CN109459052B - 一种扫地机全覆盖路径规划方法 - Google Patents

一种扫地机全覆盖路径规划方法 Download PDF

Info

Publication number
CN109459052B
CN109459052B CN201811616404.8A CN201811616404A CN109459052B CN 109459052 B CN109459052 B CN 109459052B CN 201811616404 A CN201811616404 A CN 201811616404A CN 109459052 B CN109459052 B CN 109459052B
Authority
CN
China
Prior art keywords
sweeper
dimensional grid
equal
grid map
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811616404.8A
Other languages
English (en)
Other versions
CN109459052A (zh
Inventor
胡越黎
燕明
刘思齐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201811616404.8A priority Critical patent/CN109459052B/zh
Publication of CN109459052A publication Critical patent/CN109459052A/zh
Application granted granted Critical
Publication of CN109459052B publication Critical patent/CN109459052B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • G01C21/343Calculating itineraries, i.e. routes leading from a starting point to a series of categorical destinations using a global route restraint, round trips, touristic trips

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明涉及一种扫地机全覆盖路径规划方法。本方法的具体操作步骤为:1)地图构建,2)多角度扫线分割,3)贪婪初始化,和4)自适应遗传算法处理。本发明寻找扫地机转弯次数最少的分割角度,使扫地机具有更高的清扫效率。本发明优化了各子区域间的遍历路线,缩短了清扫时间,从而进一步提高其清扫效率。

Description

一种扫地机全覆盖路径规划方法
技术领域
本发明涉及机器人的自主定位与未知环境的地图构建和路径规划领域,具体涉及一种扫地机全覆盖路径规划方法。
背景技术
全覆盖路径规划算法是移动机器人智能导航中的重要分支,所谓全覆盖指的是要求机器人去寻找一条能够遍历当前环境中所有区域的路径。全覆盖路径规划算法在军事、农业等多个领域都有着广泛的应用。
研究扫地机全覆盖路径规划的目的就是要使扫地机更加高效的遍历清扫目标区域内所有空白区域,同时尽可能避免在已遍历区域重复行走。从而使得扫地机总的清扫路径最优,消耗能源最少。这对一个稳定高效的扫地机清扫系统来说意义重大。而现有的扫地机在实际清扫时存在着在某些区域重复行走的问题,降低了清扫效率。
发明内容
本发明的目的在于针对已有的技术的不足,提供一种能提高清扫效率的扫地机全覆盖路径规划方法。
为达到上述目的,本发明所采用的技术方案为:一种扫地机全覆盖路径规划方法,具体操作步骤如下:
1)地图构建:扫地机在未知室内环境行走,行走的同时获取扫地机附近的局部二维栅格地图my(1≤y≤n),扫地机在室内行走一遍后将已获取的局部二维栅格地图m1,m2,…mn组合成为整个室内环境的二维栅格地图M;
2)多角度扫线分割:扫地机通过不同角度扫线将二维栅格地图M分割成有限个子区域M1,M2,…Ma
3)贪婪初始化:对分割后的子区域M1,M2,…Ma进行贪婪初始化排序;
4)自适应遗传算法处理:将初始化后的各子区域模拟成旅行商模型,利用自适应遗传算法求取扫地机遍历各子区域的最优连接路径。
作为一种优选方案,所述步骤1)地图构建:扫地机利用深度相机传感器数据z1:t=z1,z2…zt和里程计数据u1:t=u1,u2…ut,通过联合概率分布:p(x1:t,my|z1:t,u1:t)=p(my|x1:t,z1:t)*p(x1:t|z1:t,u1:t)来计算机器人的运行轨迹x1:t=x1,x2…xt和局部二维栅格地图my(1≤y≤n),最后将所有二维局部栅格地图m1,m2,…mn组合成为整个室内环境的二维栅格地图M。
作为一种优选方案,所述步骤1)地图构建中在获得局部二维栅格地图my(1≤y≤n)后,可通过深度相机的三维传感器数据,取其在竖直方向上的最小深度数据Zmin=min(Z1,Z2…Zt)并将其映射到当前局部二维栅格地图my(1≤y≤n)当中,并利用牛顿迭代法对扫地机位姿约束进行优化处理,从而提高局部二维栅格地图my(1≤y≤n)与实际室内环境的一致性。
作为一种优选方案,所述步骤2)多角度扫线分割:扫地机以倾斜角为θ的扫线将二维栅格地图M分割成有限个子区域M1,M2,…Ma,对于二维栅格地图M,S(θ)为各子区域在θ+Π/2方向上的转弯次数总和,当S(θ)取得最小值时,此时的θ即为目标区域的分割方向。
作为一种优选方案,所述步骤3)贪婪初始化:对于分割完毕的各子区域,首先选择距离机器人当前位置最近的子区域Mcurrent并加入到种群中,对其他各个子区域进行搜索,找到距离Mcurrent最近的子区域Mnext,将其添加到自适应遗传算法中,将其作为计算的初始值,由此循环,继续寻找并添加下一个最近子区域,直到所有子区域都搜寻完毕并加入到了自适应遗传算法中作为初始值。
作为一种优选方案,所述步骤4)自适应遗传算法处理:交叉概率Pj实现了种群的迭代和更新,设置Pj的自适应机制如下:
Figure BDA0001925907070000021
式中Pji为个体i的交叉概率,初始时刻交叉概率较高,迭代后期则较小趋于稳定,Pjmin取值为0.5,fi为个体i的适应度,fmax为当前个体中最大的适应度,
Figure BDA0001925907070000031
为种群的平均适应度,Pjmax的取值随着迭代次数的变化而变化,如下所示:
Figure BDA0001925907070000032
式中G为最大迭代次数,g为当前迭代次数。
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著技术进步:由于采用多角度扫线分割方式,充分考虑了各种切割方向,从而寻找到了使得扫地机转弯次数最少的分割角度,使扫地机具有更高的清扫效率。由于采用了贪婪初始化与自适应遗传算法对各个子区域的联通问题进行求解,优化了各个子区域间的遍历路线,缩短了清扫时间,从而进一步提高扫地机的清扫效率。
由于在步骤a)中获得了局部二维栅格地图my(1≤y≤n)后,通过深度相机的三维传感器在竖直方向上的最小深度数据zmin=min(z1,z2…zt)并将其映射到当前局部二维栅格地图my(1≤y≤n)当中,并利用牛顿迭代法对扫地机位姿约束进行优化处理,提高了局部二维栅格地图my(1≤y≤n)与实际室内环境的一致性,从而提高了整个室内环境的二维栅格地图M的精确度。
附图说明
图1是本发明的流程框图。
具体实施方式
下面结合附图,详细描述本发明的优选实施例。
实施例一:参见图1本扫地机全,一种扫地机全覆盖路径规划方法,具体操作步骤如下:
1)地图构建:扫地机在未知室内环境行走,行走的同时获取扫地机附近的局部二维栅格地图my(1≤y≤n),扫地机在室内行走一遍后将已获取的局部二维栅格地图m1,m2,…mn组合成为整个室内环境的二维栅格地图M;
2)多角度扫线分割:扫地机通过不同角度扫线将二维栅格地图M分割成有限个子区域M1,M2,…Ma
3)贪婪初始化:对分割后的子区域M1,M2,…Ma进行贪婪初始化排序;
4)自适应遗传算法处理:将初始化后的各子区域模拟成旅行商模型,利用自适应遗传算法求取扫地机遍历各子区域的最优连接路径。
实施例二:本实施例与实施例一基本相同,特别之处如下:
1.所述步骤1)地图构建:扫地机利用深度相机传感器数据z1:t=z1,z2…zt和里程计数据u1:t=u1,u2…ut,通过联合概率分布:p(x1:t,my|z1:t,u1:t)=p(my|x1:t,z1:t)*p(x1:t|z1:t,u1:t)来计算机器人的运行轨迹x1:t=x1,x2…xt和局部二维栅格地图my(1≤y≤n),最后通过所有局部二维栅格地图m1,m2,…mn组合成为整个室内环境的二维栅格地图M。
2.所述步骤1)地图构建中在获得局部二维栅格地图my(1≤y≤n)后,可通过深度相机的三维传感器数据,取其在竖直方向上的最小深度数据zmin=min(z1,z2…zt)并将其映射到当前局部二维栅格地图my(1≤y≤n)当中,并利用牛顿迭代法对扫地机位姿约束进行优化处理,从而提高局部二维栅格地图my(1≤y≤n)与实际室内环境的一致性。
3.所述步骤2)多角度扫线分割:扫地机以倾斜角为θ的扫线将二维栅格地图M分割成有限个子区域M1,M2,…Ma,对于二维栅格地图M,S(θ)为各子区域在θ+П/2方向上的转弯次数总和,当S(θ)取得最小值时,此时的θ即为分割角度。
4.所述步骤3)贪婪初始化:对于分割完毕的各子区域,首先选择距离机器人当前位置最近的子区域Mcurrent并加入到种群中,对其他各个子区域进行搜索,找到距离Mcurrent最近的子区域Mnext,将其添加到自适应遗传算法中,将其作为计算的初始值,由此循环,继续寻找并添加下一个最近子区域,直到所有子区域都搜寻完毕并加入到了自适应遗传算法中作为初始值。
5.所述步骤4)自适应遗传算法处理:交叉概率Pj实现了种群的迭代和更新,设置Pj的自适应机制如下:
Figure BDA0001925907070000051
式中Pji为个体i的交叉概率,初始时刻交叉概率较高,迭代后期则较小趋于稳定,Pjmin取值为0.5,fi为个体i的适应度,fmax为当前个体中最大的适应度,
Figure BDA0001925907070000052
为种群的平均适应度,Pjmax的取值随着迭代次数的变化而变化,如下所示:
Figure BDA0001925907070000053
式中G为最大迭代次数,g为当前迭代次数。
实施例三:如图1所示,一种扫地机全覆盖路径规划方法,具体操作步骤如下:
步骤1,地图构建:扫地机在未知室内环境行走,行走的同时利用深度相机传感器数据z1:t=z1,z2…zt和里程计数据u1:t=u1,u2…ut,通过联合概率分布:p(x1:t,my|z1:t,u1:t)=p(my|x1:t,z1:t)*p(x1:t|z1:t,u1:t)来计算机器人的运行轨迹x1:t=x1,x2…xt和局部二维栅格地图my(1≤y≤n)。在获得局部二维栅格地图my(1≤y≤n)后,通过深度相机的三维传感器数据,取其在竖直方向上的最小深度数据zmin=min(z1,z2…zt)并将其映射到当前局部二维栅格地图my(1≤y≤n)当中,并利用牛顿迭代法对扫地机位姿约束进行优化处理,从而提高局部二维栅格地图my(1≤y≤n)与实际室内环境的一致性。最后将所有优化过的局部二维栅格地图m1,m2,…mn组合成为整个室内环境的二维栅格地图M。
步骤2,多角度扫线分割:扫地机以倾斜角为θ的扫线将二维栅格地图M分割成有限个子区域M1,M2,…Ma,对于二维栅格地图M,S(θ)为各子区域在θ+∏/2方向上的转弯次数总和,当S(θ)取得最小值时,此时的θ即为目标区域的分割方向。
步骤3,贪婪初始化:对于分割完毕的各子区域,首先选择距离机器人当前位置最近的子区域Mcurrent并加入到种群中,对其他各个子区域进行搜索,找到距离Mcurrent最近的子区域Mnext,将其添加到自适应遗传算法中,将其作为计算的初始值,由此循环,继续寻找并添加下一个最近子区域,直到所有子区域都搜寻完毕并加入到了自适应遗传算法中作为初始值。
步骤4,自适应遗传算法处理:将初始化后的各子区域模拟成旅行商模型,利用自适应遗传算法求取扫地机遍历各子区域的最优连接路径。交叉概率Pj实现了种群的迭代和更新,设置Pj的自适应机制如下:
Figure BDA0001925907070000061
式中Pji为个体i的交叉概率,初始时刻交叉概率较高,迭代后期则较小趋于稳定,Pjmin取值为0.5,fi为个体i的适应度,fmax为当前个体中最大的适应度,
Figure BDA0001925907070000062
为种群的平均适应度,Pjmax的取值随着迭代次数的变化而变化,如下所示:
Figure BDA0001925907070000063
式中G为最大迭代次数,g为当前迭代次数。
上述的实施例仅例示性说明本发明创造的原理及其功效,以及部分运用的实施例,而非用于限制本发明;应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (1)

1.一种扫地机全覆盖路径规划方法,其特征在于:具体操作步骤如下:
1)地图构建:扫地机在未知室内环境行走,行走的同时获取扫地机附近的局部二维栅格地图my,1≤y≤n,扫地机在室内行走一遍后将已获取的局部二维栅格地图m1,m2,...mn组合成为整个室内环境的二维栅格地图M;
2)多角度扫线分割:扫地机通过不同角度扫线将二维栅格地图M分割成有限个子区域M1,M2,...Ma
3)贪婪初始化:对分割后的子区域M1,M2,...Ma进行贪婪初始化排序;
4)自适应遗传算法处理:将初始化后的各子区域模拟成旅行商模型,利用自适应遗传算法求取扫地机遍历各子区域的最优连接路径;
所述步骤1)地图构建:扫地机利用深度相机传感器数据z1:t=z1,z2…zt和里程计数据u1:t=u1,u2…ut,通过联合概率分布:p(x1:t,my|z1:t,u1:t)=p(my|x1:t,z1:t)*p(x1:t|z1:t,u1:t)来计算机器人的运行轨迹x1:t=x1,x2…xt和局部二维栅格地图my,1≤y≤n,最后通过所有局部二维栅格地图m1,m2,...mn组合成为整个室内环境的二维栅格地图M;
所述步骤1)地图构建中在获得局部二维栅格地图my后,1≤y≤n,可通过深度相机的三维传感器数据,取其在竖直方向上的最小深度数据zmin=min(z1,z2…zt)并将其映射到当前局部二维栅格地图my当中,1≤y≤n,并利用牛顿迭代法对扫地机位姿约束进行优化处理,从而提高局部二维栅格地图my与实际室内环境的一致性,1≤y≤n;
所述步骤2)多角度扫线分割:扫地机以倾斜角为θ的扫线将二维栅格地图M分割成有限个子区域M1,M2,...Ma,对于二维栅格地图M,S(θ)为各子区域在θ+Π/2方向上的转弯次数总和,当S(θ)取得最小值时,此时的θ即为分割角度;
所述步骤3)贪婪初始化:对于分割完毕的各子区域,首先选择距离机器人当前位置最近的子区域Mcurrent并加入到种群中,对其他各个子区域进行搜索,找到距离Mcurrent最近的子区域Mnext,将其添加到自适应遗传算法中,将其作为计算的初始值,由此循环,继续寻找并添加下一个最近子区域,直到所有子区域都搜寻完毕并加入到了自适应遗传算法中作为初始值;
所述步骤4)自适应遗传算法处理:交叉概率Pj实现了种群的迭代和更新,设置Pj的自适应机制如下:
Figure FDA0003759998120000021
式中Pji为个体i的交叉概率,初始时刻交叉概率较高,迭代后期则较小趋于稳定,Pjmin取值为0.5,fi为个体i的适应度,fmax为当前个体中最大的适应度,
Figure FDA0003759998120000022
为种群的平均适应度,Pjmax的取值随着迭代次数的变化而变化,如下所示:
Figure FDA0003759998120000023
式中G为最大迭代次数,g为当前迭代次数。
CN201811616404.8A 2018-12-28 2018-12-28 一种扫地机全覆盖路径规划方法 Active CN109459052B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811616404.8A CN109459052B (zh) 2018-12-28 2018-12-28 一种扫地机全覆盖路径规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811616404.8A CN109459052B (zh) 2018-12-28 2018-12-28 一种扫地机全覆盖路径规划方法

Publications (2)

Publication Number Publication Date
CN109459052A CN109459052A (zh) 2019-03-12
CN109459052B true CN109459052B (zh) 2022-10-11

Family

ID=65615207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811616404.8A Active CN109459052B (zh) 2018-12-28 2018-12-28 一种扫地机全覆盖路径规划方法

Country Status (1)

Country Link
CN (1) CN109459052B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113390412B (zh) * 2020-03-11 2022-10-04 宁波方太厨具有限公司 机器人的全覆盖路径规划方法、系统、电子设备及介质
CN112817309B (zh) * 2020-12-30 2021-12-03 东南大学 一种几何折叠式机器人全覆盖路径及其生成方法
CN113673821A (zh) * 2021-07-14 2021-11-19 武汉光昱明晟智能科技有限公司 一种园区道路清扫车的智能调度方法及系统
CN115014362B (zh) * 2022-08-09 2022-11-15 之江实验室 一种基于合成单元的牛耕式全覆盖路径规划方法和装置
CN115857516B (zh) * 2023-03-02 2023-07-14 之江实验室 结合牛耕式运动与遗传算法的全覆盖路径规划方法和装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101778028B1 (ko) * 2010-12-20 2017-09-13 삼성전자주식회사 로봇 및 로봇의 경로 생성 방법
JP5867223B2 (ja) * 2012-03-26 2016-02-24 富士通株式会社 測位システム,サーバ,携帯端末,測位方法及びプログラム
CN102929286B (zh) * 2012-11-26 2015-05-27 北京理工大学 一种行星表面全局路径快速规划方法
HUP1300488A2 (en) * 2013-08-15 2015-03-02 Gps Tuner Kft Method for monitoring and navigating electric vehicles on a navigated route
CN104063745B (zh) * 2014-04-21 2017-05-03 河海大学 基于改进粒子群算法的多路径规划方法
CN107000207B (zh) * 2014-09-24 2021-05-04 三星电子株式会社 清洁机器人和控制清洁机器人的方法
CN104298239B (zh) * 2014-09-29 2016-08-24 湖南大学 一种室内移动机器人增强地图学习路径规划方法
CN104978607B (zh) * 2015-06-23 2018-04-20 浙江理工大学 一种基于贪心遗传算法的钵苗稀植移栽路径优化方法
CN105302136B (zh) * 2015-09-23 2018-02-23 上海物景智能科技有限公司 一种基于清洁机器人的区域分割方法
CN106595659A (zh) * 2016-11-03 2017-04-26 南京航空航天大学 城市复杂环境下多无人机视觉slam的地图融合方法
CN106780566B (zh) * 2016-11-11 2019-06-21 华南智能机器人创新研究院 一种基于Delta机器人下的目标跟踪的方法及系统
CN106679667B (zh) * 2016-12-30 2018-02-06 北京理工大学 面向多导航站接力导航的运动体路径规划方法
CN106500704A (zh) * 2016-12-30 2017-03-15 亿嘉和科技股份有限公司 一种基于改进遗传算法的机器人路径规划方法
EP3349088B1 (en) * 2017-01-13 2022-09-07 Tata Consultancy Services Limited Systems and method for turn angle constrained aerial path planning
CN106647774A (zh) * 2017-02-14 2017-05-10 南京罗普森智能科技有限公司 实现室内扫地机器人自主探索建图及自主路径覆盖的方法
CN108594813B (zh) * 2018-04-18 2021-04-09 苏州大学张家港工业技术研究院 一种大尺度室内环境下多清洁机器人任务分配方法

Also Published As

Publication number Publication date
CN109459052A (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
CN109459052B (zh) 一种扫地机全覆盖路径规划方法
CN105511457B (zh) 机器人静态路径规划方法
CN109947136B (zh) 一种面向无人机群体快速目标搜索的协同主动感知方法
CN111562785B (zh) 一种群集机器人协同覆盖的路径规划方法及系统
CN107085437A (zh) 一种基于eb‑rrt的无人机航迹规划方法
Lee Heterogeneous-ants-based path planner for global path planning of mobile robot applications
CN109540136A (zh) 一种多无人艇协同路径规划方法
CN111639811A (zh) 基于改进蚁群算法的多农机协同作业远程管理调度方法
CN103472828A (zh) 基于改进蚁群粒子群算法的移动机器人路径规划方法
CN110515380B (zh) 基于转弯权重约束的最短路径规划方法
CN105589461A (zh) 一种基于改进蚁群算法的泊车系统路径规划方法
CN109828579B (zh) 一种目标增量移动的移动机器人路径规划方法
CN112684807A (zh) 无人机集群三维编队方法
CN108981701A (zh) 一种基于激光slam的室内定位和导航方法
CN105372628A (zh) 一种基于Wi-Fi的室内定位导航方法
CN108981702A (zh) 一种多位置联合粒子滤波的车辆定位方法
CN113467456A (zh) 一种未知环境下用于特定目标搜索的路径规划方法
CN107655483B (zh) 基于增量式在线学习的机器人导航方法
CN110320919B (zh) 一种未知地理环境中的巡回机器人路径优化方法
CN106840169B (zh) 用于机器人路径规划的改进方法
CN103344248A (zh) 一种车辆导航系统的最佳路径计算方法
CN114020045A (zh) 一种基于改进蚁群算法的无人机航迹规划方法
CN110220510A (zh) 一种考虑地图准确性的水下机器人海底地形匹配导航路径规划方法
CN109523781A (zh) 一种基于卫星定位的路口预测方法
Zhang et al. Uncertainty reduction via heuristic search planning on hybrid metric/topological map

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant