CN109411711A - 一种石墨烯-硫复合电极材料及其制备方法 - Google Patents

一种石墨烯-硫复合电极材料及其制备方法 Download PDF

Info

Publication number
CN109411711A
CN109411711A CN201710707123.2A CN201710707123A CN109411711A CN 109411711 A CN109411711 A CN 109411711A CN 201710707123 A CN201710707123 A CN 201710707123A CN 109411711 A CN109411711 A CN 109411711A
Authority
CN
China
Prior art keywords
graphene
sulphur
sulfur
preparation
combination electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710707123.2A
Other languages
English (en)
Inventor
秦学
吕军
王丽
陶蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU JINYI NEW ENERGY TECHNOLOGY Co Ltd
Original Assignee
JIANGSU JINYI NEW ENERGY TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU JINYI NEW ENERGY TECHNOLOGY Co Ltd filed Critical JIANGSU JINYI NEW ENERGY TECHNOLOGY Co Ltd
Priority to CN201710707123.2A priority Critical patent/CN109411711A/zh
Publication of CN109411711A publication Critical patent/CN109411711A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种石墨烯‑硫复合电极材料,它是通过单层石墨烯与硫复合自组装成三层的体相复合材料,其制备方法是将硫磺在有机溶剂中形成溶液,将单层石墨烯分散在里面,然后加入水自组装成石墨烯‑硫复合材料,该材料具有高能量密度和高效能长寿命。

Description

一种石墨烯-硫复合电极材料及其制备方法
技术领域
本发明涉及化学电源领域,具体涉及一种石墨烯-硫复合电极材料及其制备方法。
背景技术
锂离子电池因其无污染、重量比能量高、无记忆和可反复充电等特性,已成为首选的绿色能源电池。提高锂电池比容量的关键是提高正极材料的比容量。高比容量、长循环寿命的正极材料的开发成功将极大地推进电池在动力电池上的应用。
单质硫的理论比容量为1675mAh·g-1、理论比能量为2600Wh·kg-1,是已知锂离子电池正极材料中最高的。由于硫具有廉价易得,环境友好的特点,所以锂硫二次电池在锂离子电池中有极大的研究和应用价值。但是由于单质硫是非金属,导电性低,在电池中可逆性差,循环寿命短。同时正极活性物质的放电产物易溶于电解质溶液中,使得活性物质利用率降低,电池性能变差。为了提高单质硫材料的利用率,电池的可逆性和改善硫的电绝缘性,一般采用碳、硫复合制备成碳硫复合材料,作为正极材料。
碳硫复合材料中现在常用的碳材料有活性炭,碳纳米管,纳米结构的碳等,常采用的复合方法为热扩散和含硫溶剂处理。石墨烯作为一种新型的碳材料,由于其巨大的比表面积和良好的导电性,是现在热点研究的新型碳材料。石墨烯是构成其他维度碳材料的基本结构单元,石墨烯材料的理论比表面积高达2600m2.g-1,具有突出的导热性(3000W.m-1.K-1),高的电导率(2×102S.m-1)[12],使其在锂-硫电池中具有重大的应用潜力石墨烯是硫的理想负载基体,由于石墨稀具有高比表面积,当硫的负载量高时也能实现硫的充分分散;石墨烯可以作为导电通道,可以提高硫及其反应产物的电化学活性;石墨烯稀层状多孔的结构有利于抑制多硫化物在电解液中的扩散。
发明内容
本发明的目的在于提供一种高能量密度、高效能长寿命石墨烯-硫复合电极材料及其制备方法。
本发明的技术方案是:一种石墨烯-硫复合电极材料,它是通过单层石墨烯与硫复合自组装成三层的体相复合材料,其制备方法是将硫磺在有机溶剂中形成溶液,将单层石墨烯分散在里面,然后加入水自组装成石墨烯-硫复合材料。
进一步的,有机溶剂为酒精、四氯化碳、苯、甲苯、二硫化碳中一种或几种。
进一步的,硫在有机溶剂中的浓度是0.2%~10%。
进一步的,石墨烯加入的量为硫含量的0.1%~10%。
本发明的有益效果是:本发明提供一种石墨烯-硫复合材料及其制备方法,利用单层石墨烯-硫复合材料制备三明治型双层、多层石墨烯/硫复合材料,实现高能量密度的电化学储存,开发研究出高效能长寿命的电极材料。
具体实施方式
实施例1
将硫磺溶于酒精溶剂中,配置硫磺的酒精溶液,硫磺的浓度分别为0.2%、0.4%、0.6%、1%、2%、3%、4%、6%、8%、10%,将占硫磺质量百分比为5%石墨烯分别加入上述溶液中,并分散均匀,加入水充分搅拌,制成的石墨烯-硫复合材料分别标记为A1、B1、C1、D1、E1、F1、G1、H1、J1、K1。分别测试材料的0.2C循环300次克容量。
实施例2
将硫磺溶于二硫化碳溶剂中,配置硫磺的二硫化碳溶液,硫磺的浓度分别为0.2%、0.4%、0.6%、1%、2%、3%、4%、6%、8%、10%,将占硫磺质量百分比为5%石墨烯分别加入上述溶液中,并分散均匀,加入水充分搅拌,制成的石墨烯-硫复合材料分别标记为A2、B2、C2、D2、E2、F2、G2、H2、J2、K2。分别测试材料的0.2C循环300次克容量。
实施例3
将硫磺溶于四氯化碳和苯(体积比1:1)溶剂中,配置硫磺的四氯化碳和苯溶液,硫磺的浓度分别为0.2%、0.4%、0.6%、1%、2%、3%、4%、6%、8%、10%,将占硫磺质量百分比为5%石墨烯分别加入上述溶液中,并分散均匀,加入水充分搅拌,制成的石墨烯-硫复合材料分别标记为A3、B3、C3、D3、E3、F3、G3、H3、J3、K3。分别测试材料的0.2C循环300次克容量。
实施例4
将硫磺溶于酒精溶剂中,配置硫磺的四氯化碳和苯溶液,硫磺的浓度分别为6%,将占硫磺质量百分比分别为0.1、0.3%、0.5%、1%、2%、3%、5%、7%、8%、10%,石墨烯分别加入上述溶液中,并分散均匀,加入水充分搅拌,制成的石墨烯-硫复合材料分别标记为A4、B4、C4、D4、E4、F4、G4、H4、J4、K4。分别测试材料的0.2C循环300次克容量。
测试结果:
本发明并不限定于上述的实施方式的实施例,本领域根据本发明的启发,不脱离本发明的范畴所做出的改进和修改都应在本发明的保护范围内。

