CN109385379A - A kind of engineering bacteria of high yield rhodioside and its application - Google Patents
A kind of engineering bacteria of high yield rhodioside and its application Download PDFInfo
- Publication number
- CN109385379A CN109385379A CN201811116170.0A CN201811116170A CN109385379A CN 109385379 A CN109385379 A CN 109385379A CN 201811116170 A CN201811116170 A CN 201811116170A CN 109385379 A CN109385379 A CN 109385379A
- Authority
- CN
- China
- Prior art keywords
- gene
- rhodioside
- codon
- fermentation
- engineering bacteria
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/37—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
- C07K14/39—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
- C07K14/395—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
- C12N1/18—Baker's yeast; Brewer's yeast
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/44—Preparation of O-glycosides, e.g. glucosides
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Mycology (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
The invention discloses a kind of engineering bacteria of high yield rhodioside, it be the codon mutation that the ARO4 gene in S. cervisiae is encoded into the 229th amino acids is encode the codon of leucine, the codon mutation of the 141st glycine of ARO7 gene be the codon of encoding serine, the 222nd lysine of ARO3 gene codon mutation be the recombinant yeast for encoding the codon of leucine.The invention also discloses the hairs that rhodioside is prepared using aforementioned engineering bacteria.Engineering bacteria of the present invention can be with high yield rhodioside, and economic value is high, and prospects for commercial application is good.
Description
Technical field
The present invention relates to bioengineering fields, and in particular to a kind of engineering bacteria of high yield rhodioside and its application.
Background technique
Root of kirilow rhodiola is the rare wild plant for being grown in high and cold contamination-freely band, is that China's Tibetan people commonly uses drug,
So far oneself has more than 1000 years applicating histories, has stimulation nervous system, increases working efficiency, eliminates fatigue and prevention high mountain
The effects of disease, also has protection cardiovascular and cerebrovascular, the functions such as nerve cell and anti-tumor radiation.The main medicinal work of root of kirilow rhodiola
Property ingredient is rhodioside and its tyrosol.In recent years, using rhodioside and its tyrosol as main material production
The product categories such as medicament, beverage, food and cosmetics are more and more, and the demand to rhodioside and its tyrosol is also more next
It is higher.
The chemical name of rhodioside (Salidroside) is 2- (4-hydroxypHenyl) ethyl- β-D-
Glucopyranoside, molecular formula C14H20O7, molecular weight 300.304, No. CAS is 10338-51-9, and structural formula is
The tyrosol (Tyrosol) of rhodioside, its chemical name is 4- (2-Hydroxyethyl) pHeno1, molecules
Formula is C8H10O2, molecular weight 138.164, No. CAS is 501-94-0, and structural formula is
Currently, the main production ways of rhodioside and its tyrosol are extracted from root of kirilow rhodiola plant.However, due to
Naturally the rhodiola plant resource grown is rare, and the cost of the rhodiola plant of artificial cultivation is also higher, also, its rhodioside
Content is lower, if the content of rhodioside in most common sachalin rhodiola rhizome and rhodiola only has 0.5%-0.8%, extracts
At high cost, low efficiency.And the long not easy operation control of chemical synthesis process process, it is at high cost, it is difficult to realize industrialization;Plant group
It is long reaction time to knit culture, potency is lower.Biosynthesis is smaller to the dependence of natural environment, it is possible to overcome from rhodioside and plant
The above problem existing for rhodioside and its tyrosol is extracted in object.
Wang Mengliang etc. is screened obtained microbial strains and is acted on, successfully synthesized red using D-Glucose and tyrosol as substrate
Red-spotted stonecrop glycosides (Wang Mengliang, Zhang Fang, Liu Yunnan are raw, mono- glucose of microorganism catalysis D and Synthesis of Salidroside through Glucosylation just
Step research, is catalyzed journal, 2006,27 (3): 233 1 236), but obtains very low compared with high product concentration.Existing literature report
Changing the gene of Escherichia coli and saccharomyces cerevisiae come by way of improving rhodioside production concentration, but also not to the utmost such as people
Meaning causes the later period to be extracted and still has the problem that difficulty is big, at high cost.Such as: Bi Huiping, using Escherichia coli as platform construction
It is logical to realize the tyrosol biosynthesis that one is different from plant for high yield tyrosol and/or rhodioside and icariside D2 bacterial strain
Road.In the bacterial strain of building, the yield of tyrosol is up to 600mg/L, and the yield of rhodioside is up to 50mg/L, icariside D2
Yield up to 40mg/L.(a kind of high yield tyrosol of and/or rhodioside and Herba Epimedii are waited with refined in Bi Huiping, Bai Yanfen, the village
The E. coli expression strains of glycosides D2 and its 104940575 A of .CN is applied, 2015.);The production rhodioside in building such as Liu Tao
Recombination bacillus coli research in, by knock out or silencing galE, galT, ugd, and import be overexpressed ARO10, pgm, UGT73B6,
GalU, T7ploymerase gene, the maximum output of rhodioside are able to ascend to 0.7g/L (Liu Tao, Bi Huiping, Zhuan Yibin
Deng, a kind of recombination bacillus coli producing rhodioside and construction method and 107435049 A of .CN is applied, 2016.);East China
Liu Tao seminar, Polytechnics has utilized saccharomyces cerevisiae de novo formation rhodioside, but yield is lower, only 732.5mg/L
(Jiang J,Yin H,Wang S,et al.Metabolic Engineering of Saccharomyces cerevisiae
for High-Level Production of Salidroside from Glucose.Journal of
Agricultural&Food Chemistry,2018.)。
Accordingly, it is desirable to provide a kind of engineering bacteria and method of high yield rhodioside.
Summary of the invention
In order to solve the above-mentioned technical problems, the present invention provides a kind of new engineering bacterias, can be with high yield rhodioside.
The engineering bacteria of high yield rhodioside of the present invention, it is that the ARO4 gene in S. cervisiae is encoded to the 229th ammonia
The codon mutation of base acid is that ARO4 gene mutation (is ARO4 by the codon of coding leucineK229L), ARO7 gene the 141st
The codon mutation of position glycine is that (i.e. ARO7 gene mutation is ARO7 for the codon of encoding serineG141S), ARO3 gene
The codon mutation of 222 lysine be encode leucine codon (i.e. ARO3 gene mutation is ARO3K222L) recombination ferment
Female bacterium.
ARO4 gene: referring to, Gene ID:852551, Chromosome:II;NC_001134.8
(716882..717994)
ARO7 gene: referring to, Gene ID:856173, Chromosome:XVI;NC_001148.4
(674861..675631)
ARO3 gene: referring to, Gene ID:851605, Chromosome:IV;NC_001136.10
(521816..522928)
The codon of the ARO4 gene the 229th is TTG, and the codon of the ARO7 gene the 141st is agt;The
222 codons are CTA, specifically:
ARO4K229LSequence can be following sequence:
atgagtgaatctccaatgttcgctgccaacggcatgccaaaggtaaatcaaggtgctgaagaagatgt
cagaattttaggttacgacccattagcttctccagctctccttcaagtgcaaatcccagccacaccaacttctttg
gaaactgccaagagaggtagaagagaagctatagatattattaccggtaaagacgacagagttcttgtcattgtcg
gtccttgttccatccatgatctagaagccgctcaagaatacgctttgagattaaagaaattgtcagatgaattaaa
aggtgatttatccatcattatgagagcatacttggagaagccaagaacaaccgtcggctggaaaggtctaattaat
gaccctgatgttaacaacactttcaacatcaacaagggtttgcaatccgctagacaattgtttgtcaacttgacaa
atatcggtttgccaattggttctgaaatgcttgataccatttctcctcaatacttggctgatttggtctccttcgg
tgccattggtgccagaaccaccgaatctcaactgcacagagaattggcctccggtttgtctttcccagttggtttc
aagaacggtaccgatggtaccttaaatgttgctgtggatgcttgtcaagccgctgctcattctcaccatttcatgg
gtgttactTTGcatggtgttgctgctatcaccactactaagggtaacgaacactgcttcgttattctaagaggtgg
taaaaagggtaccaactacgacgctaagtccgttgcagaagctaaggctcaattgcctgccggttccaacggtcta
atgattgactactctcacggtaactccaataaggatttcagaaaccaaccaaaggtcaatgacgttgtttgtgagc
aaatcgctaacggtgaaaacgccattaccggtgtcatgattgaatcaaacatcaacgaaggtaaccaaggcatccc
agccgaaggtaaagccggcttgaaatatggtgtttccatcactgatgcttgtataggttgggaaactactgaagac
gtcttgaggaaattggctgctgctgtcagacaaagaagagaagttaacaagaaatag
ARO7G141SSequence can be following sequence:
ATGGATTTCACAAAACCAGAAACTGTTTTAAATCTACAAAATATTAGAGATGAATTAGTTAGAATGGA
GGATTCGATCATCTTCAAATTTATTGAGAGGTCGCATTTCGCCACATGTCCTTCAGTTTATGAGGCAAACCATCCA
GGTTTAGAAATTCCGAATTTTAAAGGATCTTTCTTGGATTGGGCTCTTTCAAATCTTGAAATTGCGCATTCTCGCA
TCAGAAGATTCGAATCACCTGATGAAACTCCCTTCTTTCCTGACAAGATTCAGAAATCATTCTTACCGAGCATTAA
CTACCCACAAATTTTGGCGCCTTATGCCCCAGAAGTTAATTACAATGATAAAATAAAAAAAGTTTATATTGAAAAG
ATTATACCATTAATTTCGAAAAGAGATGGTGATGATAAGAATAACTTCagtTCTGTTGCCACTAGAGATATAGAAT
GTTTGCAAAGCTTGAGTAGGAGAATCCACTTTGGCAAGTTTGTTGCTGAAGCCAAGTTCCAATCGGATATCCCGCTA
TACACAAAGCTGATCAAAAGTAAAGATGTCGAGGGGATAATGAAGAATATCACCAATTCTGCCGTTGAAGAAAAGAT
TCTAGAAAGATTAACTAAGAAGGCTGAAGTCTATGGTGTGGACCCTACCAACGAGTCAGGTGAAAGAAGGATTACTC
CAGAATATTTGGTAAAAATTTATAAGGAAATTGTTATACCTATCACTAAGGAAGTTGAGGTGGAATACTTGCTAAGA
AGGTTGGAAGAGTAA
ARO3K222LSequence can be following sequence:
Atgttcattaaaaacgatcacgccggtgacaggaaacgcttggaagactggagaatcaaaggttatga
tccattaacccctccagatctgcttcaacatgaatttccaatttcagccaaaggtgaggaaaacattatcaaggca
agagactccgtctgtgatattttgaatggtaaagatgatcgtttagttatcgtgatcgggccatgttccctacatg
accccaaagccgcttacgattacgctgacagattggctaaaatttcagaaaagttgtcaaaagacttattgattat
tatgagagcgtatttagaaaaaccaaggactactgttggctggaaagggttgattaacgaccctgatatgaataac
tcttttcaaatcaataaaggtctacggatttcgagagaaatgttcataaaactggttgaaaaattacccattgctg
gtgagatgttggataccatttctccgcagtttttgagtgattgtttctccttgggtgccatcggcgccagaactac
tgaatcccaactgcacagagaattagcatccggtctatctttccctattggatttaagaacggtactgatggtggt
ttgcaagtcgccatcgacgctatgagagccgctgcacatgaacattacttcctttctgtcacaCTAccaggtgtca
ctgctatcgtgggcactgaaggtaacaaggataccttcctgatcttgagaggtggtaagaacggtactaactttga
caaagaaagtgttcaaaatactaagaaacagttagaaaaggccggtttgactgatgattcccagaaaagaattatg
atcgattgttcccacggcaacagtaataaagatttcaagaaccaaccaaaggttgccaaatgtatttatgaccagc
tgacggagggtgagaatagtctctgtggtgttatgattgagtccaacataaatgaaggtagacaagatattcccaa
agaaggtggcagagagggattgaagtatggttgttctgttacggatgcttgtattggctgggagtccaccgaacag
gtattggagctattggcagaaggtgttagaaacagaagaaaggccttgaaaaaatag
Remarks: underscore indicates mutational site
Further, in the recombinant yeast, in the recombinant yeast, gene RIC1, gene pHA2 and/or TRP2
It is deactivated;Preferably, gene RIC1, gene pHA2 and/or TRP2 sport sequence shown in NO:4~6 SEQ ID respectively.
RIC1 gene: referring to, Gene ID:850728Chromosome:XII;NC_001144.5
(225426..228596)
PHA2 gene: referring to, Gene ID:855400Chromosome:XIV;NC_001146.8(42071..43075)
TRP2 gene: referring to, Gene ID:856824Chromosome:V;NC_001137.3(337949..339472)
The sequence of gene knockout (remarks: dash area represents gene and has been knocked)
Δ RIC1 (SEQ ID NO:4):
Δ TRP2 (SEQ ID NO:5)
Δ PHA2 (SEQ ID NO:6)
Further, the rigorous type plasmid comprising carrying UGP1, PGM and/or RrU8GT33 in the recombinant yeast
PRS413 plasmid;Preferably, the also integrated pRS425 comprising carrying ARO10, ARO2 and/or ARO1 in the recombinant yeast
Plasmid.
UGP1 gene: referring to, GeneID:853830Chromosome:XI;NC_001143.9(369891..371390);
PGM gene: referring to, GeneID:853732;
RrU8GT33 gene: referring to, GenBank:MF674558.1;
ARO1 gene: referring to, Gene ID:851705Chromosome:IV;NC_001136.10
(704484..709250);
ARO2 gene: referring to, Gene ID:852729Chromosome:VII;NC_001139.9
(226399..227529);
ARO10 gene: referring to, Gene ID:851987Chromosome:IV;NC_001136.10
(1234218..1236125)。
The present invention also provides application of the aforementioned engineering bacteria in production rhodioside.
The present invention also provides a kind of methods for preparing rhodioside, it is prepared using engineering bacterium fermentation above-mentioned.
Described method includes following steps:
(1) engineering bacteria above-mentioned is taken, cultivates, obtains saccharomyces cerevisiae seed liquor;
(2) saccharomyces cerevisiae seed liquor is inoculated into fermentation medium, ferments, obtains fermentation liquid;
(3) it isolates and purifies.
The technique of step (1) are as follows: engineering bacteria is taken, is inoculated into SC fluid nutrient medium, 28~32 DEG C, 100~300rpm shakes
Bed culture 12~36h, preferably 30 DEG C, 200rpm shaking table culture for 24 hours.
SC fluid nutrient medium:
In step (2), the condition of fermentation are as follows: after saccharomyces cerevisiae seed liquor is inoculated into fermentation medium, OD600 is
0.1~0.3, preferably 0.2;The temperature of fermentation is 28~32 DEG C, is selected as 30 DEG C, 100~300rpm of agitation speed, preferably
200rpm;Control control pH is 5.3~5.8, preferably 5.5;Air velocity is 2~6L/min, preferably 4L/min;When fermentation
Between be 120~170h, preferably fermentation time be 144h.
In step (2), the fermentation medium is SC culture medium, continuously adds glucose solution during fermentation,
Keeping concentration of glucose in fermentation medium is 10-20g/L.
In step (3), the isolation and purification method is column chromatography method.
The column chromatography method are as follows: fermentation liquid HP20 macroporous absorbent resin is adsorbed, after with clear water wash resin, then according to
Secondary 40% ethyl alcohol, 70% ethanol elution, obtain the sterling of rhodioside;Preferably, loading volume: column volume 3:1;It has adsorbed
The water washing resin of 3 times of column volumes of Cheng Houyong, rear 40% ethyl alcohol with 20 times of column volumes, then 70% ethyl alcohol of 40 times of column volumes are washed
It is de-.
Key of the invention is to establish the recombinant Saccharomyces cerevisiae of high yield rhodioside, can be high using the saccharomyces cerevisiae
Rhodioside is produced, specific preparation method is not limited to the method that the present invention enumerates.
The results show, the improved engineering bacteria of the present invention can be 1g/L- with high yield rhodioside, rhodioside yield
1.1g/L, economic value is high, and zymotechnique is simple, and low in cost, prospects for commercial application is good.
Obviously, above content according to the present invention is not being departed from according to the ordinary technical knowledge and customary means of this field
Under the premise of the above-mentioned basic fundamental thought of the present invention, the modification, replacement or change of other diversified forms can also be made.
The specific embodiment of form by the following examples remakes further specifically above content of the invention
It is bright.But the range that this should not be interpreted as to the above-mentioned theme of the present invention is only limitted to example below.It is all to be based on above content of the present invention
The technology realized all belongs to the scope of the present invention.
Detailed description of the invention
The building schematic diagram of Fig. 1 recombinant plasmid
Specific embodiment
The building of embodiment 1, engineering bacteria of the present invention
1, the construction method of engineering bacteria
(1) from original Wine brewing yeast strain HY001 (the CEN.PK-1C), successively to three kinds of ARO of main metabolic fluxes approach
Gene is mutated, and mutation method is the genome site-directed mutagenesis technique that CRISPR-Cas9 is mediated:
The method of site-directed point mutation, the plasmid of use carry the gene and one section of base for being used to transcribe of Cas9 albumen
Cause, RNA and the Cas9 protein binding of transcription, only need to be imported again on plasmid one section with target gene match gene spacer and
The plasmid rebuild is imported cell by homologous recombination segment, because the homologous recombination segment of design is rite-directed mutagenesis, ferment
The target gene being cut off in female eukaryocyte body, in a manner of homologous recombination, using the homology arm on plasmid as template, reparation is caused
Rite-directed mutagenesis, to complete site-directed point mutation purpose.
It is ARO4 by ARO4 gene mutation on HY001 bacterial strainK229L, thus obtain bacterial strain HY002
(CEN.PK-1C-mutARO4);
Spacer:TTCATGGGTGTTACTAAGCA
Homology arm:
HR-Left:aatgttgctgtggatgcttgtcaagccgctgctcattctcaccatttcatgggtgttact
TTG
HR-Right:catggtgttgctgctatcaccactactaagggtaacgaacactgcttcgttattcta
It is ARO7 by ARO7 gene mutation on HY002 bacterial strainG141S, thus obtain bacterial strain HY003
(CEN.PK-1C-mutARO4-mutARO7);
Spacer:GGTGATGATAAGAATAACTT
Homology arm
HR-Left:GATTATACCATTAATTTCGAAAAGAGATGGTGATGATAAGAATAACTTCAGT
HR-Right:TCTGTTGCCACTAGAGATATAGAATGTTTGCAAAGCTTGAGTAGGAGA
It is ARO3 by ARO3 gene mutation on HY003 bacterial strainK222L, thus obtain bacterial strain HY004
(CEN.PK-1C-mutARO4-mutARO7-mutARO3)。
ARO3K229LAbrupt information:
Spacer:TTCCTTTCTGTCACAAAGCC
HR-Left:CATCGACGCTATGAGAGCCGCTGCACATGATCATTACTTCCTTTCTGT CACACTA
HR-Right:CCAGGTGTCACTGCTATCGTGGGCACTGAAGGTAACAAGGATACCTT CCTGATCTTGAG
(2) on Wine brewing yeast strain HY004, first gene knockout RIC1 solves the related inhibition of transcription, obtains bacterial strain
HY005(CEN.PK-1C-mutARO4-mutARO7-mutARO3-ΔRIC1).Mutation method is the base that CRISPR-Cas9 is mediated
Because of a group knockout.
The method of gene site-directed knockout, the plasmid of use carry the gene and one section of base for being used to transcribe of Cas9 albumen
Cause, RNA and the Cas9 protein binding of transcription, only need to be imported again on plasmid one section with target gene match gene spacer and
The plasmid rebuild is imported cell by homologous recombination segment, because the homologous recombination segment of design is that have one section of base to lack
It loses, the target gene being cut off in yeast eukaryocyte body, in a manner of homologous recombination, using the homology arm on plasmid as template,
Reparation causes frameshift mutation, and gene function is caused to destroy, to complete gene knockout purpose.
Δ RIC1 information:
Spacer:GGAATTCTAAGCAATTGGGG
HR-Left:CGGAAGCTGCAAGAAACTGAACACGTGGAAAATGCACTTATGGCCAGT CA
HR-Right:CAATTGCTTAGAATTCCACCCCGCAACGCCGAATTAGGTGAAGGTAC TAA
(2) on Wine brewing yeast strain HY005, pHA2, TRP2 are knocked out, tryptophan is reduced and phenylalanine competes approach,
It obtains bacterial strain HY006 (CEN.PK-1C-mutARO4-mutARO7-mutARO3- Δ RIC1- Δ pHA2- Δ TRP2).Mutation side
Method is the genomic knockout that CRISPR-Cas9 is mediated.
PHA2
Spacer:GGGGGATAGAGGCTGCTGGG
Homology arm
HR-Left:AGGTACGTATTCCCATCAAGCTGCATTACAACAATTTCAATCAACATCTGATGTTGAGTA
HR-Right:AATGTTTTAACCAATTGGAGAACGACACTAGTATAGATTATTCAGTGGTACCGTTGG
TRP2
Spacer:ATTGGATCTGACTCCTCACG
Homology arm
HR-Left:ACAGCAGCAAAATGACGATAGTTCCATAAATATGTATCCCGTGTATGCGTATTTGCCATC
HR-Right:CATATCTAAAATTGGCACAATTGAACAACCCTGATAGAAAGGAATCATTTCTGTTGGAAA
(3) gene UGP1, PGM are inserted also by the method for single-swap in Wine brewing yeast strain of the invention,
RrU8GT33, and Gene A RO10, ARO2, ARO1 relevant to the regulation of main metabolic fluxes.
Genome conformity is usually to ensure that the best approach of approach stability and homologous expression in group.
The present invention utilizes rigorous type plasmid pRS413 by UGP1, PGM, RrU8GT33 expressing in series, composition module 1, utilization
The high expression of gene is realized by gene integration into genome as insertion point in multiple sites Delta on S. cerevisiae chromosomal
Purpose.
Integration site:
delta1:
ctcgagggatataggaatcctcaaaatggaatctatatttctacatactaatattacgattattcatt
ccgttttatatgtttatatttcattgatcctattacattatcaatccttgcgtttcagcttccactaatttagatg
actatttctcatcatttgcgtcatcttctaagccagccgtatatgataatatactagtaatgtaaatactagttag
tagatgatagttgatttctattccaaca
Delta2:
tggaagctgaaacgtctaacggatcttgatttgtgtggacttccttagaagtaaccgaagcacaggcg
ctaccatgagaaatgggtgaatgttgagataattgttgggattccattgttgataaaggctataatattaggtata
cagaatatactagaagttctc
Select integrative plasmid pRS406 will Gene A RO10 relevant to the regulation of main metabolic fluxes, ARO2, ARO1 go here and there in order
Connection expression, constitutes module 2.
Insertion point are as follows: ura 3-52
Module 1, the construction method of module 2 are yeast connection method.
It is integrated on Yeast genome using the site Delta, technology path is as shown in Figure 1.Connection Step is as follows:
Each segment DNA is determined last total volume (being concentrated into 10ul), condensing mode can be QI according to equimolar than mixing
Aquick concentration.
1) plate is drawn on YPAD plate, prepares fresh HZ848 monoclonal
2) monoclonal is chosen into 2-3ml YPAD, and 30 degree of shaking tables are incubated overnight (about 16h)
3) take 1ml seed bacterium solution in 50ml YPAD, 30 degree of cultures to OD600=0.6-0.8 (generally supporting 4h) yeast passes
For 2h/ generation
4) by yeast in 4 degree, 4000rpm, it is centrifuged 2-3min, abandons supernatant
5) plus ddH is pre-chilled in 50ml2O cleans cell, is centrifuged, abandoning supernatant (1ml sterile water is first taken, after blowing even thallus, then plus
Remaining water)
6) plus ddH2O is pre-chilled in 1ml, is resuspended, and moves to 1.5ml EP pipe, and 7000rpm 4 degree, is centrifuged 30s, abandons supernatant
7) plus 1M sorbitol is pre-chilled in 1ml, cleans cell, and supernatant is abandoned in centrifugation
8) plus 1M sorbitol is pre-chilled in 400-600ul, is resuspended, and is distributed into 100ul/ pipe electricity and turns
1) it takes 10ul DNA that 100ul competence is added, electric revolving cup (1.5kv, the 5.0-5.2ms point of pre-cooling is transferred to after mixing
Hit), 1ml YPAD is rapidly joined after electric shock
2) 30 degree, 250rpm, recovery 1h.5000rpm is centrifuged 1min, abandons supernatant
3) plus 1ml 1M sorbitol cleans cell, washes three times, is finally resuspended to 1ml 1M sorbitol
4) 100ul, 900ul is divided to be respectively coated on screening flat board, 30 degree of cultures.
Conversion: yeast robin imports the plasmid built in purpose bacterial strain.
1, inoculation purpose bacterial strain is supported overnight in 5ml YPAD, 30 degree of vibrations
2, it takes 2ml bacterium solution in 50ml YPAD, sets 30 degree of feeding 4-5h that shake, OD600=0.8-1.0 (at least complete twice by cell
Division, during three or four divisions, transformation efficiency is constant)
3, it is centrifuged, 2500rpm, 5min (can also be with 4000rpm, 2-3min), abandons supernatant
4, [SSDNA sample is boiled into 10min, in quick insertion ice]
5, it washes: being resuspended with 50ml sterile water, be ibid centrifuged
6,100mM LiAc is washed: being resuspended with the 100mM LiAc of 50ul, 12000rpm, 3s (or 4000rpm, 1min) are exhausted
Supernatant
7, suspension cell is to final volume 500ul, about plus 100mM LiAc 400ul, is divided into 50ul/ pipe, centrifugation, in abandoning
It is to be vortexed below more easily that (4000rpm, the 30s) time, which shortens, clearly
8, it is sequentially added into " conversion mixed liquor "
240ul PEG3350 (50%)
36ul 1M LiAc
10ul ssDNA(10mg/ml)
50ul water and plasmid (plasmid 1ug-5ug)
9, it is vortexed and shakes each reaction tube until cell mixes completely
10,30 degree of heat preservation 30min are set
11,42 degree of heat shock 20min-25min are set
12,15s is centrifuged with 6000-8000rpm, exhausts supernatant
13, precipitating is gently resuspended with 200ul sterile water
14, selection plate is applied, insulating box is set
Gene UGP1, the rigorous type plasmid pRS413 of PGM, RrU8GT33 are had by preceding method, and carries master
Metabolic fluxes regulate and control relevant Gene A RO10, and the integrative plasmid pRS406 of ARO2, ARO1 obtain rhodioside superior strain
HY007。
ARO4K229L:
atgagtgaatctccaatgttcgctgccaacggcatgccaaaggtaaatcaaggtgctgaagaagatgt
cagaattttaggttacgacccattagcttctccagctctccttcaagtgcaaatcccagccacaccaacttctttg
gaaactgccaagagaggtagaagagaagctatagatattattaccggtaaagacgacagagttcttgtcattgtcg
gtccttgttccatccatgatctagaagccgctcaagaatacgctttgagattaaagaaattgtcagatgaattaaa
aggtgatttatccatcattatgagagcatacttggagaagccaagaacaaccgtcggctggaaaggtctaattaat
gaccctgatgttaacaacactttcaacatcaacaagggtttgcaatccgctagacaattgtttgtcaacttgacaa
atatcggtttgccaattggttctgaaatgcttgataccatttctcctcaatacttggctgatttggtctccttcgg
tgccattggtgccagaaccaccgaatctcaactgcacagagaattggcctccggtttgtctttcccagttggtttc
aagaacggtaccgatggtaccttaaatgttgctgtggatgcttgtcaagccgctgctcattctcaccatttcatgg
gtgttactTTGcatggtgttgctgctatcaccactactaagggtaacgaacactgcttcgttattctaagaggtgg
taaaaagggtaccaactacgacgctaagtccgttgcagaagctaaggctcaattgcctgccggttccaacggtcta
atgattgactactctcacggtaactccaataaggatttcagaaaccaaccaaaggtcaatgacgttgtttgtgagc
aaatcgctaacggtgaaaacgccattaccggtgtcatgattgaatcaaacatcaacgaaggtaaccaaggcatccc
agccgaaggtaaagccggcttgaaatatggtgtttccatcactgatgcttgtataggttgggaaactactgaagac
gtcttgaggaaattggctgctgctgtcagacaaagaagagaagttaacaagaaatag
ARO7G141S
ATGGATTTCACAAAACCAGAAACTGTTTTAAATCTACAAAATATTAGAGATGAATTAGTTAGAATGGA
GGATTCGATCATCTTCAAATTTATTGAGAGGTCGCATTTCGCCACATGTCCTTCAGTTTATGAGGCAAACCATCCA
GGTTTAGAAATTCCGAATTTTAAAGGATCTTTCTTGGATTGGGCTCTTTCAAATCTTGAAATTGCGCATTCTCGCA
TCAGAAGATTCGAATCACCTGATGAAACTCCCTTCTTTCCTGACAAGATTCAGAAATCATTCTTACCGAGCATTAA
CTACCCACAAATTTTGGCGCCTTATGCCCCAGAAGTTAATTACAATGATAAAATAAAAAAAGTTTATATTGAAAAG
ATTATACCATTAATTTCGAAAAGAGATGGTGATGATAAGAATAACTTCagtTCTGTTGCCACTAGAGATATAGAAT
GTTTGCAAAGCTTGAGTAGGAGAATCCACTTTGGCAAGTTTGTTGCTGAAGCCAAGTTCCAATCGGATATCCCGCTA
TACACAAAGCTGATCAAAAGTAAAGATGTCGAGGGGATAATGAAGAATATCACCAATTCTGCCGTTGAAGAAAAGAT
TCTAGAAAGATTAACTAAGAAGGCTGAAGTCTATGGTGTGGACCCTACCAACGAGTCAGGTGAAAGAAGGATTACTC
CAGAATATTTGGTAAAAATTTATAAGGAAATTGTTATACCTATCACTAAGGAAGTTGAGGTGGAATACTTGCTAAGA
AGGTTGGAAGAGTAA
ARO3K222L
Atgttcattaaaaacgatcacgccggtgacaggaaacgcttggaagactggagaatcaaaggttatga
tccattaacccctccagatctgcttcaacatgaatttccaatttcagccaaaggtgaggaaaacattatcaaggca
agagactccgtctgtgatattttgaatggtaaagatgatcgtttagttatcgtgatcgggccatgttccctacatg
accccaaagccgcttacgattacgctgacagattggctaaaatttcagaaaagttgtcaaaagacttattgattat
tatgagagcgtatttagaaaaaccaaggactactgttggctggaaagggttgattaacgaccctgatatgaataac
tcttttcaaatcaataaaggtctacggatttcgagagaaatgttcataaaactggttgaaaaattacccattgctg
gtgagatgttggataccatttctccgcagtttttgagtgattgtttctccttgggtgccatcggcgccagaactac
tgaatcccaactgcacagagaattagcatccggtctatctttccctattggatttaagaacggtactgatggtggt
ttgcaagtcgccatcgacgctatgagagccgctgcacatgaacattacttcctttctgtcacaCTAccaggtgtca
ctgctatcgtgggcactgaaggtaacaaggataccttcctgatcttgagaggtggtaagaacggtactaactttga
caaagaaagtgttcaaaatactaagaaacagttagaaaaggccggtttgactgatgattcccagaaaagaattatg
atcgattgttcccacggcaacagtaataaagatttcaagaaccaaccaaaggttgccaaatgtatttatgaccagc
tgacggagggtgagaatagtctctgtggtgttatgattgagtccaacataaatgaaggtagacaagatattcccaa
agaaggtggcagagagggattgaagtatggttgttctgttacggatgcttgtattggctgggagtccaccgaacag
gtattggagctattggcagaaggtgttagaaacagaagaaaggccttgaaaaaatag
Remarks: underscore indicates mutational site
The sequence of gene knockout (remarks: dash area represents the gene being knocked)
ΔRIC1
ΔTRP2
ΔPHA2
Embodiment 2 prepares rhodioside using engineering bacterium fermentation of the present invention
Rhodioside superior strain HY007 prepared by Example 1, is prepared as follows rhodioside:
1, fermentation process:
(1) the above-mentioned bacterium solution for being incubated overnight 1ml is seeded in 50ml SC fluid nutrient medium, OD600=0.2 after inoculation,
30 DEG C, 200rpm shaking table culture 24 hours, obtain saccharomyces cerevisiae seed liquor;
(2) 5L that the 50ml saccharomyces cerevisiae seed liquor cultivated in step 1 is inoculated into the culture medium of SC containing 2.5L is fermented
In tank, initial OD 600=0.2 after inoculation, 30 DEG C of fermentation temperature, agitation speed 200-300rpm, control pH=5.5 is (by certainly
The ammonium hydroxide of dynamic addition 5M is adjusted), air velocity 4L/min, 500g/L glucose solution continuously adds, to keep fermentation medium
In concentration of glucose between 10-20g/L, fermented and cultured 144 hours.
2, purification process
The fermentation liquid HP20 macroporous absorbent resin adsorbed target product that fermentation is obtained, loading volume: column volume=3:
1, the water washing resin of three times column volume is used after the completion of absorption, finally with 40% ethyl alcohol of 20 times of column volumes, 40 times of column volumes
70% ethyl alcohol successively elutes, and obtains the sterling of rhodioside.
3, testing result
After measured, high yield rhodioside Wine brewing yeast strain HY007 is in 5L fermentation cylinder for fermentation, rhodioside yield
1g/L-1.1g/L。
To sum up, rhodioside is produced using engineering bacteria of the present invention, rhodioside yield is 1g/L-1.1g/L, economic value
Height, also, zymotechnique is simple, and raw material is relatively more conventional and cheap, and low in cost, prospects for commercial application is good.
