CN109354179A - 一种反硝化生物膜脱氮生物反应器、其使用方法和应用 - Google Patents

一种反硝化生物膜脱氮生物反应器、其使用方法和应用 Download PDF

Info

Publication number
CN109354179A
CN109354179A CN201811310257.1A CN201811310257A CN109354179A CN 109354179 A CN109354179 A CN 109354179A CN 201811310257 A CN201811310257 A CN 201811310257A CN 109354179 A CN109354179 A CN 109354179A
Authority
CN
China
Prior art keywords
denitrification
reactor
water
biofilm
organisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811310257.1A
Other languages
English (en)
Inventor
胡俊
李若沛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Shui Siqing Environmental Technology Co Ltd
Original Assignee
Ningbo Shui Siqing Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Shui Siqing Environmental Technology Co Ltd filed Critical Ningbo Shui Siqing Environmental Technology Co Ltd
Priority to CN201811310257.1A priority Critical patent/CN109354179A/zh
Publication of CN109354179A publication Critical patent/CN109354179A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2853Anaerobic digestion processes using anaerobic membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F2003/001Biological treatment of water, waste water, or sewage using granular carriers or supports for the microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

本发明公开了一种反硝化生物膜脱氮生物反应器、其使用方法和应用。该系统包括进水水箱、水泵、反硝化生物膜脱氮生物反应器和出水水箱。所述水泵的一端连接进水水箱,另一端连接反硝化生物膜脱氮生物反应器的底部,所述反硝化生物膜脱氮生物反应器的上部与出水水箱连接。采用上流式填充床生物反应器,以水不溶性的可生物降解聚合物材料为填料,用作反硝化微生物附着生长的载体,在其表面形成稳定的高效反硝化生物膜,同时可作为反硝化微生物的电子供体,用于还原硝酸盐氮。在进行反硝化生物脱氮的同时,通过固体碳源的吸附浓缩作用,以及反硝化生物膜中微生物的降解作用,可以实现水中硝酸盐和微量有毒有机污染物的同时去除。