Claims (5)

1.一种石墨烯-硫复合电极材料,其特征在于:通过单层石墨烯与硫复合自组装成三层的体相复合材料。
2.根据权利要求1所述的一种石墨烯-硫复合电极材料的制备方法,其特征在于:将硫磺在有机溶剂中形成溶液,将单层石墨烯分散在里面,然后加入水自组装成石墨烯-硫复合材料。
3.根据权利要求2所述的一种石墨烯-硫复合电极材料的制备方法,其特征在于有机溶剂为酒精、四氯化碳、苯、甲苯、二硫化碳中一种或几种。
4.根据权利要求2所述的一种石墨烯-硫复合电极材料的制备方法,其特征在于硫在有机溶剂中的浓度是0.2%~10%。
5.根据权利要求2所述的一种石墨烯-硫复合电极材料的制备方法,其特征在于石墨烯加入的量为硫含量的0.1%~10%。
CN201710707123.2A 2017-08-17 2017-08-17 一种石墨烯-硫复合电极材料及其制备方法 Withdrawn CN109411711A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710707123.2A CN109411711A (zh) 2017-08-17 2017-08-17 一种石墨烯-硫复合电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710707123.2A CN109411711A (zh) 2017-08-17 2017-08-17 一种石墨烯-硫复合电极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN109411711A true CN109411711A (zh) 2019-03-01

Family

ID=65454954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710707123.2A Withdrawn CN109411711A (zh) 2017-08-17 2017-08-17 一种石墨烯-硫复合电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109411711A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187570A (zh) * 2011-12-28 2013-07-03 清华大学 硫-石墨烯复合材料的制备方法
CN103187558A (zh) * 2011-12-28 2013-07-03 清华大学 硫-石墨烯复合材料的制备方法
CN103811731A (zh) * 2012-11-09 2014-05-21 中国科学院金属研究所 一种石墨烯-硫复合电极材料及其制备方法和应用
CN105098153A (zh) * 2015-07-03 2015-11-25 北京交通大学 一种石墨烯/硫复合材料的制备方法
CN106229509A (zh) * 2016-08-22 2016-12-14 河南师范大学 一种制备单层2h相二硫化钨/石墨烯复合材料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187570A (zh) * 2011-12-28 2013-07-03 清华大学 硫-石墨烯复合材料的制备方法
CN103187558A (zh) * 2011-12-28 2013-07-03 清华大学 硫-石墨烯复合材料的制备方法
CN103811731A (zh) * 2012-11-09 2014-05-21 中国科学院金属研究所 一种石墨烯-硫复合电极材料及其制备方法和应用
CN105098153A (zh) * 2015-07-03 2015-11-25 北京交通大学 一种石墨烯/硫复合材料的制备方法
CN106229509A (zh) * 2016-08-22 2016-12-14 河南师范大学 一种制备单层2h相二硫化钨/石墨烯复合材料的方法

Similar Documents

Publication Publication Date Title
Niu et al. Freestanding agaric-like molybdenum carbide/graphene/N-doped carbon foam as effective polysulfide anchor and catalyst for high performance lithium sulfur batteries
Hong et al. Recent advances in chemical adsorption and catalytic conversion materials for Li–S batteries
Wang et al. Polar and conductive iron carbide@ N-doped porous carbon nanosheets as a sulfur host for high performance lithium sulfur batteries
He et al. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries
Yu et al. Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries
Pei et al. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries
Ye et al. Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries
Wang et al. Reinforced polysulfide barrier by g-C3N4/CNT composite towards superior lithium-sulfur batteries
Cheng et al. Fe3O4/RGO modified separators to suppress the shuttle effect for advanced lithium-sulfur batteries
Hou et al. Ti 3 C 2 MXene as an “energy band bridge” to regulate the heterointerface mass transfer and electron reversible exchange process for Li–S batteries
Fang et al. An integrated electrode/separator with nitrogen and nickel functionalized carbon hybrids for advanced lithium/polysulfide batteries
CN102522530B (zh) 一种稀土锂硫电池用纳米硫复合正极材料及其制备方法
CN103811731B (zh) 一种石墨烯-硫复合电极材料及其制备方法和应用
CN111584804B (zh) 一种基于二维纳米粘土的锂硫电池隔膜阻挡层的制备方法
Qin et al. High performance room temperature Na-S batteries based on FCNT modified Co3C-Co nanocubes
CN107742707B (zh) 一种纳米氧化镧/石墨烯/硫复合材料的制备方法
Xu et al. Hydrothermal synthesis of boron-doped unzipped carbon nanotubes/sulfur composite for high-performance lithium-sulfur batteries
CN106920953A (zh) 具有核壳结构的锂硫电池正极材料及其制备方法
CN111129489B (zh) 一种石墨烯基硫化锑负极材料及其制备方法和应用
CN109244406A (zh) 一种四氧化三钴/石墨烯锂硫电池正极材料及其制备方法
Wang et al. Fabrication of CuCo2S4 hollow sphere@ N/S doped graphene composites as high performance anode materials for lithium ion batteries
Zhou et al. One-step solid-state synthesis of sulfur-reduced graphene oxide composite for lithium-sulfur batteries
CN108258209A (zh) 一种碳化物/碳纳米管/石墨烯载硫复合材料及其制备方法与应用
Borchardt et al. Carbon nano-composites for lithium–sulfur batteries
CN107742701A (zh) 石墨烯‑二氧化钛气凝胶复合材料及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20190301

WW01 Invention patent application withdrawn after publication