CN109354637A - 聚n-异丙基丙烯酰胺油凝胶合成方法 - Google Patents

聚n-异丙基丙烯酰胺油凝胶合成方法 Download PDF

Info

Publication number
CN109354637A
CN109354637A CN201811192862.3A CN201811192862A CN109354637A CN 109354637 A CN109354637 A CN 109354637A CN 201811192862 A CN201811192862 A CN 201811192862A CN 109354637 A CN109354637 A CN 109354637A
Authority
CN
China
Prior art keywords
reaction
atmosphere
nitrogen
oleogel
reaction solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811192862.3A
Other languages
English (en)
Inventor
吴义芳
王秀娟
薛守庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heze University
Original Assignee
Heze University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heze University filed Critical Heze University
Priority to CN201811192862.3A priority Critical patent/CN109354637A/zh
Publication of CN109354637A publication Critical patent/CN109354637A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/52Amides or imides
    • C08F120/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/40Redox systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了聚N‑异丙基丙烯酰胺油凝胶合成方法,涉及有机材料合成领域,以卤代异丁酸酯和五甲基二乙烯三胺(简称PMDETA)为引发体系,以非极性溶剂为反应场所,以氮气或惰性气体为反应气氛,以N‑异丙基丙烯酰胺为原料,通过反应体系冷冻‑气氛置换‑解冻反应循环处理后,密闭反应体系进行可控自由基聚合反应。该方法与传统的合成方法相比,能够通过油相溶剂合成PNIPAM聚合物,以方便后续相变油凝胶制备,所得油凝胶具有强度高,环境适应性广,响应性灵敏度稳定的优点。