Description

一种反硝化生物膜脱氮生物反应器、其使用方法和应用
技术领域
本发明属于环境保护技术领域,具体涉及一种反硝化生物膜脱氮生物反应器、其使用方法和应用。
背景技术
由于农业上大量使用化肥和农药,导致我国水环境中硝酸盐污染较为严重。去除水体中的硝酸盐污染、控制水体富营养化,是水处理领域面临的严峻挑战。此外,我国化工、印染、制药等行业排放各种有毒有机工业废水,而常规的废水处理工艺,如活性炭吸附、高级氧化、膜分离等,对微量有毒有机物的去除率较低。我国水环境受到硝酸盐和有毒有机污染物的双重污染。
目前,水中硝酸盐氮的去除方法主要有物理化学法和生物反硝化法两大类。从彻底消除硝酸盐污染和降低脱氮成本两个方面看,生物反硝化方法是目前最实用的方法。单纯生物反硝化方法,其效率会受到水中营养物浓度低的限制,而其他的物理化学方法,如离子交换法、催化还原法等,成本偏高。
开发新型高效的生物脱氮反应器,同时去除微量有毒有机污染物,是废水处理领域亟需解决的难题。
发明内容
本发明所要解决的第一个技术问题是提供一种反硝化生物膜脱氮反应器系统,该系统包括进水水箱、水泵、反硝化生物膜脱氮生物反应器和出水水箱,所述水泵的一端连接进水水箱,另一端连接反硝化生物膜脱氮生物反应器的底部,所述反硝化生物膜脱氮生物反应器的上部与出水水箱连接;;所述反硝化生物膜脱氮生物反应器为上流式填充床反应器。
其中,上述反硝化生物膜脱氮生物反应器系统中,所述反硝化生物膜脱氮生物反应器内设置有填料,所述填料为可生物降解聚合物材料;优选地,所述可生物降解聚合物材料为非水溶性材料,例如可以为天然的可降解高分子聚合物(例如秸秆、稻壳、玉米芯等),也可以为人工合成的可降解高分子聚合物(例如聚羟基丁酸酯(PHB)、聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)等颗粒)。反硝化微生物可附着于颗粒表面生长,形成稳定的脱氮生物膜,可生物降解聚合物,可作为反硝化微生物的电子供体,用于生物膜中的反硝化微生物还原水中的硝酸盐。
其中,上述反硝化生物膜脱氮生物反应器系统中,所述填料的颗粒粒径为0.1-1.0cm。优选地,所述填料的填充高度为所述反硝化生物膜脱氮反应器高度的50-75%。
其中,上述反硝化生物膜脱氮生物反应器系统中,所述反硝化微生物包括混合的微生物菌群和/或纯的脱氮微生物。例如,所述混合的微生物菌群可以为反硝化活性污泥,所述纯的脱氮微生物可以为假单胞菌(Pseudomonas),脱氮副球菌(Paracoccus denitrificans)等。该反应器内的反硝化生物膜脱氮同时,依靠可生物降解聚合物的吸附浓缩作用,以及生物膜中微生物的降解作用,可以实现水中微量有毒有机污染物的去除。
本发明所要解决的第二个技术问题是提供上述反硝化生物膜脱氮生物反应器系统的使用方法,该方法包括步骤:反硝化生物膜脱氮生物反应器启动后,反应器开始运行,含有硝酸盐与微量有毒有机污染物的原水从进水水箱通过水泵进入反应器,水力在反应器内停留时间1-3小时,定时取样,检测水中NO3-N和微量有毒有机污染物的浓度。
其中,上述使用方法中,所述反硝化生物膜脱氮生物反应器的启动操作为:将填料填充于反应器的填充床中,接种反硝化脱氮微生物,采用上流式进水方式,利用水泵将含有硝酸盐的水从进水水箱泵入反应器中,对反硝化生物脱氮生物反应器进行启动,调节温度为15-40℃,待反应器运行稳定后(出水中硝酸盐浓度处于稳定状态),启动结束。
其中,上述启动操作中,所述填料的填充高度为反应器高度的50-75%。
本发明所要解决的第三个技术问题是提供上述反硝化生物膜脱氮生物反应器系统用于地表水、地下水、工业废水、生活污水以及废水处理厂出水的生物脱氮处理和微量有毒有机污染物的处理。
本发明的有益效果:
本发明提供一种反硝化生物膜脱氮生物反应器系统,显著提高了生物脱氮系统的运行稳定性及脱氮效率。本发明的反应器中可生物降解聚合物,既可以作为微生物生物膜的载体,同时又可以在微生物酶的作用下进行生物降解,生物膜中的反硝化微生物利用可降解聚合物的降解产物作为碳源和电子供体,还原硝酸盐为氮气,从而实现水中硝酸盐的彻底去除;在反硝化脱氮的同时,附着有生物膜的聚合物颗粒可以吸附水中的微量有毒有机污染物,起到一种富集浓缩的作用,促进微生物对其进行生物降解。本发明在实现反硝化生物脱氮的基础上,实现了水中微量有毒有机污染物的同时去除。
附图说明
图1为本发明实施例1所提供的反硝化生物膜脱氮生物反应器系统;
附图标记:1、进水水箱;2.、水泵;3、反硝化生物膜脱氮生物反应器;4、出水水箱。
具体实施方式
下文将结合具体实施例对本发明的技术方案做更进一步的详细说明。下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
以下实施例均采用如图1所示的反硝化生物膜脱氮生物反应器,该反应器内可填充PLA、PHB、PBS、秸秆、稻壳和玉米芯中的任何一种、或任意组合的混合物,填料颗粒粒径大小为0.1-1.0 cm,填充高度为反应器高度的50%-75%,接种反硝化微生物(反硝化纯菌或反硝化混合微生物),附着于填料颗粒表面形成稳定的反硝化生物膜,生物膜可分解可生物降解聚合物,为生物反硝化提高电子供体。
实施例1
进水为北京的地下水,加入NaNO3使其浓度分别为50 mg/L,调节进水pH为7.5。按照如下步骤进行脱氮处理:
(1)反应器的启动:
将PBS颗粒填充于反应器的填充床中,填充高度为反应器高度的75%,采用底部进水方式,接种反硝化微生物,调节温度为25℃-30℃,待反硝化效果稳定后(出水中硝酸盐浓度处于稳定状态),反应器启动完成。
(2)反应器的运行:
反应器启动完成后,开始正常运行,运行温度为15℃-40℃,含有硝酸盐的水进入反硝化生物膜脱氮反应器,通过水泵调节水的流速,水力停留时间为1 h-3 h,定时取样检测出水中NO3-N浓度。
处理前后水质如表1所示。
表1处理前后的水质变化
实施例2
进水为北京的地下水,加入NaNO3和2,4-DCP(2,4-二氯酚),使其浓度分别为50 mg/L和10 μg/L。按照实施例1的步骤进行处理,处理前后水质如表2所示。
表2处理前后的水质变化
实施例3
进水为北京的地下水,加入NaNO3和和2,4-DCP(2,4-二氯酚),使其浓度分别为100 mg/L和5 μg/L。按照实施例1的步骤进行处理,处理前后水质如表3所示。
表3处理前后的水质变化
实施例4
进水为北京污水处理厂的二级处理出水,加入NaNO3和红霉素,使其浓度分别为50 mg/L和5 μg/L。按照实施例1的步骤进行处理,处理前后水质如表4所示。
表4处理前后的水质变化
实施例5
进水为北京污水处理厂的二级处理出水,加入NaNO3和磺胺甲恶唑,使其浓度分别为50mg/L和5 μg/L。按照实施例1的步骤进行处理,反应器中的填料为PLA,处理前后水质如表5所示。
表5处理前后的水质变化
实施例6
进水为北京污水处理厂的二级处理出水,加入NaNO3和五氯酚,使其浓度分别为50 mg/L和50 μg/L。按照实施例1的步骤进行处理,反应器中的填料为PHB,处理前后水质如表6所示。
表6处理前后的水质变化
实施例7
进水为北京污水处理厂的二级处理出水,加入NaNO3和三氯生,使其浓度分别为50 mg/L和50 μg/L。按照实施例1的步骤进行处理,反应器中的填料为PBS与玉米芯的混合物(质量比为1:1),处理前后水质如表7所示。
表7 处理前后的水质变化
实施例8
进水为北京污水处理厂的二级处理出水,加入NaNO3和林丹,使其浓度分别为50 mg/L和10 μg/L。按照实施例1的步骤进行处理,反应器中的填料为PBS与玉米芯的混合物(质量比为1:1),处理前后水质如表8所示。
表8处理前后的水质变化
实施例9
被处理水为北京的自来水,加入NaNO3调节NO3-N浓度为20 mg/L,按照实施例1的步骤进行处理,反应器中的填料为PBS,处理前后水质如表9所示。
表9处理前后的水质变化
NO<sub>3</sub>-N(mg/L) NO<sub>3</sub>-N去除率(%)
处理前 20
处理后 < 1.0 > 95
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种反硝化生物膜脱氮生物反应器系统,其特征在于,该系统包括进水水箱、水泵、反硝化生物膜脱氮生物反应器和出水水箱;所述水泵的一端连接进水水箱,另一端连接反硝化生物膜脱氮生物反应器的底部,所述反硝化生物膜脱氮生物反应器的上部与出水水箱连接;所述反硝化生物膜脱氮生物反应器为上流式填充床生物反应器。
2.根据权利要求1所述的反硝化生物膜脱氮生物反应器系统,其特征在于,所述反硝化生物膜脱氮生物反应器内设置有填料,所述填料为可生物降解聚合物材料,所述可生物降解聚合物材料为非水溶性材料,所述非水溶性材料为天然的可降解高分子聚合物和/或人工合成的可降解高分子聚合物。
3.根据权利要求2所述的反硝化生物膜脱氮生物反应器系统,其特征在于,所述天然的可降解高分子聚合物为秸秆、稻壳和玉米芯中的至少一种;所述人工合成的可降解高分子聚合物为聚羟基丁酸酯(PHB)颗粒、聚乳酸(PLA)颗粒和聚丁二酸丁二醇酯(PBS)颗粒中的至少一种。
4.根据权利要求2或3所述的反硝化生物膜脱氮生物反应器系统,其特征在于,所述填料上附着反硝化微生物形成的脱氮生物膜,填料同时可作为反硝化微生物的电子供体。
5.根据权利要求2~4任一项所述的反硝化生物膜脱氮生物反应器系统,其特征在于,所述填料的颗粒粒径为0.1-1.0cm。
6.根据权利要求2~4任一项所述的反硝化生物膜脱氮生物反应器系统,其特征在于,所述填料的填充高度为所述反硝化生物膜脱氮生物反应器高度的50-75%。
7.权利要求1~6任一项所述反硝化生物膜脱氮生物反应器系统的使用方法,其特征在于,该方法包括步骤:反硝化生物膜脱氮生物反应器启动后,反应器开始运行,含有硝酸盐与微量有毒有机污染物的原水从进水水箱通过水泵进入反应器,水力在反应器内停留时间1-3小时,定时取样,检测水中NO3-N和微量有毒有机污染物的浓度。
8.根据权利要求7所述的使用方法,其特征在于,所述反硝化生物膜脱氮生物反应器的启动操作为:将填料填充于反应器的填充床中,接种反硝化脱氮微生物,采用上流式进水方式,利用水泵将含有硝酸盐的水从进水水箱泵入反应器中,对反硝化生物脱氮生物反应器进行启动,调节温度为15-40℃,待反应器运行稳定后,启动结束。
9.根据权利要求8所述的使用方法,其特征在于,所述填料的填充高度为反应器高度的50-75%。
10.权利要求1~6任一项所述反硝化生物膜脱氮生物反应器系统用于地表水、地下水、工业废水、生活污水以及废水处理厂出水的生物脱氮处理和微量有毒有机污染物的处理。
CN201811310257.1A 2018-11-06 2018-11-06 一种反硝化生物膜脱氮生物反应器、其使用方法和应用 Pending CN109354179A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811310257.1A CN109354179A (zh) 2018-11-06 2018-11-06 一种反硝化生物膜脱氮生物反应器、其使用方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811310257.1A CN109354179A (zh) 2018-11-06 2018-11-06 一种反硝化生物膜脱氮生物反应器、其使用方法和应用

