CN109440075B - 一种提高离子注入GaN基稀磁半导体材料室温铁磁性的热退火方法 - Google Patents

一种提高离子注入GaN基稀磁半导体材料室温铁磁性的热退火方法 Download PDF

Info

Publication number
CN109440075B
CN109440075B CN201811283399.3A CN201811283399A CN109440075B CN 109440075 B CN109440075 B CN 109440075B CN 201811283399 A CN201811283399 A CN 201811283399A CN 109440075 B CN109440075 B CN 109440075B
Authority
CN
China
Prior art keywords
gan
temperature
ions
ion
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811283399.3A
Other languages
English (en)
Other versions
CN109440075A (zh
Inventor
梁李敏
刘彩池
李英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201811283399.3A priority Critical patent/CN109440075B/zh
Publication of CN109440075A publication Critical patent/CN109440075A/zh
Application granted granted Critical
Publication of CN109440075B publication Critical patent/CN109440075B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/40Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4
    • H01F1/401Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4 diluted
    • H01F1/404Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4 diluted of III-V type, e.g. In1-x Mnx As
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Magnetic Treatment Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明为一种提高离子注入GaN基稀磁半导体材料室温铁磁性的热退火方法。该方法首先将非磁性离子注入到GaN基底中,对该样品进行快速热退火处理,然后将磁性金属注入到经过退火处理的离子注入GaN基底中,对双离子注入的GaN样品进行第二次快速热退火处理,两次热退火处理都通入了相同的保护气体,升温速率和保温时间根据离子注入的离子种类进行设定。该方法有利于最大程度的激活注入离子活性,消除GaN基稀磁半导体材料中的离子注入损伤,增加自旋电子与载流子之间的交互作用,从而提高了GaN基稀磁半导体材料的室温铁磁性。

Description

一种提高离子注入GaN基稀磁半导体材料室温铁磁性的热退 火方法
技术领域
本发明涉及一种利用两步热退火工艺恢复GaN基稀磁半导体离子注入损伤及提高稀磁半导体室温铁磁性的方法。
背景技术
当代和未来都是信息主宰的社会,而支持信息技术存在和发展的两大决定性因素分别是信息的存储和信息的处理。信息的存储是利用了磁性材料中电子的自旋属性,而信息的存储则依靠半导体芯片中电子的电荷属性得以实现。稀磁半导体是将磁性过渡族金属离子或稀土离子部分代替半导体中的非磁性阳离子之后而形成的半导体材料,其具有电子和电荷的双重属性,是制备高效、低功耗的自旋电子器件的重要材料之一。
要制备具有实用化的电子自旋器件,稀磁材料的居里温度高于室温是一个必要条件,最近的理论和实验研究表面过渡族金属和稀土元素掺杂的GaN基材料最有希望获得室温以上的铁磁性。另外,低掺杂浓度高铁磁性是稀磁半导体材料应用的另一必要条件。离子注入过程是一个将不同磁性离子引入GaN基材料中的简便方法,不受生长条件的限制,且离子注入可以有效的引入杂质和缺陷,已有研究表明杂质和缺陷的存在可以有效的提高GaN基稀磁半导体的铁磁性。但是直接将磁性离子注入到GaN基材料中,并不能够获得较高的室温铁磁性,离子注入引入的大量的注入损伤,降低了自旋电子与载流子之间的相互作用。目前,离子注入后的GaN基稀磁半导体材料都要经过热退火处理,一般采用的退火方法是一步快速热退火,即直接将温度升高到设定温度,保温一段时间,然后进行降温处理。目前的研究表明采用磁性金属和非磁性离子共同注入可以有效提高GaN基稀磁半导体材料的室温铁磁性,但是磁性金属和非磁性离子在GaN晶格中的扩散温度不同,因此一步热退火处理技术并不能够完全激活注入离子,直接限制了GaN基稀磁半导体材料室温铁磁性的进一步提高。
发明内容
本发明的目的为针对如何进一步提高离子注入GaN基稀磁半导体材料的室温铁磁性的问题,提供一种用于磁性金属和非磁性离子共同注入GaN基稀磁半导体材料的热退火处理方法。该方法为磁性金属和非磁性离子共同注入的GaN基稀磁半导体材料的制备采用两次离子注入的方法,根据磁性金属和非磁性原子的注入能量和剂量均不同,首先将非磁性离子注入到GaN基底中,对该样品进行快速热退火处理,然后将磁性金属注入到经过退火处理的离子注入GaN基底中,对双离子注入的GaN样品进行第二次快速热退火处理,两次热退火处理都通入了相同的保护气体,升温速率和保温时间根据离子注入的离子种类进行设定。该方法有利于最大程度的激活注入离子活性,消除GaN基稀磁半导体材料中的离子注入损伤,增加自旋电子与载流子之间的交互作用,从而提高了GaN基稀磁半导体材料的室温铁磁性。
本发明的技术方案为:
一种提高离子注入GaN基稀磁半导体材料室温铁磁性的热退火方法,包括如下步骤:
第一步,采用金属有机物气相外延方法(MOCVD)在蓝宝石衬底上生长GaN薄膜材料;GaN薄膜材料的厚度为2-4μm;
第二步,对生长的GaN薄膜进行第一次离子注入:
对GaN基底进行非磁性离子注入,非注入能量在50KeV-100KeV,注入剂量为1x1014/cm-2~1x1015/cm-2;然后进行第一次退火,退火温度设为500℃~700℃,退火保温时间设为30分钟~60分钟,得到非磁性离子掺杂的GaN薄膜材料;
第三步,对上一步得到的薄膜材料进行第二次磁性金属离子注入,磁性金属离子为稀土金属离子,磁性金属离子的注入能量为200KeV-400KeV,注入剂量为1x1015/cm-2~1x1017/cm-2;磁性离子注入后,对样品进行第二次快速热退火,热退火温度为700℃~1000℃,退火温度为30秒~5分钟;
最后,得到非磁性离子和磁性离子共同掺杂的GaN基稀磁半导体材料。
所述的非金属离子具体为C或O;
所述的稀土金属离子具体为Gd,Dy,Sm或Er。
所述的第一退火或第二次退火时,温度从室温升到设定温度,升温速率为75℃/秒-150℃/秒;保温结束后温度从设定温度降温到室温,降温速率为200℃/分钟。
本发明的实质性特点为:
本发明经过大量的研究和实验,开创性的将当前技术中使用的一次退火改为了两次退火;首先对GaN基底进行非磁性离子注入,非磁性离子一般为C和O等,由于C和O的质量较轻,为了使两种离子在GaN基底中的分布重合,在第一次注入中非磁性离子注入较低的能量,注入能量在50KeV-100KeV;然后,对第一次非磁性离子注入并退火后的样品进行第二次磁性金属离子注入,由于磁性金属离子为稀土金属离子,稀土金属质量较重,磁性金属离子的注入能量为200KeV-400KeV。而在退火时,第一次非磁性离子注入后,由于非磁性离子的原子半径较小,离子注入进入GaN基底后可以处于GaN晶格的间隙位置或取代GaN晶格的N原子,根据注入离子在GaN基底中的扩散温度,退火温度设为500℃~700℃;第二次磁性离子注入后,对样品进行第二次快速热退火处理,磁性金属离子为稀土金属离子,稀土金属离子半径较大,离子注入后在GaN晶格中一般取代Ga的位置,需要经过热退火激活,热退火温度为700℃~1000℃。
本发明的有益效果为
本发明可以最大程度的激活非磁性离子和稀土离子,使其占据GaN晶格的位置,修复离子注入在GaN晶格中引入的注入损伤。热退火过程中非磁性离子一般取代GaN晶格中N的位置,而稀土离子取代GaN晶格中Ga的位置,因此非磁性离子与磁性稀土离子的交互作用增强,提高了双离子共注GaN基稀磁半导体的室温铁磁性,增长率可达30%。
附图说明
图1是本发明提供的采用磁性金属和非磁性金属共同离子注入GaN基稀磁半导体材料的热退火方法流程图;
图2是依照本发明实施例制备的GaN:Dy+C稀磁半导体材料在室温下的M-H曲线图。
具体实施方案
下面具体以非磁性C离子和稀土Dy离子共同注入GaN基稀磁半导体材料的热退火为例来详细说明其处理过程。
实施例1
第一步,准备用于离子注入的GaN薄膜材料。GaN基底材料是在蓝宝石衬底(0001)面上采用金属有机物外延生长技术(MOCVD)外延生长的GaN薄膜,GaN薄膜的厚度为3μm,GaN薄膜材料为非故意掺杂的n型GaN。
第二步,对GaN薄膜材料进行第一次离子注入。离子注入前先对GaN薄膜材料用丙酮和酒精反复清洗,以防在离子注入过程中GaN表面的杂质进入GaN晶格。采用离子注入机(中国电子科技集团公司第四十八研究所研制的LC-4型离子注入机)对GaN薄膜进行离子注入,离子注入过程在室温下进行,注入的离子为非金属C离子,离子注入角度与GaN表面呈7°角,以防在晶格中形成沟道效应,C离子的注入能量为150KeV,注入剂量为1x1014/cm2
第三步,对非金属C离子注入的GaN薄膜材料进行第一次快速热退火处理。热退火处理在快速热退火炉中进行,退火过程中采用氮气作为保护气体,退火过程中将离子注入的GaN样品表面用未注入的GaN样品覆盖,退火温度为600℃,升温速率为100℃/秒,在600℃时保温30min,再自然冷却到室温。
第四步,对非金属C离子注入的样品进行第二次离子注入。注入的离子为稀土Dy离子,离子注入角度与GaN表面呈7°角,以防在GaN晶格中形成沟道效应,离子注入能量为300KeV,注入剂量为7x1014/cm3
第五步,对稀土Dy离子和非金属C离子注入的GaN样品进行第二次快速热退火处理。热退火处理在相同的快速热退火炉中进行,退火过程中采用氮气作为保护气体,退火过程中将离子注入的GaN样品表面用未注入的GaN样品覆盖,退火温度为800℃,升温速率为150℃/秒,在800℃时保温3min,再自然冷却到室温。(说明:第二次热退火处理过程温度较高,为了有效抑制GaN晶格中N原子的挥发,热退火保温时间设置为不大于5min。)
第六步,对两次热退火后的离子共注GaN样品进行室温铁磁性测量。测试设备采用综合物性测试系统(PPMS),磁性测量结果与一次热退火的C和Dy共注GaN样品的磁性进行比较,图2显示了两种方法制备样品的磁化强度随磁场强度的变化曲线,发现两种方法制备的样品都具有室温铁磁性,但是两次热退火后的C和Dy离子共注GaN样品比仅一次热退火的GaN基稀磁样品的饱和磁化强度增加了约5emu,增加幅度约为一次热退火样品饱和磁化强度的30%。
实施例2
其它步骤同实施例1,不同之处为注入的磁性金属离子由稀土离子Dy改为稀土离子Gd。得到的样品的饱和磁化强度的增加百分比与实施例1近似。
以上实施例是对本发明的举例,依照本发明的原理,对于其它磁性金属离子和非磁性离子共同注入的GaN基稀磁半导体材料都可以采用该退火过程处理,不同材料对应的退火过程略有不同,表现出高室温铁磁性的退火温度也不同,但都包括在该发明之内。
本发明未尽事宜为公知技术。

Claims (1)

1.一种提高离子注入GaN基稀磁半导体材料室温铁磁性的热退火方法,其特征为该方法包括如下步骤:
第一步,采用金属有机物气相外延方法(MOCVD)在蓝宝石衬底上生长GaN薄膜材料;GaN薄膜材料的厚度为2-4μm;
第二步,对生长的GaN薄膜进行第一次离子注入:
对GaN基底进行非磁性离子注入,非磁性离子注入能量在50KeV-100KeV,注入剂量为1x1014/cm2 ~1x1015/cm2 ;然后进行第一次退火,退火温度设为500oC~700℃,退火保温时间设为30分钟~60分钟,得到非磁性离子掺杂的GaN薄膜材料;注入设备为LC-4型离子注入机;
第三步,对上一步得到的薄膜材料进行第二次磁性金属离子注入,磁性金属离子为稀土金属离子,磁性金属离子的注入能量为200KeV-400KeV,注入剂量为1x1015/cm2 ~1x1017/cm2 ;磁性离子注入后,对样品进行第二次快速热退火,热退火温度为700oC~1000℃,退火时间为30秒~3分钟;所述的退火在快速热退火炉进行;
最后,得到非磁性离子和磁性离子共同掺杂的GaN基稀磁半导体材料;
所述的非磁性离子具体为C;
所述的稀土金属离子具体为Gd,Dy,Sm或Er;
所述的第一次退火或第二次退火时,温度从室温升到设定温度,升温速率为75℃/秒-150℃/秒;保温结束后温度从设定温度降温到室温,降温速率为200℃/分钟。
CN201811283399.3A 2018-10-31 2018-10-31 一种提高离子注入GaN基稀磁半导体材料室温铁磁性的热退火方法 Expired - Fee Related CN109440075B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811283399.3A CN109440075B (zh) 2018-10-31 2018-10-31 一种提高离子注入GaN基稀磁半导体材料室温铁磁性的热退火方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811283399.3A CN109440075B (zh) 2018-10-31 2018-10-31 一种提高离子注入GaN基稀磁半导体材料室温铁磁性的热退火方法

Publications (2)

Publication Number Publication Date
CN109440075A CN109440075A (zh) 2019-03-08
CN109440075B true CN109440075B (zh) 2020-12-22

Family

ID=65549620

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811283399.3A Expired - Fee Related CN109440075B (zh) 2018-10-31 2018-10-31 一种提高离子注入GaN基稀磁半导体材料室温铁磁性的热退火方法

Country Status (1)

Country Link
CN (1) CN109440075B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119742A1 (en) * 2014-02-07 2015-08-13 Sunedison Semiconductor Limited Methods for preparing layered semiconductor structures
JP2018010946A (ja) * 2016-07-12 2018-01-18 富士電機株式会社 半導体装置の製造方法
CN107833727A (zh) * 2017-11-22 2018-03-23 杨晓艳 一种稀磁半导体材料制备方法
CN108335982A (zh) * 2018-01-11 2018-07-27 北京华碳科技有限责任公司 一种GaN基HEMT器件的制作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7081664B2 (en) * 2003-01-22 2006-07-25 Group Iv Semiconductor Inc. Doped semiconductor powder and preparation thereof
CN101303978A (zh) * 2008-07-04 2008-11-12 西安电子科技大学 适用于氮化镓器件n型欧姆接触的制作方法
CN104979283B (zh) * 2014-04-03 2020-06-19 中国科学院微电子研究所 Ti-igbt的制作方法
CN107275448A (zh) * 2017-05-09 2017-10-20 华灿光电股份有限公司 一种发光二极管的外延片及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119742A1 (en) * 2014-02-07 2015-08-13 Sunedison Semiconductor Limited Methods for preparing layered semiconductor structures
JP2018010946A (ja) * 2016-07-12 2018-01-18 富士電機株式会社 半導体装置の製造方法
CN107833727A (zh) * 2017-11-22 2018-03-23 杨晓艳 一种稀磁半导体材料制备方法
CN108335982A (zh) * 2018-01-11 2018-07-27 北京华碳科技有限责任公司 一种GaN基HEMT器件的制作方法

Also Published As

Publication number Publication date
CN109440075A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
CN105789047B (zh) 一种增强型AlGaN/GaN高电子迁移率晶体管的制备方法
US9312135B2 (en) Method of manufacturing semiconductor devices including generating and annealing radiation-induced crystal defects
Evans Jr et al. Redistribution of Cr during annealing of 80Se‐implanted GaAs
Doyle et al. Electrically active point defects in n-type 4H–SiC
US9536741B2 (en) Method for performing activation of dopants in a GaN-base semiconductor layer by successive implantations and heat treatments
CN105140283A (zh) 一种碳化硅MOSFETs功率器件及其制作方法
Simoen et al. Defect engineering for shallow n‐type junctions in germanium: Facts and fiction
Oliviero et al. Helium implantation defects in SiC: A thermal helium desorption spectrometry investigation
Lai et al. Comparison between deep level defects in GaAs induced by gamma, 1 MeV electron, and neutron irradiation
CN109440075B (zh) 一种提高离子注入GaN基稀磁半导体材料室温铁磁性的热退火方法
CN107523879B (zh) 一种离子注入缺陷诱导的室温铁磁性ZnO单晶薄膜制备方法
JP7058337B2 (ja) Al/Be共注入により炭化ケイ素をp型ドーピングする方法
CN101471244B (zh) 一种制备稀磁半导体薄膜的方法
CN105206513A (zh) 用氮和硼改善4H-SiC MOSFET反型层迁移率的方法
Zhang et al. The magnetic and structure properties of room-temperature ferromagnetic semiconductor (Ga, Mn) N
Kao et al. Native oxide encapsulation for annealing boron‐implanted Hg1− x Cd x Te
Llewellyn et al. Implantation and annealing of Cu in InP for electrical isolation: microstructural characterisation
CN109148274A (zh) 一种用于SiC器件的离子注入方法
CN106469647B (zh) 一种碳化硅半导体器件的掺杂制造工艺
CN107833727A (zh) 一种稀磁半导体材料制备方法
Khachariya et al. Adroit Materials Final Scientific/Technical Report SELECTIVE AREA DOPING FOR NITRIDE POWER DEVICES
Kao et al. 11B+ implantation and postimplant anneal studies in Hg1− x CdxTe
Acco et al. Avoiding end-of-range dislocations in ion-implanted silicon
Simoen et al. * Imec, Leuven, Belgium,† Institute of Microelectronics of Chinese Academy of Sciences (IMECAS), Beijing, PR China,‡ University of Chinese Academy of Sciences (UCAS), Beijing, PR China
Heo et al. Ultrashallow arsenic n+/p junction formed by AsH3 plasma doping

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201222