Description

聚N-异丙基丙烯酰胺油凝胶合成方法
技术领域
本发明涉及有机材料合成领域,具体涉及聚N-异丙基丙烯酰胺油凝胶合成方法。
背景技术
聚N-异丙基丙烯酰胺(PNIPAM)凝胶作为一种温敏性智能凝胶,近年来受到相关领域的广泛关注。相比于其他丙烯酸类聚合物水凝胶,其相关材料具有较低的相转移温度,以及即时的相变灵敏度。该温度敏感相变特性使其在传感领域具有良好的应用前景。
然而现有聚合物智能凝胶多为水凝胶,即聚合物的的填充主体溶剂为水。因此在电子传感领域受到了极大的限制。水凝胶介质不仅容易受到环境干湿度的制约,并且容易造成金属电路腐蚀从而影响传感系统的使用寿命和灵敏程度。尤其当现有PNIPAM凝胶的水含量降低,其电离程度发生变化,从而容易导致响应灵敏度发生改变。
传统的N-异丙基丙烯酰胺合成PNIPAM化合物的方法往往需要苛刻的条件和繁多的反应步骤,并且反应溶剂多为水相或极性有机相反应。现有的PNIPAM采用原子转移自由基聚合法进行聚合时,具有自由基易引发,能转移的优点,然而同时却具有着难以克服的自由基中间体易氧化、易猝灭的缺点。并且引发体系或催化剂常常容易因水相溶剂中溶解的氧而发生氧化,影响合成转移效率。
发明内容
针对上述现有技术存在的问题,本发明的目的在于提供聚N-异丙基丙烯酰胺油凝胶合成方法,能够通过油相溶剂合成PNIPAM聚合物,以方便后续相变油凝胶制备,所得油凝胶具有强度高,环境适应性广,响应性灵敏度稳定的优点。
聚N-异丙基丙烯酰胺聚合物合成方法以卤化亚铜为催化剂及自由基转移剂,以卤代异丁酸酯和五甲基二乙烯三胺(简称PMDETA)为引发体系,以非极性溶剂为反应场所,以氮气或惰性气体为反应气氛,以N-异丙基丙烯酰胺为原料,通过反应体系冷冻-气氛置换-解冻反应循环处理后,密闭反应体系进行可控自由基聚合反应。
在上述聚合物合成方法中,聚合反应温度优选15℃~25℃,时间优选10~30h,并优选在氮气气氛中进行。
优选的,所述卤素亚铜离子的原料为溴化亚铜,所述卤代异丁酸酯为2-溴代异丁酸乙酯(简称EBiB),或者
所述卤化亚铜为氯化亚铜,所述卤代异丁酸酯为2-氯代异丁酸乙酯。
优选的,所述卤化亚铜用量为N-异丙基丙烯酰胺物质的量的(1.0-1.6)%。
优选的,EBiB与PMEDTA为所述卤化亚铜物质的量的(1-3)倍。
优选的,反应非极性溶剂极性小于5,更优选为苯、甲苯和四氯化碳。
在上述合成方法中,合成步骤包括:
1)将0.1g-0.5g溴化亚铜和(15-30)ml的NIPAM加入(10-30)ml甲苯中得到第一反应液,将第一反应液通过浸入液氮中低温冷冻,排出第一反应液上方空气,置换气氛为氮气或惰性气体;
2)将0.1ml-0.5ml五甲基二乙基三胺(简称PMDETA)和0.05ml-0.2ml的EBiB加入甲苯中得到第二反应液,将第二反应液通过浸入液氮中低温冷冻,排出极性反应相上方空气,置换气氛为氮气或惰性气体;
3)将气氛置换后的第一反应液与第二反应液解冻混合,并立即用液氮低温冷冻,再次置换气氛为氮气或惰性气体;
4)将步骤3)中解冻-混合-冷冻-置换循环三次后,将反应体系解冻静置,水浴50℃-70℃反应(12-36)小时。
进一步,在步骤3)中,极性反应相遇非极性反应相解冻混合方法步骤包括:①将第一反应液与第二反应液容器分别密闭冷冻,②将两反应液容器分别抽真空,③将第二反应液容器中充入氮气或惰性气体,④将第二反应液解冻,⑤将第一反应液容器与第二反应液容器连通,使第二反应液随气压进入第一反应液容器,⑥将反应体系整体解冻,并搅拌/振荡混合。
所述的反应完成后后处理方法优选为,将反应体系冷却至室温,加入无水四氢呋喃稀释反应液,通过氧化铝柱纯化过滤,过滤液通过旋转蒸发器除去溶剂。
所述的氧化铝柱优选规格为200~300目。
将合成所得聚合物用于制备石墨烯油凝胶步骤包括:
a将PNIPAM聚合物1g溶解于1ml甲苯中得溶液一,b将1g氧化石墨烯超声分散于1ml甲苯中得溶液二,c 60℃油浴加热条件下,将溶液二缓慢滴入溶液一中,并恒温超声搅拌,直至完全混合,d将所得共混分散液静置24h,观察分散程度;e将静置后凝胶冷却至聚合物相变温度以下,10℃维持10min,观察分散状态;f继续将分散液加热至55℃,振荡超声,并逐渐降温至35℃,观察凝胶状态。所得油凝胶为含碳大分子共混凝胶,具有相变响应性,且具有相变分散可逆性,所含碳组分为石墨烯、碳纳米管以及足球烯中的至少一种。
本发明的制备方法,在不违背本发明原理的条件下,各种物料的添加顺序以及具体反应步骤可由本领域技术人员进行调整,不仅适用于实验室小规模制备,也适合于化工厂的工业化大规模生产。在工业化大规模生产时,具体反应参数可由本领域技术人员通过实验确定。
本发明机理及所带来的综合效果如下:
本发明的制备方法不需要苛刻的条件,可以通过“one-pot”,一步完成反应,这是一种通用的方法,适合于各种丙烯酸类聚合物及其衍生物油凝胶的制备,具有较高的普适性。并且反应原料能够在油相中待无氧气氛形成后与引发剂及配体混合,不仅提高了自由基的控制效率,并且保护了亚铜离子的催化活性。本发明在非极性有机溶剂场所条件下,通过卤化亚铜促进非极性相中的卤代基团促进可控电子转移。
尤其是与高温无氧的反应条件相配合,使丙烯酰胺原料在反应中处于非极性态,生成的聚异丙基丙烯酰胺单元上的酰胺键相互离域,形成大分子的分子内/间“π-氢键”,抑制了在非极性溶剂中聚合物分子链的卷曲团聚,以及含碳组分的自发团聚,从而促进大分子含碳油凝胶的形成。该聚合物合成方法与传统的丙烯酰胺类聚合物合成方法相比,具有反应条件温和、可控度高、环境污染小、产率高及分离纯化方便等优势。
附图说明
图1是本发明实施例1制备的PNIPAM聚合物傅里叶红外光谱谱图。
图2是本发明实施例3制备的PNIPAM溶液石墨烯共混混合液分散状态示意图。
图3是本发明实施例3制备的PNIPAM石墨烯相变油凝胶,低温响应后分散状态示意图;
图4是本发明实施例3制备的PNIPAM石墨烯相变油凝胶,低温—高温—低温逆变响应后凝胶状态示意图。
具体实施方式
本发明的以下实施例仅用来说明实现本发明的具体实施方式,这些实施方式不能理解为是对本发明的限制。其它的任何在未背离本发明的精神实质与原理下所做的改变、修饰、替代、组合、简化,均视为等效的置换方式,落在本发明的保护范围之内。
下述实施例中所用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂如无特殊说明,均可从商业途径得到或由商业途径所得原料合成。本发明实施例所采用石墨烯均为经hummers法制备的氧化石墨烯。
实施例1:
采用如下步骤合成聚N-异丙基丙烯酰胺聚合物:
1)将0.5g溴化亚铜和15ml的NIPAM加入30ml甲苯中得到第一反应液,将第一反应液通过浸入液氮中低温冷冻,排出第一反应液上方空气,置换气氛为氮气;
2)将0.4mlPMDETA和0.2ml的EBiB加入10ml甲苯中得到第二反应液,将第二反应液通过浸入液氮中低温冷冻,排出极性反应相上方空气,置换气氛为氮气;
3)将气氛置换后的第一反应液与第二反应液解冻混合,并立即用液氮低温冷冻,再次置换气氛为氮气;
4)将步骤3)中解冻-混合-冷冻-置换循环三次后,将反应体系解冻静置,水浴60℃反应36小时。
5)将反应体系冷却至室温,加入无水四氢呋喃稀释反应液,通过中性氧化铝柱纯化过滤,过滤液通过旋转蒸发器除去溶剂,50℃真空干燥得油相溶解的温敏聚合物PNIPAM-Br。
将所得产物经凝胶渗透色谱(GPC)检测:油相,HP1100型凝胶色谱仪,三根LP柱串联,柱温50℃,淋洗液为四氢呋喃,流速均为1ml/min,标样为PS。Mn为4900,PDI为1.11。
将所得产物经傅里叶变换红外光谱(FTIR)检测:VERTEX 70型BRUKER布鲁克傅里叶变换红外光谱仪,扫描次数32次,采用丙酮溶解KBr压片制样,电烤烘干,透射光谱。
实施例2
1)将0.10g溴化亚铜和20ml的NIPAM加入20ml甲苯中得到第一反应液,将第一反应液通过浸入液氮中低温冷冻,排出第一反应液上方空气,置换气氛为氮气;
2)将0.1ml PMDETA和0.1ml的EBiB加入10ml甲苯中得到第二反应液,将第二反应液通过浸入液氮中低温冷冻,排出极性反应相上方空气,置换气氛为氮气;
3)将气氛置换后的第一反应液与第二反应液解冻混合,并立即用液氮低温冷冻,再次置换气氛为氮气;
4)将步骤3)中解冻-混合-冷冻-置换循环三次后,将反应体系解冻静置,水浴70℃反应24小时。
5)将反应体系冷却至室温,加入无水四氢呋喃稀释反应液,通过中性氧化铝柱纯化过滤,过滤液通过旋转蒸发器除去溶剂,50℃真空干燥得油相溶解的温敏聚合物PNIPAM-Br。
所述的氧化铝柱优选中性氧化铝,规格为200~300目。
将所得产物经凝胶渗透色谱(GPC)检测:油相,HP1100型凝胶色谱仪,三根LP柱串联,柱温50℃,淋洗液为四氢呋喃,流速均为1ml/min,标样为PS。Mn为4600,PDI为1.08。
实施例3
1)将0.3g溴化亚铜和30ml的NIPAM加入10ml甲苯中得到第一反应液,将第一反应液通过浸入液氮中低温冷冻,排出第一反应液上方空气,置换气氛为氮气;
2)将0.5ml PMDETA和0.2ml的EBiB加入20ml甲苯中得到第二反应液,将第二反应液通过浸入液氮中低温冷冻,排出极性反应相上方空气,置换气氛为氮气;
3)将气氛置换后的第一反应液与第二反应液解冻混合,并立即用液氮低温冷冻,再次置换气氛为氮气;
4)将步骤3)中解冻-混合-冷冻-置换循环三次后,将反应体系解冻静置,水浴60℃反应36小时。
5)将反应体系冷却至室温,加入无水四氢呋喃稀释反应液,通过中性氧化铝柱纯化过滤,过滤液通过旋转蒸发器除去溶剂,50℃真空干燥得油相溶解的温敏聚合物PNIPAM-Br。
将所得产物经凝胶渗透色谱(GPC)检测:油相,HP1100型凝胶色谱仪,三根LP柱串联,柱温50℃,淋洗液为四氢呋喃,流速均为1ml/min,标样为PS。Mn为5200,PDI为1.21。
将所得聚合物用于制备石墨烯相变凝胶
a将PNIPAM聚合物1g溶解于1ml甲苯中得溶液一,b将1g氧化石墨烯超声分散于1ml甲苯中得溶液二,c 60℃油浴加热条件下,将溶液二缓慢滴入溶液一中,并恒温超声搅拌,直至完全混合,d将所得共混分散液静置24h,观察分散程度;e将静置后凝胶迅速冷却至聚合物相变温度以下,10℃维持10min,观察分散状态;f继续将分散液加热至55℃,振荡超声,缓慢逐渐降温至35℃,观察凝胶状态。
从各实施例所得聚合物产物的GPC检测结果可以得出,分子量分布窄,呈现较好的泊松分布。
从附图1中可以看出本发明PNIPAM因为油相合成,聚合物羰基及胺基基团处于非极性方向偏移,羰基峰与胺基峰出现明显的红移,证明酰胺基发生离域,分子间π-氢键形成,处于非极性态。
附图2中可以得到,在与本发明方法所得聚合物溶液混合过程中,氧化石墨烯虽含有部分极性基团,其仍然与本发明PNIPAM聚合物分散于甲苯非极性溶剂中,具体通过石墨烯片层所含大π键与本发明聚合物的分子内/间“π-氢键”进一步离域发生共轭效应,提高了共混稳定性,并未发生沉降及团聚。
附图3中本发明所得共混分散液经冷却处理后,聚合物部分π-氢键基团相极性方向移动,聚合物非极性溶剂溶解性降低,与石墨烯共轭效应减弱,氧化石墨烯片层开始叠合沉淀,部分贴附于容器壁表面。
附图4中可以得到再次加热后本发明所得PNIPAM与分散石墨烯能够可逆分散,并经缓慢降温部分溶剂析出,进一步形成凝胶化的互穿网络,即含碳大分子共混油凝胶,且具有很好的响应可逆性。(瓶壁上颗粒为实验中有部分氧化石墨烯与容器瓶壁贴合过牢而并未进入溶剂中)
虽然本发明已作了详细描述,但对本领域技术人员来说,在本发明精神和范围内的修改将是显而易见的。此外,应当理解的是,本发明记载的各方面、不同具体实施方式的各部分、和列举的各种特征可被组合或全部或部分互换。在上述的各个具体实施方式中,那些参考另一个具体实施方式的实施方式可适当地与其它实施方式组合,这是将由本领域技术人员所能理解的。此外,本领域技术人员将会理解,前面的描述仅是示例的方式,并不旨在限制本发明。

Claims (10)

1.聚N-异丙基丙烯酰胺油凝胶合成方法,其特征在于,聚N-异丙基丙烯酰胺聚合物合成方法以卤化亚铜为催化剂及自由基转移剂,以卤代异丁酸酯和五甲基二乙烯三胺为引发体系,以非极性溶剂为反应场所,以氮气或惰性气体为反应气氛,以N-异丙基丙烯酰胺为原料,通过反应体系冷冻-气氛置换-解冻反应循环处理后,密闭反应体系进行可控自由基聚合反应。
2.根据权利要求1所述的方法,其特征在于,在上述聚合物合成方法中,聚合反应温度优选15℃~25℃,时间优选10h~30h,并优选在氮气气氛中进行。
3.根据权利要求2所述的方法,其特征在于,所述卤素亚铜离子的原料为溴化亚铜,所述卤代异丁酸酯为2-溴代异丁酸乙酯,或者
所述卤化亚铜为氯化亚铜,所述卤代异丁酸酯为2-氯代异丁酸乙酯。
4.根据权利要求1所述的方法,其特征在于,所述卤化亚铜用量为N-异丙基丙烯酰胺物质的量的(1.0-1.6)%。
5.根据权利要求4所述的方法,其特征在于,EBiB与PMEDTA为所述卤化亚铜物质的量的(1-3)倍。
6.根据权利要求5所述的方法,其特征在于,反应非极性溶剂极性参数小于5,优选为苯、甲苯和四氯化碳。
7.根据权利要求1-6中任一项所述的方法,其特征在于,合成步骤包括:
1)将0.1g-0.5g溴化亚铜和(15-30)ml的NIPAM加入(10-30)ml甲苯中得到第一反应液,将第一反应液通过浸入液氮中低温冷冻,排出第一反应液上方空气,置换气氛为氮气或惰性气体;
2)将0.1ml-0.5ml五甲基二乙基三胺和0.05ml-0.2ml的EBiB加入甲苯中得到第二反应液,将第二反应液通过浸入液氮中低温冷冻,排出极性反应相上方空气,置换气氛为氮气或惰性气体;
3)将气氛置换后的第一反应液与第二反应液解冻混合,并立即用液氮低温冷冻,再次置换气氛为氮气或惰性气体;
4)将步骤3)中解冻-混合-冷冻-置换循环三次后,将反应体系解冻静置,水浴50℃-70℃反应(12-36)小时。
8.根据权利要求7所述的方法,其特征在于,所述的反应完成后后处理方法为,将反应体系冷却至室温,加入无水四氢呋喃稀释反应液,通过中性氧化铝柱纯化过滤,过滤液通过旋转蒸发器除去溶剂。
9.根据权利要求8所述的方法,其特征在于,将合成所得聚合物用于制备石墨烯油凝胶步骤包括:
a将PNIPAM聚合物1g溶解于1ml甲苯中得溶液一,b将1g氧化石墨烯超声分散于1ml甲苯中得溶液二,c 60℃油浴加热条件下,将溶液二缓慢滴入溶液一中,并恒温超声搅拌,直至完全混合,d将所得共混分散液静置24h,观察分散程度;e将静置后凝胶冷却至聚合物相变温度以下,10℃维持10min,观察分散状态;f继续将分散液加热至55℃,振荡超声,并逐渐降温至35℃,观察凝胶状态。
10.根据权利要求9所述的方法,其特征在于,所得油凝胶为含碳大分子共混凝胶,具有相变响应性,且具有相变分散可逆性,所含碳组分为石墨烯、碳纳米管以及足球烯中的至少一种。
CN201811192862.3A 2018-10-13 2018-10-13 聚n-异丙基丙烯酰胺油凝胶合成方法 Pending CN109354637A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811192862.3A CN109354637A (zh) 2018-10-13 2018-10-13 聚n-异丙基丙烯酰胺油凝胶合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811192862.3A CN109354637A (zh) 2018-10-13 2018-10-13 聚n-异丙基丙烯酰胺油凝胶合成方法

Publications (1)

Publication Number Publication Date
CN109354637A true CN109354637A (zh) 2019-02-19

Family

ID=65349252

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811192862.3A Pending CN109354637A (zh) 2018-10-13 2018-10-13 聚n-异丙基丙烯酰胺油凝胶合成方法

Country Status (1)

Country Link
CN (1) CN109354637A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102320654A (zh) * 2011-06-22 2012-01-18 哈尔滨工业大学 表面接枝聚(N-异丙基丙烯酰胺)的TiO2纳米粒子及其制备方法
CN103044688A (zh) * 2012-12-07 2013-04-17 长春理工大学 先改性引发聚合提高取代率的温敏性氧化石墨烯制备方法
CN103408777A (zh) * 2013-07-19 2013-11-27 东华大学 一种有机凝胶的制备方法
AU2017201930A1 (en) * 2010-04-15 2017-04-13 Kodiak Sciences Inc. High molecular weight zwitterion-containing polymers
CN107153092A (zh) * 2017-06-28 2017-09-12 南京大学 温敏响应高分子阵列的制备方法及其在样品预处理中的应用
CN108752512A (zh) * 2018-04-25 2018-11-06 西北师范大学 温度响应型aie荧光聚合物纳米粒子及其合成方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017201930A1 (en) * 2010-04-15 2017-04-13 Kodiak Sciences Inc. High molecular weight zwitterion-containing polymers
CN102320654A (zh) * 2011-06-22 2012-01-18 哈尔滨工业大学 表面接枝聚(N-异丙基丙烯酰胺)的TiO2纳米粒子及其制备方法
CN103044688A (zh) * 2012-12-07 2013-04-17 长春理工大学 先改性引发聚合提高取代率的温敏性氧化石墨烯制备方法
CN103408777A (zh) * 2013-07-19 2013-11-27 东华大学 一种有机凝胶的制备方法
CN107153092A (zh) * 2017-06-28 2017-09-12 南京大学 温敏响应高分子阵列的制备方法及其在样品预处理中的应用
CN108752512A (zh) * 2018-04-25 2018-11-06 西北师范大学 温度响应型aie荧光聚合物纳米粒子及其合成方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
任璐璐: "石墨烯纳米复合材料的制备、结构及性能研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
Feng et al. PNIPAM‐b‐(PEA‐g‐PDMAEA) double‐hydrophilic graft copolymer: Synthesis and its application for preparation of gold nanoparticles in aqueous media
Gao et al. Synthesis of degradable miktoarm star copolymers via atom transfer radical polymerization
Li et al. Synthesis of biodegradable pentaarmed star-block copolymers via an asymmetric BIS-TRIS core by combination of ROP and RAFT: From star architectures to double responsive micelles
Pang et al. Novel amphiphilic multi-arm, star-like block copolymers as unimolecular micelles
Jochum et al. Temperature and light sensitive copolymers containing azobenzene moieties prepared via a polymer analogous reaction
Wu et al. Synthesis of poly (N-isopropylacrylamide)− poly (ethylene glycol) miktoarm star copolymers via RAFT polymerization and aldehyde− aminooxy click reaction and their thermoinduced micellization
Singh et al. Grafting of polyacrylonitrile onto guar gum under microwave irradiation
Bignotti et al. Synthesis, characterisation and solution behaviour of thermo-and pH-responsive polymers bearing L-leucine residues in the side chains
Lang et al. Chain terminal group leads to distinct thermoresponsive behaviors of linear PNIPAM and polymer analogs
Bostan et al. Controlled release of 5-aminosalicylicacid from chitosan based pH and temperature sensitive hydrogels
Wever et al. Comb-like thermoresponsive polymeric materials: Synthesis and effect of macromolecular structure on solution properties
Cash et al. The preparation and characterization of carboxylic acid‐coated silica nanoparticles
CN105802106B (zh) 一种温度、uv和还原剂三重响应的超分子纳米聚集体的制备方法
Chen et al. Synthesis of linear amphiphilic tetrablock quaterpolymers with dual stimulus response through the combination of ATRP and RAFT by a click chemistry site transformation approach
Cai et al. A versatile signal-enhanced ECL sensing platform based on molecular imprinting technique via PET-RAFT cross-linking polymerization using bifunctional ruthenium complex as both catalyst and sensing probes
O’Connor et al. Facile synthesis of thermoresponsive block copolymers of N-isopropylacrylamide using heterogeneous controlled/living nitroxide-mediated polymerizations in supercritical carbon dioxide
CN103601863A (zh) 一种pH响应的石墨烯/聚合物纳米杂化材料的制备方法
Saleem et al. Synthesis of amphiphilic block copolymers containing ferrocene–boronic acid and their micellization, redox-responsive properties and glucose sensing
Karesoja et al. Phase Separation of Aqueous Poly (2-dimethylaminoethyl methacrylate-block-N-vinylcaprolactams)
CN110128578A (zh) 光控水溶液可逆络合聚合及聚合物纳米粒子的制备
Zhang et al. Reversible-deactivation radical polymerization of methyl methacrylate and styrene mediated by alkyl dithiocarbamates and copper acetylacetonates
Ding et al. SET‐LRP synthesis of PMHDO‐g‐PNIPAM well‐defined amphiphilic graft copolymer
Xu et al. Study on the synthesis and performance of hydrogels with ionic monomers and montmorillonite
Zhou et al. Effect of metal ions with reducing properties on hydrogels containing catechol groups
Ayres et al. Synthesis of hydrophilic polar supports based on poly (dimethylacrylamide) via copper-mediated radical polymerization from a cross-linked polystyrene surface: potential resins for oligopeptide solid-phase synthesis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190219

RJ01 Rejection of invention patent application after publication