-06-12 2016-08-17 湖北大学 一种用于储能器件电极的v2o5纳米线纸及制备方法
CN106340633A (zh) * 2016-11-24 2017-01-18 杭州启澄科技有限公司 一种高性能锂离子电池用复合纳米材料及其制备方法
CN107611410A (zh) * 2017-09-30 2018-01-19 湖南国盛石墨科技有限公司 v2o5/石墨烯复合材料制备方法及电池正极

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208631A (zh) * 2011-04-27 2011-10-05 北京化工大学 超长单晶v2o5纳米线/石墨烯正极材料及制备方法
CN105870426A (zh) * 2016-06-12 2016-08-17 湖北大学 一种用于储能器件电极的v2o5纳米线纸及制备方法
CN106340633A (zh) * 2016-11-24 2017-01-18 杭州启澄科技有限公司 一种高性能锂离子电池用复合纳米材料及其制备方法
CN107611410A (zh) * 2017-09-30 2018-01-19 湖南国盛石墨科技有限公司 v2o5/石墨烯复合材料制备方法及电池正极

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QING HE ET AL.: "Single Crystalline V2O5 Nanowire/Graphene Composite as Cathode Material for Lithium-ion Batteries", 《ADVANCED MATERIALS RESEARCH》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322442A (zh) * 2022-08-23 2022-11-11 中国科学院深圳先进技术研究院 一种具有温度响应特性的电磁屏蔽复合材料及其制备方法和应用
CN115322442B (zh) * 2022-08-23 2024-02-09 中国科学院深圳先进技术研究院 一种具有温度响应特性的电磁屏蔽复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Zhang et al. Two‐dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications
Shi et al. Large-scale production of high-quality graphene sheets by a non-electrified electrochemical exfoliation method
Dobley et al. Manganese vanadium oxide nanotubes: synthesis, characterization, and electrochemistry
Xu et al. Two-dimensional V2O5 sheet network as electrode for lithium-ion batteries
Liu et al. Hierarchical carbon nanotube/carbon black scaffolds as short-and long-range electron pathways with superior Li-ion storage performance
WO2012055095A1 (zh) 复合电极材料及其制备方法和应用
CN109817382B (zh) 一种高稳定性石墨烯导电浆料的制备方法
Zhao et al. Electromagnetic wave absorbing properties of aligned amorphous carbon nanotube/BaFe12O19 nanorod composite
Zhang et al. Tin disulfide nanosheets with active-site-enriched surface interfacially bonded on reduced graphene oxide sheets as ultra-robust anode for lithium and sodium storage
CN111704138A (zh) 一种层层自组装的二维纳米复合材料的制备方法
CN106496554A (zh) 一种石墨烯/Fe3O4/聚苯胺三元吸波复合材料的制备方法
CN104261472A (zh) 一种五氧化二钒纳米带及其常温合成方法与应用
CN102698666A (zh) 基于红外线辐照的石墨烯/纳米粒子复合材料的制备方法
Sun et al. The optimum nanomicro structure of LiFePO4/ortho-rich polyacene composites
Sun et al. Synthesis and enhanced supercapacitor performance of carbon self‐doping graphitic carbon nitride/NiS electrode material
Hu et al. A stable and superior performance of Na3V2 (PO4) 3/C nanocomposites as cathode for sodium-ion batteries
Sun et al. Low-temperature synthesis of LiFePO4 nanoplates/C composite for lithium ion batteries
Li et al. Organosilicon-group-derived silica-ionogel electrolyte for lithium ion batteries
El-Desoky et al. Electrochemical performance of novel Li 3 V 2 (PO 4) 3 glass-ceramic nanocomposites as electrodes for energy storage devices
Krishnamurthy et al. A facile one pot synthesis of MoO3 on reduced graphene oxide (RGO) and electrochemical studies for energy applications
Zhang et al. Soft fully-printed rGO/Fe2O3-based supercapacitors for wearable electronics
Bai et al. Lattice water removal from nickel–cobalt Prussian blue analogues by polyaniline coating for flexible sodium ion supercapacitor devices
Yu et al. Self-supporting Na3V2 (PO4) 3 as cathode for aqueous zinc ion batteries
CN109502578A (zh) 一种氧化钒—石墨烯插层复合材料的制备方法
Wang et al. A New (De) Intercalation MXene/Bi Cathode for Ultrastable Aqueous Zinc‐Ion Battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190322

WD01 Invention patent application deemed withdrawn after publication