Sequence table
<110>Chengdu Wei He Biotechnology Co., Ltd
<120>a kind of engineering bacteria of high yield rhodioside and its application
<130> GY771-18P1492
<160> 23
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1113
<212> DNA
<213>sequence (artificial) of ARO4K229L
<400> 1
atgagtgaat ctccaatgtt cgctgccaac ggcatgccaa aggtaaatca aggtgctgaa 60
gaagatgtca gaattttagg ttacgaccca ttagcttctc cagctctcct tcaagtgcaa 120
atcccagcca caccaacttc tttggaaact gccaagagag gtagaagaga agctatagat 180
attattaccg gtaaagacga cagagttctt gtcattgtcg gtccttgttc catccatgat 240
ctagaagccg ctcaagaata cgctttgaga ttaaagaaat tgtcagatga attaaaaggt 300
gatttatcca tcattatgag agcatacttg gagaagccaa gaacaaccgt cggctggaaa 360
ggtctaatta atgaccctga tgttaacaac actttcaaca tcaacaaggg tttgcaatcc 420
gctagacaat tgtttgtcaa cttgacaaat atcggtttgc caattggttc tgaaatgctt 480
gataccattt ctcctcaata cttggctgat ttggtctcct tcggtgccat tggtgccaga 540
accaccgaat ctcaactgca cagagaattg gcctccggtt tgtctttccc agttggtttc 600
aagaacggta ccgatggtac cttaaatgtt gctgtggatg cttgtcaagc cgctgctcat 660
tctcaccatt tcatgggtgt tactttgcat ggtgttgctg ctatcaccac tactaagggt 720
aacgaacact gcttcgttat tctaagaggt ggtaaaaagg gtaccaacta cgacgctaag 780
tccgttgcag aagctaaggc tcaattgcct gccggttcca acggtctaat gattgactac 840
tctcacggta actccaataa ggatttcaga aaccaaccaa aggtcaatga cgttgtttgt 900
gagcaaatcg ctaacggtga aaacgccatt accggtgtca tgattgaatc aaacatcaac 960
gaaggtaacc aaggcatccc agccgaaggt aaagccggct tgaaatatgg tgtttccatc 1020
actgatgctt gtataggttg ggaaactact gaagacgtct tgaggaaatt ggctgctgct 1080
gtcagacaaa gaagagaagt taacaagaaa tag 1113
<210> 2
<211> 771
<212> DNA
<213>sequence (artificial) of ARO7G141S
<400> 2
atggatttca caaaaccaga aactgtttta aatctacaaa atattagaga tgaattagtt 60
agaatggagg attcgatcat cttcaaattt attgagaggt cgcatttcgc cacatgtcct 120
tcagtttatg aggcaaacca tccaggttta gaaattccga attttaaagg atctttcttg 180
gattgggctc tttcaaatct tgaaattgcg cattctcgca tcagaagatt cgaatcacct 240
gatgaaactc ccttctttcc tgacaagatt cagaaatcat tcttaccgag cattaactac 300
ccacaaattt tggcgcctta tgccccagaa gttaattaca atgataaaat aaaaaaagtt 360
tatattgaaa agattatacc attaatttcg aaaagagatg gtgatgataa gaataacttc 420
agttctgttg ccactagaga tatagaatgt ttgcaaagct tgagtaggag aatccacttt 480
ggcaagtttg ttgctgaagc caagttccaa tcggatatcc cgctatacac aaagctgatc 540
aaaagtaaag atgtcgaggg gataatgaag aatatcacca attctgccgt tgaagaaaag 600
attctagaaa gattaactaa gaaggctgaa gtctatggtg tggaccctac caacgagtca 660
ggtgaaagaa ggattactcc agaatatttg gtaaaaattt ataaggaaat tgttatacct 720
atcactaagg aagttgaggt ggaatacttg ctaagaaggt tggaagagta a 771
<210> 3
<211> 1113
<212> DNA
<213>sequence (artificial) of ARO3K222L
<400> 3
atgttcatta aaaacgatca cgccggtgac aggaaacgct tggaagactg gagaatcaaa 60
ggttatgatc cattaacccc tccagatctg cttcaacatg aatttccaat ttcagccaaa 120
ggtgaggaaa acattatcaa ggcaagagac tccgtctgtg atattttgaa tggtaaagat 180
gatcgtttag ttatcgtgat cgggccatgt tccctacatg accccaaagc cgcttacgat 240
tacgctgaca gattggctaa aatttcagaa aagttgtcaa aagacttatt gattattatg 300
agagcgtatt tagaaaaacc aaggactact gttggctgga aagggttgat taacgaccct 360
gatatgaata actcttttca aatcaataaa ggtctacgga tttcgagaga aatgttcata 420
aaactggttg aaaaattacc cattgctggt gagatgttgg ataccatttc tccgcagttt 480
ttgagtgatt gtttctcctt gggtgccatc ggcgccagaa ctactgaatc ccaactgcac 540
agagaattag catccggtct atctttccct attggattta agaacggtac tgatggtggt 600
ttgcaagtcg ccatcgacgc tatgagagcc gctgcacatg aacattactt cctttctgtc 660
acactaccag gtgtcactgc tatcgtgggc actgaaggta acaaggatac cttcctgatc 720
ttgagaggtg gtaagaacgg tactaacttt gacaaagaaa gtgttcaaaa tactaagaaa 780
cagttagaaa aggccggttt gactgatgat tcccagaaaa gaattatgat cgattgttcc 840
cacggcaaca gtaataaaga tttcaagaac caaccaaagg ttgccaaatg tatttatgac 900
cagctgacgg agggtgagaa tagtctctgt ggtgttatga ttgagtccaa cataaatgaa 960
ggtagacaag atattcccaa agaaggtggc agagagggat tgaagtatgg ttgttctgtt 1020
acggatgctt gtattggctg ggagtccacc gaacaggtat tggagctatt ggcagaaggt 1080
gttagaaaca gaagaaaggc cttgaaaaaa tag 1113
<210> 4
<211> 3171
<212> DNA
<213> RIC1(artificial)
<400> 4
atgttcatca aacagtctga aaaaaataca cctaaatgcc tctacaaaaa aaaaggtaag 60
gtaagagtgt tattgaccgg aagctgtaag aaactgaaca cgtggaaaat gcacttatgg 120
ccagtcagtc cgccccaatt gcttagaatt ccaccccgca acgccgaatt aggtgagggt 180
actaaaatag atgattgcaa tattcttcaa tcaatgacac taccccaggc caatgttctt 240
atcatgctaa ccccaacaag agtgctcatt tacaacttca aaccaatggc actagtagct 300
agccatgaac gaacaatggc ttctcttaag gaatttggcg ataacagatc aatgaaacga 360
tcagctccat ataatgatat catcgaaggg cttatttcaa aaaaggactc gcaatactta 420
ttgtggcacc agggaaagct gatattttac gtaatgactg ataaaaactt ccttttaaca 480
taccaaattt taaaaaactg cacaaatgaa ataattttca aagaatacgg catacccgtc 540
atagagcctc ttttaatgag tgaagaagaa gcgaacagtg ctgaatatga ctataacaac 600
gatgatgata ctctcacggt atttgataaa aatagttctt caagaattat acagaatgga 660
tttggcataa ctaaggaaaa agggttttta cactttcttt ctaatcaaga aaacattgat 720
gaactccccg tgaaaaaact agaacttcgt ttaaaagtag ttcttaaatt tgactatgaa 780
atcatagaca tgattggcat caagacattt tccaaagtcg gggatgggcg ttatgaagaa 840
gttttgatag ttttattccc tcatggatta caaatactta caatatcgga ttttaaagtt 900
agcaagagct cgttggttga agtgaagaag ggatccaaga caattgtgtg taataaacaa 960
ttaatggttt tatctcatga ttccgtcgaa aagcagacta ttgtaagcat tatagacatt 1020
gaaaagcaag ctgttgaagc aataccgtta acggacacac cagatgaact tttgacttgc 1080
ctagaagtta atggatacct ggtggtcgtt tacaaagaaa aaataatctg ctttgataca 1140
agaattaaaa aagtaagcca ttcttggaaa ccaccatttg tgataaaact ttgcgataaa 1200
attaatgata aaatattact tttggtttct gaggatagtg ttaacattca tttttacaca 1260
gaatttggga atctgctatt cgctacatat tttgacgaag atgattataa tggtgataac 1320
aataatgaca acagcaagga taaaaatgag aaaaaggcgg ctgaatataa aatttctgat 1380
tttgtatgct tggataaatc actaataaca gtgtctcatt ccggaaaata tcaagtttgg 1440
aaattatggg aagaaataaa acaaacacaa tttgatttca gaaacccaaa atgttacgta 1500
ttaaccaata cgaacaatga tgtaatcata tattcacctg tgacaagttc ttcaatcaat 1560
aatgataatt tacaagtcat aaaacttcct acaaagactt tcaataatca tattgctttt 1620
gtaaaaatta attcttcctt gaggttattt gctacttatg tgtcgaacaa aaacatactg 1680
cttatccaca atctagagac caatatgtgg tctagttttg ctgaccaaaa cgtgttggat 1740
ttacattggc taggtgataa ttatttggtt tgtcatatga agaatgatga tggctcaaca 1800
aatctgaaat gtctgcagat tccactgcaa gaagcgaatc cggacgtgga actatcagat 1860
tatgtcatgt gggaatacaa tgttccagag aatacgattg ttttcagttt acatgttaat 1920
actttatccc ggtataagtt gttgaaaatg aaatccaaga atcacaatgc ttctgaaaaa 1980
caacctgatg cattgcttaa aactgccgag attattttag ttactgatac acagacaatt 2040
gtcttcgatg taatttctac tgtacatcca tgtggattaa acatcatcaa aaaattctac 2100
cagtatctca aaattaacat tccaattgat gttttaccca acaaaattga gtggataatt 2160
aacatgaagg agggcttgtt attttttgcc gataggaaat ttataaagct tggcaaagtg 2220
gatggagggg gctggcaaac cttaactttg ttggataaca tagaaaaaat aatcgatgtt 2280
atcagggacg aaatatttgt agttcaaggc cataattacg tcgtatactc tttggaagat 2340
ttatgggatg ataaaaagcc actagtttcc attccaatcg aagaagattt gtatccaata 2400
tcaaccaccc cagaaacagc tacaacacat acacttcact gcatttttaa cgcgcgattt 2460
tccaaattgg tggtgaaaca ccaaatatac ctcgaccaat taatcttagc caaattagaa 2520
gacaacacag atttggagga tatttcacac aattatcgtt ttttaaagcc ttacaaattt 2580
gcactcgaaa agattttgtc tactaaaata ctgcgaagcg actctttgga tgatatcctg 2640
aaattaatta agatgtatga caacaccgat cctgagcata atatttcacc accaacccac 2700
agtggtatgt tagaaattat tagtaattgt ttaaggaaga tcgaaactaa atactggaac 2760
catctattca ctaatctaaa gatgacacca agagatttat tagcactctg tatcgaagaa 2820
aatgaggcta aaatgcttgg cgtacttctg ttagtgtttt taaattacga tgagaaagat 2880
ttgggagatg atctacattt taagaaatca gatttaggga ctgaggaaag caaagctcta 2940
aatgataact ctacaaaaaa gtcagagaaa tctgtcacta atttattgaa ggatgaagaa 3000
ttaatgctta aagtcttaga gcttttggtg acaagtgctg caaacgccac agacccaatt 3060
aaagctaccg attcgtggga catgtgtttc caattaatac gcttactcaa ggaattagac 3120
agagaaaaca acacacaatt ggttcaaaaa gcactcgaga gattcaaata a 3171
<210> 5
<211> 3524
<212> DNA
<213> TRP2(artificial)
<400> 5
tctgggactt tgatactaat atggatgtag ccgtacatcc gctatggtct tctttcatca 60
caggatcttg taacagtttc acgtctgtgt ttatgaaagt atcaatcaaa gcccttggta 120
aatttccttc atggaacgat ttctgctctt gcaggatctc cactatttta ttaccacagt 180
attctgctac tttagcgcca ccatgaccat cgaatatacc gtaaaatgca atatggtcct 240
tatcggactt tgtcaaaaca ttaggctcta gaatgtgtga atcctccatt gacatccgcc 300
acccttgcat tgcacacagt ccaaacgcgg tcaacgagtc agcaccggag tggctctctt 360
tatcaattac cgggtttgat agaatttgtc ccatttttct ttttctggtt ctctatatgt 420
tatacaacaa tggaatagtc aaaatcctag ggatgttatt aatcggaaaa ctactatctc 480
gaacgaatag ttataattaa tcaatgaaaa aaaaaagaga aagtaaaaaa tgttacaaca 540
actaatatac actaattgtc cttgataaca gaacttgttg tagttttatt ccgtggggag 600
gagggtgaat tttttttatt tagttttaaa gaacaaaaca gaagtctata tacttagcac 660
tataatatcc agtttcaatt tgctctgtca gaatccgaat tggctggttt tctttgtttt 720
accaccccct tccatttatc agcatgatat ttttttttta gaataatcct ttcaatcgtt 780
gaagtagttt gtgggaaaag aaaagttgtt aaaggcatta acgtacacag tgatttgctg 840
actcattacg atttttcact catcgaagta ttgttaaatt tcgatatatt aacatgacta 900
aagggctatg gtccgtcgta gcagaaggca atcatcactt taaaaccgag gccacaatcg 960
ataattagca ctgatattct gattggaaaa aaggcaaaaa atgaccgctt ccatcaaaat 1020
tcaaccggat attgactctc taaagcaatt acagcagcaa aatgacgata gttccataaa 1080
tatgtatccc gtgtatgcgt atttgccatc attggatctg actcctcacg tggcatatct 1140
aaaattggca caattgaaca accctgatag aaaggaatca tttctgttgg aaagtgctaa 1200
gacaaataat gaattagatc gttattcatt cataggtatc tcgccacgca agaccatcaa 1260
aaccggtcct actgaaggca ttgaaacaga tcctttggaa attttggaaa aggagatgtc 1320
cacctttaaa gtagccgaaa atgttcctgg tttaccgaag ttaagtggtg gtgctattgg 1380
ttatatttct tatgactgtg ttcgttattt cgagccaaaa acaagaaggc ctttgaaaga 1440
tgtcctaaga cttccagagg catatttaat gctttgtgat accattattg cctttgataa 1500
tgtttttcag agatttcaaa tcattcataa cattaatacc aatgaaactt cgttggagga 1560
aggttacaaa gctgcagcac aaataatcac tgatatcgta tcaaagctaa ccgacgattc 1620
ctcgccaata ccatatccag aacaacctcc tattaaattg aatcaaactt ttgaatcgaa 1680
tgtaggcaag gaaggttacg aaaatcacgt ctccactttg aagaagcata ttaagaaagg 1740
tgatattatt caaggtgtgc catcgcaaag agtggcaagg ccaacttcgt tacatccttt 1800
caatatttac agacatttac gtactgtgaa cccatctcct tacctgtttt atattgattg 1860
tttggatttc caaatcattg gtgcatctcc agaattgttg tgcaaatcgg attccaaaaa 1920
tagagtcatt acccatccaa ttgctggtac tgtcaaacgt ggggctacta ctgaagagga 1980
tgatgcttta gcggaccaat tacgtggctc gttaaaagac cgtgcagaac atgttatgct 2040
ggtagattta gcaagaaacg atattaacag aatttgtgac ccattaacaa caagtgtcga 2100
taaactgtta actattcaaa aattttctca tgtccaacat ctggtttctc aagtcagcgg 2160
tgttttccgc ccagaaaaga caagatttga tgcattcaga tcgattttcc ctgcaggtac 2220
tgtcagtggt gctccaaagg ttagagccat ggaattgatt gccgaactag aaggagaaag 2280
gcgtggggtt tatgcgggcg ccgtaggtca ttggtcatac gacggtaaaa caatggacaa 2340
ttgtatcgct ttaaggacta tggtctataa agatggtatt gcttacttgc aagctggcgg 2400
tggtattgtt tacgattcag atgagtacga tgaatatgtc gaaaccatga ataaaatgat 2460
ggccaatcac agtactattg tgcaagcaga agaattgtgg gccgatatcg taggatcggc 2520
ttaaaagggc attctctgtt tttctcccct tagacgacat ttttatagtt ttcgaataat 2580
atgatataat gatgtatagc aggattctga aaagtattat tcttccgaca tatacatttg 2640
gtccgactta caaccaaaaa tttttgttca aaaaatatag gaaagtttag aaaacgaatg 2700
ttgaatgcgt tataaataat acagaatgta cgtgtatata aaaatataat aaaaaaaatg 2760
caagagttat ggctttgtaa taaaattgat atcaaaaaat tacccaaata aacttttaaa 2820
tgtgaacaca aaaattaaat caccgatgtt gaatcccaga ataaaaaaca aaaagttcag 2880
aaaatatcat tactttgctt cctttttaaa accttaattc ttgtattgtt cacggaagta 2940
cttggcggct tcgaccatat gagtcaaaga caatctagtt tcttcccagc ctctagtctt 3000
caaaccacag tctgggttaa cccagaactt ttcagctggg tagctcttca agatggttga 3060
aatcttggcg ataaattcat cctttgatgg aattcttgga gaatgaatat cgaataaacc 3120
cagaccaatg tggtttggat agtttttgaa ttcagcaatg tagttagcat cgtccttctt 3180
agagaattcg atggaaacaa catcagcatc caaagccttg atatggtttg gatccaagtc 3240
agagtaacag aaatgagagt gtatttgagt cttgttagca acaccagaag tagcaactct 3300
gaaagcttcg gcagcccagg tgtagtaagc agatctctca gcaccttctc tcaatggtaa 3360
accttctctt aaagctggtt catcaacttg gataaccttg ataccggcag cttccaaatc 3420
attgacttca tctctcaaag ccaaagctaa ttgcatagct tgagtttttt ggtcgacatc 3480
gtctcttggg aaagaccatc tcaaacaggt aattggacca gtca 3524
<210> 6
<211> 3005
<212> DNA
<213> PHA2(artificial)
<400> 6
ctatagagtc taagaagcgg gaatttaata aaatcgaccc cctgaaagaa ctagaggatt 60
accaacaaaa aactcaaatg gaaaataaca actccaagca tttgatgacg aaatcaagaa 120
gtcctctcga tccaagtgct cctaaagttc ccttcaaaac attggactct tttttggatg 180
ttggaaaact gaaggactta tcgaaacagg aagtagagtt tctttggaga gcaagatggg 240
cacaaaaaga taatacatta tgcgctgtga ttcctgtctc cgtttatgat aagatgatgg 300
caaatgccag gaataaccct atattcgtgt tgccacttcc tagacaagtt caatctgagg 360
atgcaaaacc gaacgaagaa cagggaatgg aactacacta catccaatgg cagtttgtcg 420
gaccccaaac aacacattgt atgatgactt ccctagcaga atacaaacta caccaggaat 480
ttgcaaggcc acatactacc ttgcagttcc attctgattt ggtcaaggat aagggaattg 540
tttttatgaa tggccatgtt gaaccggata caaacgtgaa tgtacaggat gcacagctgt 600
tattgctaaa cgtgcaaagg ttttatggtg caatgggtga agaaactcca gttgctaaac 660
agagagtgca gttgttaaga gatttctcta aggcctctcc gggattcacc gtcgagaaat 720
tgatttcgct atcacagtcc atggaaaatt aacgaagaat tacttccgta tacgtatata 780
tatatatata tatatattaa tgacacctgt aaataaaata cgtactacat catctgcgac 840
aagcgtacag tttctttaca cagttatcag catgactctt gtattttcat aatgaaaaat 900
gaaaataaaa attttagtag atgaatataa tacgcagaaa gaacaggcta aaaaagtacg 960
aaaagcaact tcattatatt tccgcattca tccttcaatt atggccagca agactttgag 1020
ggttcttttt ctgggtccca aaggtacgta ttcccatcaa gctgcattac aacaatttca 1080
atcaacatct gatgttgagt acctcccagc agcctctatc ccccaatgtt ttaaccaatt 1140
ggagaacgac actagtatag attattcagt ggtaccgttg gaaaattcca ccaatggaca 1200
agtagttttt tcctatgatc tcttgcgtga taggatgatc aaaaaagccc tatccttacc 1260
tgctccagca gatactaata gaattacacc agatatagaa gttatagcgg agcaatatgt 1320
acccattacc cattgtctaa tcagcccaat ccaactacca aatggtattg catcccttgg 1380
aaattttgaa gaagtcataa tacactcaca tccgcaagta tggggccagg ttgaatgtta 1440
cttaaggtcc atggcagaaa aatttccgca ggtcaccttt ataagattgg attgttcttc 1500
cacatctgaa tcagtgaacc aatgcattcg gtcatcaacg gccgattgcg acaacattct 1560
gcatttagcc attgctagtg aaacagctgc ccaattgcat aaggcgtaca tcattgaaca 1620
ttcgataaat gataagctag gaaatacaac aagattttta gtattgaaga gaagggagaa 1680
cgcaggcgac aatgaagtag aagacactgg attactacgg gttaacctac tcacctttac 1740
tactcgtcaa gatgaccctg gttctttggt agatgttttg aacatactaa aaatccattc 1800
actcaacatg tgttctataa actctagacc attccatttg gacgaacatg atagaaactg 1860
gcgatattta tttttcattg aatattacac cgagaagaat accccaaaga ataaagaaaa 1920
attctatgaa gatatcagcg acaaaagtaa acagtggtgc ctgtggggta cattccccag 1980
aaatgagaga tattatcaca aataatatgt tatatagtct ttttatttat gtatcctaaa 2040
atctcgtcaa agcgcacttt tatatgctta aacctggcaa tgtggaactc ttgatgtttg 2100
aatcgatgcc tgggatttct tgacgcggtt tcttgttgat gaatccattc atgtttggta 2160
acgcatgtgg ttcaagtgta gctggtggtg gcggggccgc accgaattca ctcttctctc 2220
tcacagcatt gatgtcgtta ttgatgccaa aaaaccatcc atttatcttc ttattgttat 2280
aagttggatc atcatatgca ttaggatcaa ttggcctcgc tctagtccaa aatcttatgg 2340
ttctatcctt agctgctgtg gcaaatatat gtcctactgg attatatgat aacgaggtga 2400
tacacttatc atgggcgtat ggaatagtca aaataggttc gtttagattt tgtaaaagat 2460
caaaatgctt tagcgagccg tcatagcacg ccagagtgaa catagattca tttattgggt 2520
gccattctag tgtcatataa tccgtttcat ctcttacaca cattagttcc ttcatactgt 2580
atctaatgtc gaacacacga cacgatttat cttttgaaat cgccattaat agatttccct 2640
tggtgggttg aaatcgcgtc ttcaagacag tatgtttgaa cttcagaatt gatgatatgc 2700
agtttccgga acgcggatcc cacagtttta ctaaattgtc cttagatgcg gaggcaatta 2760
accccatctc gggatgccaa tcacaacttt tcacgtccca gtggtgcccc gataatactc 2820
tttcttgttt gccattgctg aagttccaaa tcttcaagat attatcatct gaacaggtaa 2880
caaatttcga gtcgttacta ctgaatgcca tatccctaat actttccgtg tgtgcagcat 2940
caatttcttt aaccatacta aagtttggtt gccatatctt aatcattcca tctgcgtccc 3000
cacta 3005
<210> 7
<211> 20
<212> DNA
<213>spacer (artificial) of ARO4 gene mutation
<400> 7
ggtgatgata agaataactt 20
<210> 8
<211> 52
<212> DNA
<213>HR-Left (artificial) of ARO4 gene mutation
<400> 8
gattatacca ttaatttcga aaagagatgg tgatgataag aataacttca gt 52
<210> 9
<211> 48
<212> DNA
<213>HR-Right (artificial) of ARO4 gene mutation
<400> 9
tctgttgcca ctagagatat agaatgtttg caaagcttga gtaggaga 48
<210> 10
<211> 20
<212> DNA
<213>Spacer (artificial) of ARO3 gene mutation
<400> 10
ttcctttctg tcacaaagcc 20
<210> 11
<211> 55
<212> DNA
<213>HR-Left (artificial) of ARO3 gene mutation
<400> 11
catcgacgct atgagagccg ctgcacatga tcattacttc ctttctgtca cacta 55
<210> 12
<211> 59
<212> DNA
<213>HR-Right (artificial) of ARO3 gene mutation
<400> 12
ccaggtgtca ctgctatcgt gggcactgaa ggtaacaagg ataccttcct gatcttgag 59
<210> 13
<211> 20
<212> DNA
<213>Spacer (artificial) of RIC1
<400> 13
ggaattctaa gcaattgggg 20
<210> 14
<211> 50
<212> DNA
<213>HR-Left (artificial) of RIC1
<400> 14
cggaagctgc aagaaactga acacgtggaa aatgcactta tggccagtca 50
<210> 15
<211> 50
<212> DNA
<213>HR-Right (artificial) of RIC1
<400> 15
caattgctta gaattccacc ccgcaacgcc gaattaggtg aaggtactaa 50
<210> 16
<211> 20
<212> DNA
<213>Spacer (artificial) of PHA2
<400> 16
gggggataga ggctgctggg 20
<210> 17
<211> 60
<212> DNA
<213>HR-Left (artificial) of PHA2
<400> 17
aggtacgtat tcccatcaag ctgcattaca acaatttcaa tcaacatctg atgttgagta 60
<210> 18
<211> 57
<212> DNA
<213>HR-Right (artificial) of PHA2
<400> 18
aatgttttaa ccaattggag aacgacacta gtatagatta ttcagtggta ccgttgg 57
<210> 19
<211> 20
<212> DNA
<213>Spacer (artificial) of TRP2
<400> 19
attggatctg actcctcacg 20
<210> 20
<211> 60
<212> DNA
<213>HR-Left (artificial) of TRP2
<400> 20
acagcagcaa aatgacgata gttccataaa tatgtatccc gtgtatgcgt atttgccatc 60
<210> 21
<211> 60
<212> DNA
<213>HR-Right:(artificial of TRP2)
<400> 21
catatctaaa attggcacaa ttgaacaacc ctgatagaaa ggaatcattt ctgttggaaa 60
<210> 22
<211> 248
<212> DNA
<213> delta1(artificial)
<400> 22
ctcgagggat ataggaatcc tcaaaatgga atctatattt ctacatacta atattacgat 60
tattcattcc gttttatatg tttatatttc attgatccta ttacattatc aatccttgcg 120
tttcagcttc cactaattta gatgactatt tctcatcatt tgcgtcatct tctaagccag 180
ccgtatatga taatatacta gtaatgtaaa tactagttag tagatgatag ttgatttcta 240
ttccaaca 248
<210> 23
<211> 165
<212> DNA
<213> delta2(artificial)
<400> 23
tggaagctga aacgtctaac ggatcttgat ttgtgtggac ttccttagaa gtaaccgaag 60
cacaggcgct accatgagaa atgggtgaat gttgagataa ttgttgggat tccattgttg 120
ataaaggcta taatattagg tatacagaat atactagaag ttctc 165
Claims (10)
1. a kind of engineering bacteria of high yield rhodioside, it is characterised in that: it is by the ARO4 gene coding the in S. cervisiae
The codon mutation of 229 amino acids is the codon for encoding leucine, the codon mutation of the 141st glycine of ARO7 gene
It is the codon for encoding leucine for the codon of encoding serine, the codon mutation of the 222nd lysine of ARO3 gene
Recombinant yeast.
2. engineering bacteria according to claim 1, it is characterised in that: the codon of the ARO4 gene the 229th is TTG,
The codon of the ARO7 gene the 141st is AGT;222nd codon is CTA.
3. engineering bacteria according to claim 1, it is characterised in that: in the recombinant yeast, gene RIC1, gene pHA2
And/or TRP2 inactivation;Preferably, gene RIC1, gene pHA2 and/or TRP2 are sported respectively shown in NO:4~6 SEQ ID
Sequence.
4. engineering bacteria according to claim 1 or 2, it is characterised in that: comprising carrying UGP1 in the recombinant yeast,
The rigorous type plasmid pRS413 plasmid of PGM and/or RrU8GT33;Preferably, also comprising carrying in the recombinant yeast
The integrated pRS425 plasmid of ARO10, ARO2 and/or ARO1.
5. application of the engineering bacteria described in Claims 1 to 4 any one in production rhodioside.
6. a kind of method for preparing rhodioside, it is characterised in that: it is using work described in Claims 1 to 4 any one
The fermentation preparation of journey bacterium.
7. according to the method described in claim 6, it is characterized by: it includes the following steps:
(1) engineering bacteria described in 4 any one of Claims 1 to 4 is taken, cultivates, obtains saccharomyces cerevisiae seed liquor;
(2) saccharomyces cerevisiae seed liquor is inoculated into fermentation medium, ferments, obtains fermentation liquid;
(3) it isolates and purifies.
8. according to the method described in claim 7, it is characterized by: the technique of step (1) are as follows: take engineering bacteria, be inoculated into SC liquid
In body culture medium, 28~32 DEG C, 100~300rpm, 12~36h of shaking table culture, preferably 30 DEG C, 200rpm shaking table culture for 24 hours.
9. according to the method described in claim 7, it is characterized by: in step (2), the condition of fermentation are as follows: by saccharomyces cerevisiae kind
After sub- liquid is inoculated into fermentation medium, OD600 is 0.1~0.3, preferably 0.2;The temperature of fermentation is 28~32 DEG C, there is choosing
It is 30 DEG C, 100~300rpm of agitation speed, preferably 200rpm;Control control pH is 5.3~5.8, preferably 5.5;Air stream
Speed is 2~6L/min, preferably 4L/min;Fermentation time is 120~170h, and preferably fermentation time is 144h;
And/or in step (2), the fermentation medium is SC culture medium, and it is molten that glucose is continuously added during fermentation
Liquid, keep fermentation medium in concentration of glucose be 10-20g/L and/or, in step (3), the isolation and purification method be column layer
Analysis method.
10. according to the method for claim 9 it is characterized by: the column chromatography method are as follows: by fermentation liquid HP20 macropore
Adsorb resin adsorption, after with clear water wash resin, then successively obtain the sterling of rhodioside with 40% ethyl alcohol, 70% ethanol elution;
Preferably, loading volume: column volume 3:1;With the water washing resin of 3 times of column volumes, rear 20 times of column volumes after the completion of absorption
40% ethyl alcohol, then 70% ethanol elution of 40 times of column volumes.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811116170.0A CN109385379A (en) | 2018-09-25 | 2018-09-25 | A kind of engineering bacteria of high yield rhodioside and its application |
CN201910911304.6A CN110499260B (en) | 2018-09-25 | 2019-09-25 | Engineering bacterium for high yield of salidroside and/or tyrosol and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811116170.0A CN109385379A (en) | 2018-09-25 | 2018-09-25 | A kind of engineering bacteria of high yield rhodioside and its application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109385379A true CN109385379A (en) | 2019-02-26 |
Family
ID=65419006
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811116170.0A Pending CN109385379A (en) | 2018-09-25 | 2018-09-25 | A kind of engineering bacteria of high yield rhodioside and its application |
CN201910911304.6A Active CN110499260B (en) | 2018-09-25 | 2019-09-25 | Engineering bacterium for high yield of salidroside and/or tyrosol and application thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910911304.6A Active CN110499260B (en) | 2018-09-25 | 2019-09-25 | Engineering bacterium for high yield of salidroside and/or tyrosol and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN109385379A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110499260A (en) * | 2018-09-25 | 2019-11-26 | 成都薇合生物科技有限公司 | Engineering bacteria and its application of a kind of high yield rhodioside and/or tyrosol |
CN113174375A (en) * | 2021-04-23 | 2021-07-27 | 天津大学 | ARO3 protein mutant and application thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110982716B (en) * | 2019-12-17 | 2021-11-02 | 厦门欧米克生物科技有限公司 | Strain for producing natural tyrosol and preparation method of natural tyrosol |
ES2912603B2 (en) * | 2020-11-26 | 2023-03-27 | Consejo Superior Investigacion | RECOMBINANT SACCHAROMYCES CEREVISIAE FOR THE PRODUCTION OF HYDROXYTYROSOL |
CN113249240B (en) * | 2021-05-19 | 2023-04-28 | 天津大学 | Saccharomyces cerevisiae for high yield of hydroxytyrosol and construction method thereof |
CN113493758B (en) * | 2021-05-31 | 2022-08-02 | 江南大学 | Tyrosol-producing recombinant escherichia coli capable of shortening fermentation period and application thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109988722B (en) * | 2017-12-29 | 2020-11-24 | 中国科学院天津工业生物技术研究所 | Recombinant saccharomyces cerevisiae strain, application thereof and method for producing tyrosol and/or salidroside |
CN109385379A (en) * | 2018-09-25 | 2019-02-26 | 成都薇合生物科技有限公司 | A kind of engineering bacteria of high yield rhodioside and its application |
-
2018
- 2018-09-25 CN CN201811116170.0A patent/CN109385379A/en active Pending
-
2019
- 2019-09-25 CN CN201910911304.6A patent/CN110499260B/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110499260A (en) * | 2018-09-25 | 2019-11-26 | 成都薇合生物科技有限公司 | Engineering bacteria and its application of a kind of high yield rhodioside and/or tyrosol |
CN113174375A (en) * | 2021-04-23 | 2021-07-27 | 天津大学 | ARO3 protein mutant and application thereof |
CN113174375B (en) * | 2021-04-23 | 2022-11-04 | 天津大学 | ARO3 protein mutant and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN110499260B (en) | 2022-03-25 |
CN110499260A (en) | 2019-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109385379A (en) | A kind of engineering bacteria of high yield rhodioside and its application | |
CN110527637B (en) | Monascus strain for producing aconitic acid and construction method and application thereof | |
CN107916283B (en) | A kind of production technology of niacinamide | |
CN111100800B (en) | Saccharomyces cerevisiae and application thereof | |
CN105143447B (en) | Protein and application thereof with xylose isomerase activity | |
CN103497911A (en) | Application of Chryseobacterium sp. and carbonyl reductase thereof in production of aprepitant chiral intermediate | |
CN110396505A (en) | Ketone group pantoic acid lactone reductase and its application | |
CN107699536A (en) | Genetically engineered bacterium and application thereof in production of D-1,2, 4-butanetriol | |
CN108330145A (en) | The production method of recombination hepatitis B surface antigen | |
CN102061278B (en) | Methylovorus sp. MP688 and application thereof | |
CN109401985A (en) | The Δ Tlrgt2 trichoderma engineering bacteria and its construction method of one plant height production peptaibols antibacterial peptide and application | |
CN112175848A (en) | Patchouli alcohol production yeast strain and construction method and application thereof | |
CN107460203A (en) | A kind of recombinant bacterium and construction method and purposes for producing rhodioside and the like | |
CN113444701B (en) | Saccharomyces cerevisiae endogenous squalene monooxygenase mutant and application thereof | |
CN107460220A (en) | A kind of preparation method of rhodioside and the like | |
CN107488638A (en) | A kind of 15 α hydroxylases and its preparation method and application | |
CN109913508A (en) | A method of phloretin is synthesized using cyanobacteria | |
CN105779522B (en) | A kind of microbial enzyme conversion method produces the method for L 4 hydroxyisoleucine | |
CN113337432B (en) | Methylophilus for producing pyrroloquinoline quinone and application thereof | |
CN107460152A (en) | Produce recombinant bacterium, construction method and the purposes of rhodioside and the like | |
CN108570440A (en) | One plant of recombination bacillus coli and its application in producing optical voidness meso-2,3- butanediols | |
CN110004099A (en) | A kind of fermentation method for producing of rhodioside | |
CN105671098A (en) | Method for producing L-2-aminobutyric acid by fermentation process | |
CN115305254A (en) | Terpenoid chassis microorganism and engineering bacterium as well as construction method and application thereof | |
CN105255804A (en) | Escherichia coli genetically engineered bacteria for preparing isoprene through catalytic methanol and preparation method and application of escherichia coli genetically engineered bacteria |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190226 |
|
WD01 | Invention patent application deemed withdrawn after publication |