CN104408705B - 一种高光谱图像的异常检测方法 - Google Patents
一种高光谱图像的异常检测方法 Download PDFInfo
- Publication number
- CN104408705B CN104408705B CN201410490530.9A CN201410490530A CN104408705B CN 104408705 B CN104408705 B CN 104408705B CN 201410490530 A CN201410490530 A CN 201410490530A CN 104408705 B CN104408705 B CN 104408705B
- Authority
- CN
- China
- Prior art keywords
- image
- matrix
- mrow
- high spectrum
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001228 spectrum Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 43
- 230000005856 abnormality Effects 0.000 title claims abstract description 26
- 238000001514 detection method Methods 0.000 claims abstract description 30
- 238000012545 processing Methods 0.000 claims abstract description 19
- 239000011159 matrix material Substances 0.000 claims description 47
- 238000000354 decomposition reaction Methods 0.000 claims description 13
- 238000004458 analytical method Methods 0.000 claims description 12
- 230000002159 abnormal effect Effects 0.000 claims description 8
- 102000008297 Nuclear Matrix-Associated Proteins Human genes 0.000 claims description 4
- 108010035916 Nuclear Matrix-Associated Proteins Proteins 0.000 claims description 4
- 210000000299 nuclear matrix Anatomy 0.000 claims description 4
- 230000002596 correlated effect Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000010219 correlation analysis Methods 0.000 abstract description 6
- 238000013100 final test Methods 0.000 abstract 1
- 230000003595 spectral effect Effects 0.000 description 9
- 238000009826 distribution Methods 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 241000208340 Araliaceae Species 0.000 description 1
- 241001269238 Data Species 0.000 description 1
- 238000003657 Likelihood-ratio test Methods 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- 241000282376 Panthera tigris Species 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000007630 basic procedure Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000008434 ginseng Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
- G06T2207/10036—Multispectral image; Hyperspectral image
Landscapes
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410490530.9A CN104408705B (zh) | 2014-09-23 | 2014-09-23 | 一种高光谱图像的异常检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410490530.9A CN104408705B (zh) | 2014-09-23 | 2014-09-23 | 一种高光谱图像的异常检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104408705A CN104408705A (zh) | 2015-03-11 |
CN104408705B true CN104408705B (zh) | 2017-10-20 |
Family
ID=52646334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410490530.9A Expired - Fee Related CN104408705B (zh) | 2014-09-23 | 2014-09-23 | 一种高光谱图像的异常检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104408705B (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104778706B (zh) * | 2015-04-21 | 2018-10-30 | 西安电子科技大学 | 基于非负矩阵分解的异常检测方法及其装置 |
CN106600602B (zh) * | 2016-12-30 | 2019-08-23 | 哈尔滨工业大学 | 基于聚类自适应窗高光谱图像异常检测方法 |
CN107122795B (zh) * | 2017-04-01 | 2020-06-02 | 同济大学 | 一种基于核化特征和随机子空间集成的行人再辨识方法 |
CN107220947B (zh) * | 2017-05-23 | 2020-02-11 | 中国科学院遥感与数字地球研究所 | 一种遥感图像相对辐射校正方法及系统 |
CN108491856B (zh) * | 2018-02-08 | 2022-02-18 | 西安电子科技大学 | 一种基于多尺度特征卷积神经网络的图像场景分类方法 |
CN109523510B (zh) * | 2018-10-11 | 2021-05-04 | 浙江大学 | 基于多光谱遥感影像的河道水质空间异常区域检测方法 |
US11417090B2 (en) * | 2019-02-18 | 2022-08-16 | Nec Corporation | Background suppression for anomaly detection |
CN110570395B (zh) * | 2019-08-06 | 2022-04-29 | 西安电子科技大学 | 基于空谱联合协同表示的高光谱异常检测方法 |
CN111311582A (zh) * | 2020-02-20 | 2020-06-19 | 上海华力集成电路制造有限公司 | Opc数据采集方法 |
CN111967571B (zh) * | 2020-07-07 | 2023-04-21 | 华东交通大学 | 一种基于mhma的异常检测方法和设备 |
CN111986162B (zh) * | 2020-07-28 | 2021-11-16 | 西安理工大学 | 基于粗定位和协同表示的高光谱异常点快速检测方法 |
