CN109358511A - 一种数据驱动的系统关键性能指标自适应调节方法 - Google Patents

一种数据驱动的系统关键性能指标自适应调节方法 Download PDF

Info

Publication number
CN109358511A
CN109358511A CN201811519171.XA CN201811519171A CN109358511A CN 109358511 A CN109358511 A CN 109358511A CN 201811519171 A CN201811519171 A CN 201811519171A CN 109358511 A CN109358511 A CN 109358511A
Authority
CN
China
Prior art keywords
controlled device
moment
data
input
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811519171.XA
Other languages
English (en)
Other versions
CN109358511B (zh
Inventor
尹珅
高菾佚
罗浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201811519171.XA priority Critical patent/CN109358511B/zh
Publication of CN109358511A publication Critical patent/CN109358511A/zh
Application granted granted Critical
Publication of CN109358511B publication Critical patent/CN109358511B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明提供一种数据驱动的系统关键性能指标自适应调节方法,属于跟踪控制技术领域。本发明首先将系统输入设为随机方波信号采集数据,根据采集的数据、被控对象的期望输出,利用改进偏最小二乘法进行初始化,获得并储存当前时刻被控对象的输入;然后利用对被控对象的当前时刻测量数据和偏最小二乘算法进行本发明方法的在线更新,获得下一时刻被控对象的输入;重复执行上一步骤,直至系统运行结束。本发明解决了现有数据驱动的系统关键性能指标自适应调节技术通常需要对大量的参数进行调节,导致控制性能差,跟踪误差较高的问题。本发明可用于系统关键性能指标的自适应调节。

Description

一种数据驱动的系统关键性能指标自适应调节方法
技术领域
本发明涉及一种系统关键性能指标自适应调节方法,属于跟踪控制技术领域。
背景技术
近年来随着计算机技术、信息化水平日益提高,工业生产过程如化工、冶金、机械等对关键性能指标(如产品质量)的要求越来越高,高精度的跟踪控制得到了工业界和学术界的关注。现有预测控制技术一般要求被控对象的模型一致,但实际应用中由于测量噪声和复杂的系统机理等问题,精确的系统模型难以获取。另一方面随着传感器和计算机储存技术的提高,系统存在大量未被充分利用的测量数据。如何利用这些数据,得到在系统约束下使关键性能指标维持在期望值的最优控制序列,得到了学术界的广泛关注。
另一方面,现有数据驱动的系统关键性能指标自适应调节技术通常需要对大量的参数进行调节,这些参数不仅很大程度影响了性能(控制收敛性、跟踪误差),而且也为其实际应用带来了很多不便和困难。如利用PID(比例proportion、积分integral、微分differential)控制进行系统关键性能指标自适应调节的技术,不同的参数下的跟踪误差不同,而低跟踪误差对应的参数较难确定,因此综合来说跟踪误差较高。提出一种需要极少先验知识的系统关键性能指标自适应调节技术,提高其泛用性、简化在应用中的实际操作,也是亟待解决的关键问题。
发明内容
本发明为解决现有数据驱动的系统关键性能指标自适应调节技术通常需要对大量的参数进行调节,导致跟踪控制性能差,跟踪误差较高的问题,提供了一种数据驱动的系统关键性能指标自适应调节方法。
本发明所述一种数据驱动的系统关键性能指标自适应调节方法,通过以下技术方案实现:
步骤一、将系统输入设为随机方波信号采集数据,进行所述方法的初始化:
步骤A1、设定时间窗长度,采集被控对象在随机方波激励信号下,过去时间窗长度的输入输出数据,构造截止上一时刻输入矩阵和截止上一时刻输出矩阵,并计算截止上一时刻输入矩阵的广义逆;
步骤A2、利用改进偏最小二乘法计算回归模型初始值进而得到预测模型;
步骤A3、利用被控对象的期望输出计算上一时刻跟踪误差,进而得到待求解二次型问题的相关参数;然后结合约束矩阵得到上一时刻控制序列的增量;
步骤A4、计算并储存当前时刻被控对象的输入;
步骤二、利用对被控对象的当前时刻测量数据进行所述方法的在线更新:
步骤B1、利用步骤A1中获得的截止上一时刻输入矩阵的广义逆和偏最小二乘算法计算当前时刻输入矩阵的广义逆;
步骤B2、采集被控对象的当前时刻输出的测量数据,并更新回归模型和预测模型;
步骤B3、利用当前时刻跟踪误差计算待求解二次型问题的相关参数;并结合约束矩阵得到当前时刻控制序列的增量;
步骤B4、计算并储存下一时刻被控对象的输入;进而由被控对象的输入确定系统关键性能指标;
步骤三、重复执行步骤二,直至系统运行结束。
本发明最为突出的特点和显著的有益效果是:
本发明所涉及的一种数据驱动的系统关键性能指标自适应调节方法,利用被控对象的测量数据,实现对线性系统的关键性能指标自适应调节。本发明方法过程简单,提出的系统关键性能指标自适应调节方法仅需要很少的先验知识,需要预先假设的参数仅有预测步长np和时间窗长度为N,有很高的泛用性;并且本发明基于系统过程数据,不依赖于系统模型,对线性被控对象有很好的跟踪控制性能,跟踪控制预测收敛性好,仿真实验表明,本发明跟踪误差趋近于0。
附图说明
图1为本发明方法流程图;
图2为实施例中系统的跟踪控制效果曲线图;
图3为实施例中预测收敛性曲线图。
具体实施方式
具体实施方式一:结合图1对本实施方式进行说明,本实施方式给出的一种数据驱动的系统关键性能指标自适应调节方法,具体包括以下步骤:
步骤一、将系统输入设为随机方波信号采集数据,进行所述方法的初始化:
步骤A1、设定时间窗长度N,采集被控对象在随机方波激励信号下,过去时间窗长度的输入输出数据,构造截止上一时刻输入矩阵UN(k-1)和截止上一时刻输出矩阵YN(k-1),并计算截止上一时刻输入矩阵的广义逆
步骤A2、利用改进偏最小二乘法计算回归模型初始值M(k-1)进而得到预测模型
步骤A3、利用被控对象的期望输出计算上一时刻跟踪误差E(k-1),进而得到待求解二次型问题的相关参数Hk-1和fk-1;然后结合约束矩阵得到上一时刻控制序列的增量ΔU(k-1);
步骤A4、计算并储存当前时刻被控对象的输入(控制器输出)uk
步骤二、利用对被控对象的当前时刻测量数据进行所述方法的在线更新:
步骤B1、利用步骤A1中获得的截止上一时刻输入矩阵的广义逆和偏最小二乘算法计算当前时刻输入矩阵的广义逆
步骤B2、采集被控对象的当前时刻输出的测量数据yk,并更新回归模型M(k)和预测模型
步骤B3、利用当前时刻跟踪误差计算待求解二次型问题的相关参数Hk和fk;并结合约束矩阵得到当前时刻控制序列的增量ΔU(k);
步骤B4、计算并储存下一时刻被控对象的输入uk+1;进而由被控对象的输入确定系统关键性能指标;
步骤三、重复执行步骤二,直至系统运行结束。
具体实施方式二:本实施方式与具体实施方式一不同的是,步骤A1中所述截止上一时刻输入矩阵的广义逆具体为:
其中,N为时间窗长度,k表示当前时刻,表示截止上一时刻输入矩阵;表示k时刻被控对象的输入,表示维的实数向量空间;表示截止上一时刻输出矩阵,表示k时刻被控对象的输出,表示n维的实数向量空间;上标“T”表示转置,上标“+”表示广义逆。
其他步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一不同的是,所述预测模型的具体计算过程包括:
利用改进偏最小二乘计算回归模型:
其中,M(k)表示k时刻的回归模型,表示截止k时刻输入矩阵的广义逆;表示截止k时刻输出矩阵;表示k时刻被控对象的输出,表示n维的实数向量空间;
给定预测步长为np,计算预测模型:
其中,n表示被控对象的输入数据的维数,m表示被控对象的输出数据的维数。
其他步骤及参数与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一不同的是,所述跟踪误差的具体计算过程为:
其中,E(k)表示k时刻的跟踪误差,ysp(k)表示k时刻被控对象的期望输出,np为预测步长,yk表示k时刻被控对象的输出。
其他步骤及参数与具体实施方式一、二或三相同。
具体实施方式五:本实施方式与具体实施方式三不同的是,所述控制序列的增量的具体计算过程包括:
计算待求解二次型问题的相关参数Hk和fk
其中,Q和P均为权重矩阵,E(k)表示k时刻的跟踪误差;
给定符合实际情况(机械结构等)的约束矩阵C1和C2,计算控制序列的增量:
minΔU(k)ΔUT(k)HkΔU(k)+fk TΔU(k) (7)
C1ΔU(k)≤C2 (8)
其中,ΔU(k)表示k时刻控制序列的增量,ΔU(k)中的元素Δuk表示k时刻被控对象的输入的增量。
其他步骤及参数与具体实施方式一、二、三或四相同。
具体实施方式六:本实施方式与具体实施方式五不同的是,所述控制器输出的具体计算过程为:
uk+1=uk+Δuk (9)
其中,uk+1为k+1时刻的控制器输出,uk为k时刻的控制器输出。
其他步骤及参数与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式二至六不同的是,步骤B1中所述利用步骤A1中获得的截止上一时刻输入矩阵的广义逆和偏最小二乘算法计算当前时刻输入矩阵的广义逆的具体过程包括:
计算偏最小二乘算法的减量形式的中间矩阵S:
利用和偏最小二乘算法的减量形式计算的广义逆:
计算偏最小二乘算法的增量形式的中间矩阵B、C、D:
C=uk-DUN-1(k-1) (13)
利用和偏最小二乘算法的增量形式计算UN(k)的广义逆:
其他步骤及参数与具体实施方式一至六相同。
实施例
采用以下实施例验证本发明的有益效果:
本实施例为连续搅拌加热罐标准工业仿真过程,该被控对象是一个五输入三出输出系统。出于方便,本实施例中以对两个罐的热输入(单位为%)作为输入变量,以罐1的温度作为关键性能指标(输出变量)。被控对象的其他输入变量设置为标准工况的输入(分别为60%,55%和50%)
步骤一、初始化。将系统输入设为随即方波信号采集数据,进行控制算法初始化:
步骤A1、给定时间窗长度N=50,在系统约束范围内将系统的输入置为随机方波激励信号下的50组输入输出数据,构造输入矩阵U50(k-1)和输出矩阵Y50(k-1);
采用公式(1)计算输入矩阵的广义逆;
步骤A2、利用改进偏最小二乘算法计算回归模型初始值M(k-1);如公式(2)
给定预测步长np=50,如公式(3)计算预测模型
步骤A3、利用被控对象的期望输出ysp(k)计算上一时刻跟踪误差E(k-1);
其中设定点设为:
利用公式(5)、(6)得到待求解二次型问题的相关参数Hk-1和fk-1;考虑到连续搅拌加热罐的热输入增量在一个采样间隔变动不超过0.2(Δuk≤0.2),热输入上限100下限为0(0k<uk<100),构造对输入增量的约束如公式(8),然后合约束矩阵C1、C2,得到上一时刻控制序列的增量ΔU(k-1);
步骤A4、计算并储存当前时刻被控对象的输入uk(控制器输出)。
步骤二、在线更新。利用在线对被控对象的测量数据进行在线更新:
步骤B1、如公式(15),计算当前时刻输入矩阵UN(k)的广义逆;
步骤B2、采集被控对象的在线输出测量数据yk,并更新回归模型和预测模型;
步骤B3、利用当前时刻跟踪误差E(k)计算待求解二次型问题的相关参数Hk和fk;并结合约束矩阵得到当前时刻控制序列的增量ΔU(k);
步骤B4、计算并储存下一时刻被控对象的输入(控制器输出)uk+1,进而由被控对象的输入确定系统关键性能指标;
步骤三、若被控对象仍在运行中,则重复步骤二。
如图2所示为系统的跟踪控制效果;预测模型收敛性如图3所示,其中,测量值拟合(模型拟合准确度)为1时表示期望值与测量值完全拟合,跟踪误差等于0,从图中可以看出,本发明方法的跟踪误差非常小,接近0。
本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,本领域技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (7)

1.一种数据驱动的系统关键性能指标自适应调节方法,其特征在于,所述方法具体包括以下步骤:
步骤一、将系统输入设为随机方波信号采集数据,进行所述方法的初始化:
步骤A1、设定时间窗长度,采集被控对象在随机方波激励信号下,过去时间窗长度的输入输出数据,构造截止上一时刻输入矩阵和截止上一时刻输出矩阵,并计算截止上一时刻输入矩阵的广义逆;
步骤A2、利用改进偏最小二乘法计算回归模型初始值进而得到预测模型;
步骤A3、利用被控对象的期望输出计算上一时刻跟踪误差,进而得到待求解二次型问题的相关参数;然后结合约束矩阵得到上一时刻控制序列的增量;
步骤A4、计算并储存当前时刻被控对象的输入;
步骤二、利用对被控对象的当前时刻测量数据进行所述方法的在线更新:
步骤B1、利用步骤A1中获得的截止上一时刻输入矩阵的广义逆和偏最小二乘算法计算当前时刻输入矩阵的广义逆;
步骤B2、采集被控对象的当前时刻输出的测量数据,并更新回归模型和预测模型;
步骤B3、利用当前时刻跟踪误差计算待求解二次型问题的相关参数;并结合约束矩阵得到当前时刻控制序列的增量;
步骤B4、计算并储存下一时刻被控对象的输入;进而由被控对象的输入确定系统关键性能指标;
步骤三、重复执行步骤二,直至系统运行结束。
2.根据权利要求1所述一种数据驱动的系统关键性能指标自适应调节方法,其特征在于,步骤A1中所述截止上一时刻输入矩阵的广义逆具体为:
其中,N为时间窗长度,k表示当前时刻,表示截止上一时刻输入矩阵;表示k时刻被控对象的输入,表示m维的实数向量空间;上标“T”表示转置,上标“+”表示广义逆。
3.根据权利要求1所述一种数据驱动的系统关键性能指标自适应调节方法,其特征在于,所述预测模型的具体计算过程包括:
利用改进偏最小二乘计算回归模型:
其中,M(k)表示k时刻的回归模型,表示截止k时刻输入矩阵的广义逆;表示截止k时刻输出矩阵;表示k时刻被控对象的输出,表示n维的实数向量空间;
给定预测步长为np,计算预测模型:
其中,n表示被控对象的输入数据的维数,m表示被控对象的输出数据的维数。
4.根据权利要求1所述一种数据驱动的系统关键性能指标自适应调节方法,其特征在于,所述跟踪误差的具体计算过程为:
其中,E(k)表示k时刻的跟踪误差,ysp(k)表示k时刻被控对象的期望输出,np为预测步长,yk表示k时刻被控对象的输出。
5.根据权利要求3所述一种数据驱动的系统关键性能指标自适应调节方法,其特征在于,所述控制序列的增量的具体计算过程包括:
计算待求解二次型问题的相关参数Hk和fk
其中,Q和P均为权重矩阵,E(k)表示k时刻的跟踪误差;
给定符合实际情况的约束矩阵C1和C2,计算控制序列的增量:
C1ΔU(k)≤C2
其中,ΔU(k)表示k时刻控制序列的增量,ΔU(k)中的元素Δuk表示k时刻被控对象的输入的增量。
6.根据权利要求5所述一种数据驱动的系统关键性能指标自适应调节方法,其特征在于,所述控制器输出的具体计算过程为:
uk+1=uk+Δuk
其中,uk+1为k+1时刻的控制器输出,uk为k时刻的控制器输出。
7.根据权利要求2~6任意一项所述一种数据驱动的系统关键性能指标自适应调节方法,其特征在于,步骤B1中所述利用步骤A1中获得的截止上一时刻输入矩阵的广义逆和偏最小二乘算法计算当前时刻输入矩阵的广义逆的具体过程包括:
计算偏最小二乘算法的减量形式的中间矩阵S:
利用和偏最小二乘算法的减量形式计算的广义逆:
计算偏最小二乘算法的增量形式的中间矩阵B、C、D:
C=uk-DUN-1(k-1)
利用和偏最小二乘算法的增量形式计算UN(k)的广义逆:
CN201811519171.XA 2018-12-12 2018-12-12 一种数据驱动的系统关键性能指标自适应调节方法 Active CN109358511B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811519171.XA CN109358511B (zh) 2018-12-12 2018-12-12 一种数据驱动的系统关键性能指标自适应调节方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811519171.XA CN109358511B (zh) 2018-12-12 2018-12-12 一种数据驱动的系统关键性能指标自适应调节方法

Publications (2)

Publication Number Publication Date
CN109358511A true CN109358511A (zh) 2019-02-19
CN109358511B CN109358511B (zh) 2022-04-19

Family

ID=65328641

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811519171.XA Active CN109358511B (zh) 2018-12-12 2018-12-12 一种数据驱动的系统关键性能指标自适应调节方法

Country Status (1)

Country Link
CN (1) CN109358511B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111158351A (zh) * 2020-01-19 2020-05-15 哈尔滨工业大学 数据驱动的故障诊断与最优控制系统一体化设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101354587A (zh) * 2008-09-04 2009-01-28 湖南大学 一种未知环境下移动机器人多行为融合自动导航方法
CN102298327A (zh) * 2011-07-10 2011-12-28 东华大学 免疫数据驱动控制方法及解决涤纶工业丝卷绕系统控制问题的设备
US8880321B2 (en) * 2011-03-07 2014-11-04 Toyota Motor Engineering & Manufacturing North America, Inc. Adaptive air charge estimation based on support vector regression
CN104156560A (zh) * 2014-07-12 2014-11-19 中国矿业大学 一种基于SaE-ELM的煤矿多等级突水预测方法
CN104991984A (zh) * 2015-05-15 2015-10-21 广西大学 一种用于煮糖结晶的数据监测方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101354587A (zh) * 2008-09-04 2009-01-28 湖南大学 一种未知环境下移动机器人多行为融合自动导航方法
US8880321B2 (en) * 2011-03-07 2014-11-04 Toyota Motor Engineering & Manufacturing North America, Inc. Adaptive air charge estimation based on support vector regression
CN102298327A (zh) * 2011-07-10 2011-12-28 东华大学 免疫数据驱动控制方法及解决涤纶工业丝卷绕系统控制问题的设备
CN104156560A (zh) * 2014-07-12 2014-11-19 中国矿业大学 一种基于SaE-ELM的煤矿多等级突水预测方法
CN104991984A (zh) * 2015-05-15 2015-10-21 广西大学 一种用于煮糖结晶的数据监测方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张一帆 等: ""自然语言数据驱动的智能化软件安全评估方法"", 《软件学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111158351A (zh) * 2020-01-19 2020-05-15 哈尔滨工业大学 数据驱动的故障诊断与最优控制系统一体化设计方法

Also Published As

Publication number Publication date
CN109358511B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
CN112947134B (zh) 装置、方法和记录介质
CN111337258B (zh) 一种结合遗传算法和极值搜索算法的发动机控制参数在线标定的装置及方法
CN110764417B (zh) 一种基于闭环辨识模型的线性二次型最优动态前馈-反馈pid控制系统及其控制方法
CN111859249B (zh) 一种基于解析四维集合变分的海洋数值预报方法
Chiluka et al. A novel robust Virtual Reference Feedback Tuning approach for minimum and non-minimum phase systems
CN106502093B (zh) 基于ga‑svr的水岛加药在线控制方法
Chen et al. Training material models using gradient descent algorithms
CN109358511A (zh) 一种数据驱动的系统关键性能指标自适应调节方法
de Canete et al. Indirect adaptive structure for multivariable neural identification and control of a pilot distillation plant
Jagnade et al. Modeling, simulation and control of flow tank system
JP5077831B2 (ja) プラント制御システムおよびプラント制御方法
US20230126776A1 (en) Apparatus, method, and computer readable medium
CN114692529B (zh) 一种cfd高维响应的不确定度量化方法、装置、计算机设备
Gayvoronsky et al. Robust control of complex dynamic units with interval parameters
CN110909492A (zh) 一种基于极端梯度提升算法的污水处理过程软测量方法
JP7363840B2 (ja) 解析装置、解析方法およびプログラム
CN104165711A (zh) 一种基于Kalman滤波的检定台测温方法
Grelewicz et al. Practical Verification of the Advanced Control Algorithms Based on the Virtual Commissioning Methodology-A Case Study
JP7409345B2 (ja) 学習処理装置、制御装置、学習処理方法、制御方法、学習プログラムおよび制御プログラム
Yu et al. Enhanced neural network modelling for a real multi-variable chemical process
Suryawanshi et al. LabVIEW based MPC for level control of a laboratory setup
Nicholson Dual-mode control of a time-varying boiler model with parameter and state estimation
CN118133604B (zh) 一种应用伸缩函数的数值模拟方法、系统、设备及介质
Mmata et al. Design, fabrication and testing of a human machine interface SCADA system for process control
JP4340238B2 (ja) 技術システムを設計するための方法及び装置、ならびに相応するコンピュータプログラム製品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant