CN101471244B - 一种制备稀磁半导体薄膜的方法 - Google Patents

一种制备稀磁半导体薄膜的方法 Download PDF

Info

Publication number
CN101471244B
CN101471244B CN2007103042152A CN200710304215A CN101471244B CN 101471244 B CN101471244 B CN 101471244B CN 2007103042152 A CN2007103042152 A CN 2007103042152A CN 200710304215 A CN200710304215 A CN 200710304215A CN 101471244 B CN101471244 B CN 101471244B
Authority
CN
China
Prior art keywords
ion
film
thin
rare earth
film material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007103042152A
Other languages
English (en)
Other versions
CN101471244A (zh
Inventor
王晓亮
姜丽娟
刘超
肖红领
冉军学
王翠梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN2007103042152A priority Critical patent/CN101471244B/zh
Publication of CN101471244A publication Critical patent/CN101471244A/zh
Application granted granted Critical
Publication of CN101471244B publication Critical patent/CN101471244B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

本发明公开了一种制备稀磁半导体薄膜的方法,该方法包括:选择一III族氮化物半导体薄膜材料;在该半导体薄膜材料表面采用双能态离子注入法注入稀土金属离子;将注入稀土金属离子后的样品送入快速退火炉在氮气氛中退火。利用本发明,获得了具有较好的磁学性能和半导体性能的稀磁半导体薄膜。

Description

一种制备稀磁半导体薄膜的方法
技术领域
本发明涉及稀磁半导体薄膜制备技术领域,特别指一种采用稀土元素双能态离子注入法制备稀磁半导体薄膜的方法。
背景技术
稀磁半导体材料是近年来在自旋电子学研究领域中受到广泛关注的研究热点。III族氮化物半导体材料具有优良的半导体性能和大规模产业化应用的基础,与磁学性能相结合可能研制出集成磁、光、电特性于一体的新型自旋电子器件,如自旋隧穿二极管,自旋发光二极管,在量子计算、量子通讯等现代信息技术领域中有十分重要的应用前景。
但是由于磁性金属元素在半导体材料中的溶解度低,掺杂浓度较高时容易有第二相析出,难以同时获得较好的磁学性能和半导体性能。在本发明以前,经常采用制备稀磁半导体薄膜的方法有:用外延或离子注入法制备过渡族金属元素如Mn、Cr、Fe等掺杂的稀磁半导体薄膜。
由于过渡族金属元素磁矩较小,且在半导体材料中溶解度很低,掺杂浓度较高时,容易在制备过程中形成第二相,导致材料的晶体质量下降,半导体性能变差。而掺杂浓度较低时,稀磁半导体薄膜的磁性非常微弱,给自旋电子器件的制作带来了难度。
而稀土金属离子掺入III族氮化物半导体中,能够对周围的三族阳离子和氮离子产生长程自旋极化作用,在极低掺杂浓度(<0.1%)下获得较强的磁性,且更易于进行n型或p型掺杂。
发明内容
(一)要解决的技术问题
有鉴于此,本发明的主要目的在于提供一种采用稀土元素双能态离子注入法制备稀磁半导体薄膜的方法,以获得具有较好的磁学性能和半导体性能的稀磁半导体薄膜。
(二)技术方案
为达到上述目的,本发明提供了一种制备稀磁半导体薄膜的方法,该方法包括:
选择一III族氮化物半导体薄膜材料;
在该半导体薄膜材料表面采用双能态离子注入法注入稀土金属离子;
将注入稀土金属离子后的样品送入快速退火炉在氮气氛中退火。
上述方案中,所述选择一III族氮化物半导体薄膜材料的步骤,通过以下方式实现:采用金属有机物气相沉积法或分子束外延方法,在衬底上外延生长一III族氮化物半导体薄膜层。
上述方案中,所述半导体薄膜材料是氮化镓、氮化铝、氮化铟及其合金。
上述方案中,所述半导体薄膜材料的厚度为1至5μm。
上述方案中,所述离子注入时样品温度为300至500℃,注入的稀土金属离子为钆(Gd)离子或钐(Sm)离子,双能态注入的低端能量值为150至300KeV,对应的剂量为1012至1014cm-2,高端能量值为350至550KeV,对应的剂量为1012至1014cm-2
上述方案中,所述离子注入之后的退火温度为700至1000℃,退火时间为4至6分钟。
(三)有益效果
从上述技术方案可以看出,本发明具有以下有益效果:
1、本发明提供的这种制备稀磁半导体薄膜的方法,通过采用双能态离子注入将稀土金属离子到III族氮化物半导体薄膜表面,并控制离子注入时的参数,如注入时的温度、能量和剂量,以及退火温度和时间,来获得晶体质量较好的稀磁半导体薄膜。
2、本发明提供的这种制备稀磁半导体薄膜的方法,利用稀土金属离子对三族氮化物半导体晶格原子的长程自旋极化作用,能够在微量掺杂的情况下,同时获得较强的磁学性能并保持良好的晶格质量和半导体性能,进而获得了具有较好的磁学性能和半导体性能的稀磁半导体薄膜。
附图说明
为进一步说明本发明的内容,以下结合附图对本发明作一详细的描述,其中,
图1是本发明提供的制备稀磁半导体薄膜的方法流程图;
图2是本发明提供的稀土元素双能态离子注入制备稀磁半导体薄膜的机构示意图;
图3是本发明提供的Sm离子注入GaN基稀磁半导体的粉末X射线衍射图;
图4是本发明提供的Sm离子注入GaN基稀磁半导体在10K和300K温度下的磁滞回线;
图5是本发明提供的Sm离子注入GaN基稀磁半导体在场冷(FC)和零场冷(ZFC)条件下磁化强度随温度变化的曲线图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明的关键在于通过选择恰当的稀土金属离子,控制离子注入时的参数如注入温度、能量、剂量,以及注入后样品的退火处理。采用双能态离子注入技术,使注入后的稀土离子在半导体薄膜中纵向均匀分布,并利用稀土元素离子对三族氮化物半导体晶格原子的长程自旋极化作用,在微量掺杂的情况下,仍能得到相对较强的磁学性能。
如图1所示,图1是本发明提供的制备稀磁半导体薄膜的方法流程图,该方法包括以下步骤:
步骤101:选择一III族氮化物半导体薄膜材料;
步骤102:在该半导体薄膜材料表面采用双能态离子注入法注入稀土金属离子;
步骤103:将注入稀土金属离子后的样品送入快速退火炉在氮气氛中退火。
上述步骤101中所述选择一III族氮化物半导体薄膜材料的步骤,通过以下方式实现:采用金属有机物气相沉积法或分子束外延方法,在衬底上外延生长一III族氮化物半导体薄膜层。所述半导体薄膜材料是氮化镓、氮化铝、氮化铟及其合金,所述半导体薄膜材料的厚度为1至5μm。
上述步骤102中所述离子注入时样品温度为300至500℃,注入的稀土金属离子为钆(Gd)离子或钐(Sm)离子,双能态注入的低端能量值为150至300KeV,对应的剂量为1012至1014cm-2,高端能量值为350至550KeV,对应的剂量为1012至1014cm-2
上述步骤103中所述离子注入之后的退火温度为700至1000℃,退火时间为4至6分钟。
请参照图2所示,图2是本发明提供的稀土元素双能态离子注入制备稀磁半导体薄膜的机构示意图。以下结合图2举具体的实施例,对本发明提供的制备稀磁半导体薄膜的方法进一步详细说明。
在图2所示的这个实施例中,该采用稀土元素双能态离子注入制备稀磁半导体的方法,包括如下步骤:
采用金属有机物气相沉积法或分子束外延,在适合的衬底10上外延氮化镓薄膜层20,厚度约为1至5μm;
然后在氮化镓(GaN)薄膜表面离子注入稀土族钐(Sm)离子30,注入时样品温度保持在300至500℃,注入的低端能量值约为150至300KeV,对应的剂量约1012至1014cm-2,高端能量值约为350至550KeV,对应的剂量约1012至1014cm-2
最后将注入后的样品送入快速退火炉在氮气氛中退火4至6分钟,退火温度约700至1000℃。
对由以上步骤获得的样品进行样品测试,证实用此方法制备的氮化镓基稀磁半导体材料为单晶体,且铁磁转变温度(Curie temperature)超过室温。如图3、图4和图5所示,使用粉末X射线衍射法证实此材料中只有氮化镓晶相的(0002)和(0004)峰,以及蓝宝石衬底的(0006)峰存在,没有发现其它第二相的衍射峰。超导量子干涉仪(SQUID)测试方法证实样品在10K和300K下有明显的磁滞现象,饱和磁化强度和矫顽力分别为500emu/g、135Oe(10K)和416emu/g、90Oe(300K)。磁化强度随温度的变化曲线也证实,FC和ZFC曲线在所测量的温度范围(5K至350K)内都没有交汇,证实了样品的铁磁转变温度(Curie temperature)超过室温。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种制备稀磁半导体薄膜的方法,其特征在于,该方法包括:
选择一III族氮化物半导体薄膜材料,该III族氮化物半导体薄膜材料是氮化镓、氮化铝、氮化铟及其合金;
在该半导体薄膜材料表面采用双能态离子注入法注入稀土金属离子;其中,所述离子注入时样品温度为300至500℃,注入的稀土金属离子为钆Gd离子或钐Sm离子,双能态注入的低端能量值为150至300KeV,对应的剂量为1012至1014cm-2,高端能量值为350至550KeV,对应的剂量为1012至1014cm-2
将注入稀土金属离子后的样品送入快速退火炉在氮气氛中退火。
2.根据权利要求1所述的制备稀磁半导体薄膜的方法,其特征在于,所述选择一III族氮化物半导体薄膜材料的步骤,通过以下方式实现:
采用金属有机物气相沉积法或分子束外延方法,在衬底上外延生长一III族氮化物半导体薄膜层。
3.根据权利要求1所述的制备稀磁半导体薄膜的方法,其特征在于,所述半导体薄膜材料的厚度为1至5μm。
4.根据权利要求1所述的制备稀磁半导体薄膜的方法,其特征在于,所述离子注入之后的退火温度为700至1000℃,退火时间为4至6分钟。
CN2007103042152A 2007-12-26 2007-12-26 一种制备稀磁半导体薄膜的方法 Expired - Fee Related CN101471244B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007103042152A CN101471244B (zh) 2007-12-26 2007-12-26 一种制备稀磁半导体薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007103042152A CN101471244B (zh) 2007-12-26 2007-12-26 一种制备稀磁半导体薄膜的方法

Publications (2)

Publication Number Publication Date
CN101471244A CN101471244A (zh) 2009-07-01
CN101471244B true CN101471244B (zh) 2011-12-21

Family

ID=40828576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007103042152A Expired - Fee Related CN101471244B (zh) 2007-12-26 2007-12-26 一种制备稀磁半导体薄膜的方法

Country Status (1)

Country Link
CN (1) CN101471244B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710524B (zh) * 2009-12-02 2011-08-17 中国科学院半导体研究所 一种制备InAs室温铁磁性半导体材料的方法
CN102108483A (zh) * 2011-03-10 2011-06-29 中国科学院半导体研究所 制备Mn掺杂InP:Zn基稀磁半导体的方法
CN107833727A (zh) * 2017-11-22 2018-03-23 杨晓艳 一种稀磁半导体材料制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1585049A (zh) * 2003-08-22 2005-02-23 中国科学院半导体研究所 多能态离子注入法制备磁性半导体的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1585049A (zh) * 2003-08-22 2005-02-23 中国科学院半导体研究所 多能态离子注入法制备磁性半导体的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M.A.Khaderbad.effect of annealing on the magnetic properties of Gd focused ion beam implanted GaN.《applied physics letters》.2007,第91卷(第7期), *
林玲等.GaN基稀磁半导体的离子注入研究动态.《材料导报》.2004,第18卷(第9期),67-71. *

Also Published As

Publication number Publication date
CN101471244A (zh) 2009-07-01

Similar Documents

Publication Publication Date Title
Norton et al. Ferromagnetism in Mn-implanted ZnO: Sn single crystals
Theodoropoulou et al. Use of ion implantation to facilitate the discovery and characterization of ferromagnetic semiconductors
JP6618481B2 (ja) ドープト希土類窒化物材料および同材料を含むデバイス
Haneda et al. Preparation and characterization of Fe-based III-V diluted magnetic semiconductor (Ga, Fe) As
Kane et al. Magnetic and optical properties of Ga1− xMnxN grown by metalorganic chemical vapour deposition
CN101471244B (zh) 一种制备稀磁半导体薄膜的方法
Xia et al. Tunable giant exchange bias in the single-phase rare-earth–transition-metal intermetallics YM n 12− x F ex with highly homogenous intersublattice exchange coupling
CN102544093B (zh) 半导体场效应结构、及其制备方法和用途
Hite et al. Effect of Si Co doping on ferromagnetic properties of GaGdN
US20110186948A1 (en) Semiconductor-Based Magnetic Material
Newman et al. Recent progress towards the development of ferromagnetic nitride semiconductors for spintronic applications
CN101328611B (zh) 一种低场超大磁致电阻锰氧化物外延膜及其制备方法
CN102655209B (zh) 一种磁性锗硅GeSi 量子环及其制备方法
CN100435281C (zh) 制备GaN基稀磁半导体材料的方法
CN100389954C (zh) 一种成分调制的钙钛矿类半金属复合多层膜及其用途
Isikawa et al. On the correlation between the magnetic structure and the electrical properties of EuB6
Xi-Jun et al. Magnetic and transport properties of ferromagnetic semiconductor GaDyN thin film
JP2001358007A (ja) 酸化物超電導バルクマグネット
Coşkun et al. Effects of annealing time on the magnetic properties of a Bi1. 7Pb0. 29Gd0. 01Sr2Ca3Cu4O12+ y superconductor prepared by the melt-quenching method
Sun et al. Room-temperature ferromagnetism and in-plane magnetic anisotropy characteristics of nonpolar GaN: Mn films
Covington et al. Iron doping in gallium arsenide by molecular beam epitaxy
Run-Wei et al. Enhancement of ferromagnetic cluster induced by magnetic field in the phase-separated La0. 5Ca0. 5MnO3
JP3817204B2 (ja) Iii−v族混晶化合物強磁性半導体とその製造方法
Sanyal et al. Observation of high ferromagnetic ordering in Fe implanted ZnO at room temperature
Melton et al. Room temperature GaN-based spin polarized emitters

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111221

Termination date: 20141226

EXPY Termination of patent right or utility model