CN112837293B (zh) * | 2021-02-05 | 2023-02-14 | 中国科学院西安光学精密机械研究所 | 基于高斯函数典型关联分析的高光谱图像变化检测方法 |
CN114677574B (zh) * | 2022-05-26 | 2022-10-21 | 杭州宏景智驾科技有限公司 | 用于自动驾驶的诊断图像故障的方法和系统 |
CN115200797B (zh) * | 2022-09-19 | 2022-12-16 | 山东超华环保智能装备有限公司 | 一种用于零泄露阀的泄露检测系统 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102663752A (zh) * | 2012-04-11 | 2012-09-12 | 南京理工大学 | 一种sam加权kest高光谱异常检测算法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7505608B2 (en) * | 2005-04-15 | 2009-03-17 | The Boeing Company | Methods and apparatus for adaptive foreground background analysis |
-
2014
- 2014-09-23 CN CN201410490530.9A patent/CN104408705B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102663752A (zh) * | 2012-04-11 | 2012-09-12 | 南京理工大学 | 一种sam加权kest高光谱异常检测算法 |
Non-Patent Citations (2)
Title |
---|
Kernel canonical correlation analysis for hyperspectral anomaly detection;Heesung Kwon et al;《Proc. SPIE 6233, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI》;20060504;摘要,第623303-5页倒数第1段,第623303-6页第1段,图2 * |
高光谱图像异常目标检测研究进展;赵春晖 等;《电子测量与仪器学报》;20140831;第28卷(第8期);803-811 * |
Also Published As
Publication number | Publication date |
---|---|
CN104408705A (zh) | 2015-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104408705B (zh) | 一种高光谱图像的异常检测方法 | |
CN109145992A (zh) | 协作生成对抗网络和空谱联合的高光谱图像分类方法 | |
Yuan et al. | Remote sensing image segmentation by combining spectral and texture features | |
Zhang et al. | Hybrid detectors based on selective endmembers | |
CN107992891B (zh) | 基于光谱矢量分析多光谱遥感图像变化检测方法 | |
CN103247059B (zh) | 一种基于整数小波与视觉特征的遥感图像感兴趣区检测方法 | |
CN107358260A (zh) | 一种基于表面波cnn的多光谱图像分类方法 | |
CN101807301A (zh) | 一种基于高阶统计量的高光谱图像目标检测方法 | |
CN108108719A (zh) | 一种加权核稀疏和协同表示系数的高光谱影像分类方法 | |
Zhai | Inversion of organic matter content in wetland soil based on Landsat 8 remote sensing image | |
CN104680184B (zh) | 基于深度rpca的极化sar地物分类方法 | |
CN107194936A (zh) | 基于超像素联合稀疏表示的高光谱图像目标检测方法 | |
CN111680579B (zh) | 一种自适应权重多视角度量学习的遥感图像分类方法 | |
Zhang et al. | Mapping freshwater marsh species in the wetlands of Lake Okeechobee using very high-resolution aerial photography and lidar data | |
Zhang et al. | A novel multitemporal cloud and cloud shadow detection method using the integrated cloud Z-scores model | |
Sarup et al. | Image fusion techniques for accurate classification of Remote Sensing data | |
CN104182997B (zh) | 高光谱图像压缩方法及应用 | |
Li et al. | Using improved ICA method for hyperspectral data classification | |
CN105825512A (zh) | 基于稳健背景回归的高光谱遥感影像异常目标探测方法 | |
CN111046918A (zh) | 一种ICA-CNN分类的fMRI数据空间预平滑增广方法 | |
Bloechl et al. | A comparison of real and simulated airborne multisensor imagery | |
Stanely et al. | Global Health Security and Disaster Forensics: A solution oriented approach to mapping public health vulnerabilities through predictive analytics | |
CN105761273B (zh) | 一种基于图构造的高光谱遥感影像异常目标探测方法 | |
Pu et al. | Mapping detailed seagrass habitats using satellite imagery | |
CN111079544B (zh) | 一种基于加权联合最近邻的多任务稀疏表示检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhou Huixin Inventor after: Zhao Dong Inventor after: Wang Bingjian Inventor after: Liu Shangqian Inventor after: Song Shangzhen Inventor after: Cheng Kuanhong Inventor after: Lai Rui Inventor after: Li Xiao Inventor after: Qin Hanlin Inventor after: Zhao Ying Inventor after: Wen Zhigang Inventor after: Rong Shenghui Inventor before: Zhou Huixin Inventor before: Lai Rui Inventor before: Wang Bingjian Inventor before: Liu Shangqian Inventor before: Li Xiao Inventor before: Qin Hanlin Inventor before: Zhao Ying Inventor before: Wen Zhigang Inventor before: Ni Man Inventor before: Rong Shenghui Inventor before: Yang Zhijie Inventor before: Zhao Dong |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171020 |