CN109406414A - 基于高光谱成像技术预测枸杞子中香草酸含量的方法 - Google Patents

基于高光谱成像技术预测枸杞子中香草酸含量的方法 Download PDF

Info

Publication number
CN109406414A
CN109406414A CN201811304090.8A CN201811304090A CN109406414A CN 109406414 A CN109406414 A CN 109406414A CN 201811304090 A CN201811304090 A CN 201811304090A CN 109406414 A CN109406414 A CN 109406414A
Authority
CN
China
Prior art keywords
sample
spectral
acid content
fructus lycii
wave band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811304090.8A
Other languages
English (en)
Inventor
黄璐琦
郭兰萍
张小波
李静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Materia Medica of CAMS
Original Assignee
Institute of Materia Medica of CAMS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Materia Medica of CAMS filed Critical Institute of Materia Medica of CAMS
Priority to CN201811304090.8A priority Critical patent/CN109406414A/zh
Publication of CN109406414A publication Critical patent/CN109406414A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种基于高光谱成像技术预测枸杞子中香草酸含量的模型建立方法及含量测定方法。该方法包括如下步骤:1)对样本用高光谱成像系统进行光谱扫描,收集400到1000nm以及1000到2400nm的高光谱数据;2)将原始的高光谱数据依次进行RAD校正、采用平场域处理方法转换为相对反射率数据、多元散射校正法处理、主成分分析降维;对有效波段进行主成分分析,得到主要光谱信息;3)将主要光谱信息与香草酸含量利用主成分回归进行建模,得到枸杞子中香草酸含量的预测模型;4)将待测样品按照上述1)—2)的步骤处理,将得到的主要光谱信息输入预测模型,计算得到待测样品中香草酸含量。

Description

基于高光谱成像技术预测枸杞子中香草酸含量的方法
技术领域
本发明属于中药材品质鉴定领域,具体涉及一种基于高光谱成像技术预测枸杞子中香草酸含量的方法。
背景技术
枸杞资源在我国分布广泛且品种繁多,依据《中国植物志》描述,枸杞属植物在我国有7种3变种,原产我国北部如河北北部、内蒙古、山西北部、陕西北部、甘肃、宁夏、青海、新疆有野生,由于果实入药而逐渐实行栽培,现多以栽培为主。经多方考证,现已将宁夏定位药用枸杞子的道地产区。但由于品种丰富、产地较多,各地气温、降水、日照等诸多环境因素影响,枸杞子的质量各有高低,具体表现为枸杞子的内含成分存差异。在市场流通中多依据经验鉴别与传统化学成分含量鉴别的方法。经验鉴别误差较大,主观性较强,化学检验操作方法复杂费时费力。
近年来高光谱成像技术取得了飞速的发展,从最早应用于航空航天领域。再发展至地质勘探,矿石识别。紧接着又步入农业领域,对农作物质量进行评价,种类进行区分。因此将高光谱成像技术引入中药领域进行中药鉴定的技术革新成为可能。
发明内容
本发明的一个目的是提供一种基于高光谱成像技术预测枸杞子中香草酸含量的模型建立方法。
本发明所提供的基于高光谱成像技术预测枸杞子中香草酸含量的模型建立方法,包括如下步骤:
1)样本光谱建立:
收集不同品种和产地的枸杞子干品作为样本集;对所述样本集中的样本用高光谱成像系统进行光谱扫描,收集400到1000nm以及1000到2400nm的高光谱数据,得到样本集光谱;
2)样本光谱预处理:
a1)将样本原始的高光谱数据进行RAD(Radiometric calibration辐射校准)校正;
b1)将RAD校正后的数据采用平场域处理方法转换为相对反射率数据;
c1)将所述相对反射率数据用多元散射校正法处理;
d1)将多元散射校正后的相对反射率数据进行主成分分析降维,利用降维后因子进行主成分回归分析,选取回归方程R与R方在大于0.99以上时首次出现数值稳定不变时所对应的因子数为最适因子数;
e1)将多元散射校正后的相对反射率数据与化学法所测得样本集中的香草酸含量进行相关性分析,将相关系数大于0.4且显著性检验t检验达到极显著水平的波段筛选出来确定为有效波段;
f1)基于d1)筛选出的最为合适的因子数目,对有效波段进行主成分分析去除多余光谱信息,得到主要光谱信息;
3)建立校正模型:将由样本集光谱得到的主要光谱信息与化学法所测得的香草酸含量利用主成分回归进行建模,得到枸杞子中香草酸含量的预测模型。
上述方法步骤1)中,所述样本集中的样本数量大于等于100个。
上述方法步骤1)中,所述高光谱成像系统具体为HySpex系列高光谱成像光谱仪。
所述光谱扫描的条件如下:所述高光谱成像仪的镜头与所述枸杞子的距离为20-30cm,平台移动速度为1.5mm/s;当所收集的光谱范围在400-1000nm时积分时间为4350μs,帧时间为18000;当所收集的光谱范围在1000-2400nm时积分时间为4500μs,帧时间为46928。
上述方法步骤2)中,利用ENVI选出枸杞子的感兴趣区域;将所述感兴趣区域提取出的平均光谱值导出,对初始相对反射率值进行预处理,筛选预处理方法,最终确定为多元散射校正。
上述方法步骤2)中,所述合适的因子数目最终确定为10个。
上述方法步骤2)中,所述步骤e)中确定的有效波段为29-105波段(对应的波长范围为562±3nm-973±3nm)。
上述方法步骤2)中,采用SPSS软件进行所述主成分分析。
上述方法步骤3)中,测定所述样本集中的样本所含的香草酸含量的化学方法为液-质联用法。
上述方法步骤3)中,采用matlab软件进行所述主成分回归模型的建立。
本发明的另一个目的是提供一种基于高光谱成像技术预测枸杞子中香草酸含量的的方法。
本发明所提供的基于高光谱成像技术预测枸杞子中香草酸含量的方法,包括如下步骤:
A)待测样本光谱建立:
对待测样本用高光谱成像系统进行光谱扫描,收集400到1000nm以及1000到2400nm的高光谱数据,得到待测样本集光谱;
B)待测样本光谱预处理:
a2)将样本原始的高光谱数据进行辐射校准;
b2)将辐射校正后的数据采用平场域处理方法转换为相对反射率数据;
c2)将所述相对反射率数据用多元散射校正法处理;
d2)根据步骤e1)确定的有效波段,从步骤c2)处理后的数据中筛选所需的有效波段的光谱信息;对有效波段进行主成分分析去除多余光谱信息,得到待测样品的主要光谱信息;
C)将所述待测样品的主要光谱信息输入枸杞子中香草酸含量的预测模型,计算得到待测样品中香草酸含量。
本发明具有以下优点:
本发明采用高光谱成像技术,将其应用于中药材含量预测的领域,不仅有利于道地药材的市场流通监控;还降低了人工识别的成本,提高了鉴别的准确性与科学性。本发明将高光谱应用于中药材含量预测,关键所在是找出了高光谱曲线与产地环境、药材本身性状、特征成分之间的关系。
附图说明
图1为本发明基于高光谱成像光谱仪预测枸杞子中香草酸含量的流程图。
图2为本发明所用的整体装置,其中,1-金属架,2-400-1000nm镜头,3-1000-2400nm镜头,4-卤钨灯,5-移动平台,6-仪器自带电脑。
图3为枸杞摆放原图。
图4为感兴趣区域提取。
具体实施方式
下面通过具体实施例对本发明的方法进行说明,但本发明并不局限于此,凡在本发明的精神和原则之内所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例中所采用的枸杞子为宁夏、甘肃、内蒙、新疆、青海地方产的宁杞1号、5号、7号、9号品种的枸杞子。
下述实施例中化学法测定枸杞子含量的方法具体如下:
利用高效液相色谱三重四级杆串联质谱法测定枸杞子中香草酸的含量。采用ACQUITY UPLC BEH C18色谱柱(100mm×2.1mm,18μm),柱温为40℃;采用电喷雾离子源,负离子检测方式,得到相应的提取离子流图,以峰面积为指标进行定量。从枸杞子中提取香草酸的条件为70%乙醇,流动相条件为0.1%甲酸(A)-0.1%甲酸乙腈(B)
实施例1、
本实施例提供一种基于高光谱成像技术预测枸杞子中香草酸含量的模型建立方法及枸杞子中香草酸含量含量测定方法,包括下述步骤:
1)取6份样品,每份取75粒随机分为5组,摆放至移动平台上,尽量不要超出镜头范围。摆放枸杞子时,突出每一颗粒的特征,每组摆为一列,将用于黑白校正的白板摆放在样品后方5cm处。等待仪器连接、自检。设置高光谱成像仪扫描参数,镜头距离30cm,平台移动速度1.5mm/s。设置400-1000nm镜头积分时间为4350μs,帧时间22000。1000-2400nm镜头积分时间为4000μs,帧时间35000。枸杞子摆放见图3。对上述样品用高光谱成像系统进行光谱扫描,收集400到1000nm以及1000到2400nm的高光谱数据,得到样本集光谱;
2)将高光谱原始数据利用光谱仪自带的RAD校正软件进行校正,然后将数据采用ENVI软件中的平场域(Flat Field Correction)功能,将图像原始数据处理为相对反射率数据。
3)利用ENVI选出枸杞子的感兴趣区域。将感兴趣区域提取出的平均光谱值导出,保存为txt格式。对初始相对反射率值进行预处理方法筛选(利用多元散射校正、S-G平滑以及标准正态化三种手段进行预处理,利用R、R方、调整R方的结果判断,结果见表1),最终确定预处理方法为多元散射校正。
4)将所述相对反射率数据用多元散射校正法校正;再将校正后的数据导入SPSS软件,进行主成分分析降维,利用降维后因子进行主成分回归分析,选取回归方程R与R方在大于0.99以上时首次出现数值稳定不变时所对应的因子数为最适因子数,最终确定为10个(结果见表2)。
5)将得到的降维结果,按7:3分为校正样本集和检验样本集。
6)将多元散射校正后的相对反射率数据与香草酸含量(液-质联用法测定)进行相关性分析,将相关系数大于0.4且显著性检验达到极显著水平的波段筛选出来确定为有效波段,即29-105波段(波长范围为562.103nm-973.843nm)。
7)基于筛选出的最为合适的因子数目(10个),分别对校正集和验证样本集的有效波段进行主成分分析去除多余光谱信息,分别得到校正集和验证样本集的主要光谱信息;
8)将校正集的主要光谱信息与香草酸含量(液-质联用法测定)利用主成分回归法进行建模,得到枸杞子中香草酸含量的预测模型。模型结果如表3所示。
9)模型的验证:将步骤6)中得到的验证样本集的主要光谱信息输入枸杞子中香草酸含量的预测模型,计算得到验证样本集中香草酸含量计算值。计算上述计算值与化学测定值的R2值与调整R2值,评价所得枸杞子中香草酸含量的预测模型的可靠性,结果见表4。由表4可知,预测值与实际值误差较小,模型精度较高。
表1预处理方法筛选
表2成分因子数目确定
表3模型系数
表4判别系数

Claims (10)

1.一种基于高光谱成像技术预测枸杞子中香草酸含量的模型建立方法,包括如下步骤:
1)样本光谱建立:
收集不同品种和产地的枸杞子干品作为样本集;对所述样本集中的样本用高光谱成像系统进行光谱扫描,收集400到1000nm以及1000到2400nm的高光谱数据,得到样本集光谱;
2)样本光谱预处理:
a1)将样本原始的高光谱数据进行辐射校准;
b1)将辐射校准后的数据采用平场域处理方法转换为相对反射率数据;
c1)将所述相对反射率数据用多元散射校正法处理;
d1)将多元散射校正后的相对反射率数据进行主成分分析降维,利用降维后因子进行主成分回归分析,选取回归方程R与R方在大于0.99以上时首次出现数值稳定不变时所对应的因子数为最适因子数;
e1)将多元散射校正后的相对反射率数据与化学法所测得样本集中的香草酸含量进行相关性分析,将相关系数大于0.4且显著性检验达到极显著水平的波段筛选出来确定为有效波段;
f1)基于d1)筛选出的最适因子数,对有效波段进行主成分分析去除多余光谱信息,得到主要光谱信息;
3)建立校正模型:将由样本集光谱得到的主要光谱信息与化学方法测定的所述样本集中的样本所含的香草酸含量利用主成分回归进行建模,得到枸杞子中香草酸含量的预测模型。
2.根据权利要求1所述的方法,其特征在于:所述步骤1)中,所述光谱扫描的条件如下:所述高光谱成像仪的镜头与所述枸杞子的距离为20-30cm,平台移动速度为1.5mm/s;当所收集的光谱范围在400-1000nm时积分时间为4350μs,帧时间为18000;当所收集的光谱范围在1000-2400nm时积分时间为4500μs,帧时间为46928。
3.根据权利要求1或2所述的方法,其特征在于:所述步骤1)中,所述样本集中的样本数量大于等于100;所述高光谱成像系统为HySpex系列高光谱成像光谱仪。
4.根据权利要求1-3中任一项所述的方法,其特征在于:所述步骤2)中,所述最适因子数最终确定为10个;所述步骤2)中,所述有效波段为29-105波段;
所述步骤2)中,采用SPSS软件进行所述主成分分析。
5.根据权利要求1-4中任一项所述的方法,其特征在于:所述步骤3)中,测定所述样本集中的样本所含的香草酸含量的化学方法为液-质联用法;
所述步骤3)中,采用matlab软件进行所述主成分回归模型的建立。
6.一种基于高光谱成像技术预测枸杞子中香草酸含量的的方法,包括如下步骤:
A)待测样本光谱建立:
对待测样本用高光谱成像系统进行光谱扫描,收集400到1000nm以及1000到2400nm的高光谱数据,得到待测样本集光谱;
B)待测样本光谱预处理:
a2)将样本原始的高光谱数据进行辐射校准;
b2)将辐射校正后的数据采用平场域处理方法转换为相对反射率数据;
c2)将所述相对反射率数据用多元散射校正法处理;
d2)根据权利要求1步骤e1)确定的有效波段,从步骤c2)处理后的数据中筛选所需的有效波段的光谱信息;对有效波段进行主成分分析去除多余光谱信息,得到待测样品的主要光谱信息;
C)将所述待测样品的主要光谱信息输入权利要求1得到的枸杞子中香草酸含量的预测模型,计算得到待测样品中香草酸含量。
7.根据权利要求6所述的方法,其特征在于:所述步骤A)中,所述光谱扫描的条件如下:所述高光谱成像仪的镜头与所述枸杞子的距离为20-30cm,平台移动速度为1.5mm/s;当所收集的光谱范围在400-1000nm时积分时间为4350μs,帧时间为18000;当所收集的光谱范围在1000-2400nm时积分时间为4500μs,帧时间为46928。
8.根据权利要求6或7所述的方法,其特征在于:所述步骤A)中,所述高光谱成像系统为HySpex系列高光谱成像光谱仪。
9.根据权利要求6-8任一项所述的方法,其特征在于:所述步骤B)中,所述有效波段为29-105波段。
10.根据权利要求6-9中任一项所述的方法,其特征在于:所述步骤C)中,测定香草酸含量的化学方法为液-质联用法;
所述步骤c)中,采用matlab软件进行所述主成分回归模型的建立。
CN201811304090.8A 2018-10-31 2018-10-31 基于高光谱成像技术预测枸杞子中香草酸含量的方法 Pending CN109406414A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811304090.8A CN109406414A (zh) 2018-10-31 2018-10-31 基于高光谱成像技术预测枸杞子中香草酸含量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811304090.8A CN109406414A (zh) 2018-10-31 2018-10-31 基于高光谱成像技术预测枸杞子中香草酸含量的方法

Publications (1)

Publication Number Publication Date
CN109406414A true CN109406414A (zh) 2019-03-01

Family

ID=65471502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811304090.8A Pending CN109406414A (zh) 2018-10-31 2018-10-31 基于高光谱成像技术预测枸杞子中香草酸含量的方法

Country Status (1)

Country Link
CN (1) CN109406414A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074372A2 (en) * 2010-11-30 2012-06-07 Universiti Putra Malaysia (Upm) A system for fruit grading and quality determination
CN102636450A (zh) * 2012-04-18 2012-08-15 西北农林科技大学 基于近红外光谱技术无损检测枸杞中枸杞多糖含量的方法
EP2818100A1 (en) * 2013-06-27 2014-12-31 China Medical University Method for analyzing tissue cells using hyperspectral imaging
CN105203464A (zh) * 2015-08-28 2015-12-30 中国农业科学院农产品加工研究所 基于高光谱成像技术检测花生中油酸含量分布的方法
CN106872370A (zh) * 2017-02-23 2017-06-20 浙江大学 一种基于高光谱的杨梅中花色苷含量测定的方法
CN106885782A (zh) * 2017-02-23 2017-06-23 浙江大学 一种基于近红外高光谱技术无损检测杨梅中黄酮含量的方法
CN107064053A (zh) * 2017-02-23 2017-08-18 浙江大学 基于近红外高光谱技术无损检测杨梅中多酚含量的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074372A2 (en) * 2010-11-30 2012-06-07 Universiti Putra Malaysia (Upm) A system for fruit grading and quality determination
CN102636450A (zh) * 2012-04-18 2012-08-15 西北农林科技大学 基于近红外光谱技术无损检测枸杞中枸杞多糖含量的方法
EP2818100A1 (en) * 2013-06-27 2014-12-31 China Medical University Method for analyzing tissue cells using hyperspectral imaging
CN105203464A (zh) * 2015-08-28 2015-12-30 中国农业科学院农产品加工研究所 基于高光谱成像技术检测花生中油酸含量分布的方法
CN106872370A (zh) * 2017-02-23 2017-06-20 浙江大学 一种基于高光谱的杨梅中花色苷含量测定的方法
CN106885782A (zh) * 2017-02-23 2017-06-23 浙江大学 一种基于近红外高光谱技术无损检测杨梅中黄酮含量的方法
CN107064053A (zh) * 2017-02-23 2017-08-18 浙江大学 基于近红外高光谱技术无损检测杨梅中多酚含量的方法

Similar Documents

Publication Publication Date Title
Ren et al. Using near-infrared hyperspectral imaging with multiple decision tree methods to delineate black tea quality
CN105574474B (zh) 一种基于质谱信息的生物特征图像识别方法
Ren et al. Multi-variable selection strategy based on near-infrared spectra for the rapid description of dianhong black tea quality
CN101961360B (zh) 三七的近红外光谱鉴别方法
CN104408705B (zh) 一种高光谱图像的异常检测方法
Huang et al. Improved generalization of spectral models associated with Vis-NIR spectroscopy for determining the moisture content of different tea leaves
Li et al. Authenticity identification and classification of Rhodiola species in traditional Tibetan medicine based on Fourier transform near-infrared spectroscopy and chemometrics analysis
CN104568822B (zh) 一种连翘药材多指标同时快速检测方法
EP2758906A1 (en) Chemometrics for near infrared spectral analysis
CN104237060A (zh) 一种金银花药材多指标快速检测方法
Yu et al. Accuracy and stability improvement in detecting Wuchang rice adulteration by piece-wise multiplicative scatter correction in the hyperspectral imaging system
CN113008817A (zh) 一种基于高光谱成像技术快速鉴别苦杏仁真伪优劣的方法
CN113008805B (zh) 基于高光谱成像深度分析的白芷饮片质量预测方法
CN109765194A (zh) 基于高光谱成像技术的枸杞子产地识别方法
CN107132194A (zh) 一种基于紫外可见光谱及化学模式识别的三七及其伪品鉴别方法
CN108760677A (zh) 一种基于近红外光谱技术的法半夏掺伪鉴别方法
CN113008815A (zh) 一种基于高光谱图像信息无损检测酸枣仁中总黄酮的方法
CN105806803B (zh) 一种多指标协同分析波长组合及其选择方法
Liu et al. Chemometric analysis based on HPLC multi-wavelength fingerprints for prediction of antioxidant components in Turpiniae Folium
CN109406413A (zh) 基于高光谱成像技术预测枸杞子中圣草酚含量的方法
CN109406414A (zh) 基于高光谱成像技术预测枸杞子中香草酸含量的方法
CN109406421A (zh) 基于高光谱成像技术预测枸杞子中阿魏酸含量的方法
Sun et al. Nondestructive identification of barley seeds varieties using hyperspectral data from two sides of barley seeds
CN109406419A (zh) 基于高光谱成像技术预测枸杞子中对羟基苯甲酸含量的方法
CN109406420A (zh) 基于高光谱成像技术预测枸杞子中东莨菪内酯含量的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190301

RJ01 Rejection of invention patent application after publication