Publications (1)

Publication Number Publication Date
CN109354179A true CN109354179A (zh) 2019-02-19

Family

ID=65344120

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811310257.1A Pending CN109354179A (zh) 2018-11-06 2018-11-06 一种反硝化生物膜脱氮生物反应器、其使用方法和应用

Country Status (1)

Country Link
CN (1) CN109354179A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110182947A (zh) * 2019-06-24 2019-08-30 南京泽辉环保科技有限公司 一种湿地反硝化填料及其应用
CN110217894A (zh) * 2019-05-23 2019-09-10 北京博泰至淳生物科技有限公司 一种能直接投放的可完全生物降解的缓释固体碳源及其制备方法及应用
CN110372104A (zh) * 2019-07-09 2019-10-25 阳江职业技术学院 一种养殖水体的硝酸盐氮脱除方法
CN111825209A (zh) * 2020-07-16 2020-10-27 同济大学 一种利用自然基生物质材料促进微生物反硝化的方法
CN114602460A (zh) * 2022-03-30 2022-06-10 苏州彼定新材料科技有限公司 一种脱氮炭基载体贵金属催化剂制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2502501A1 (de) * 1974-01-22 1975-07-31 Ontario Research Foundation Abwasserbehandlungsverfahren
CN102267760A (zh) * 2011-07-07 2011-12-07 清华大学 一种同时去除地下水中硝酸盐与农药的反应器及方法
CN102432142A (zh) * 2011-12-13 2012-05-02 浙江省环境保护科学设计研究院 一种太阳能生活污水厌氧处理装置及其方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2502501A1 (de) * 1974-01-22 1975-07-31 Ontario Research Foundation Abwasserbehandlungsverfahren
CN102267760A (zh) * 2011-07-07 2011-12-07 清华大学 一种同时去除地下水中硝酸盐与农药的反应器及方法
CN102432142A (zh) * 2011-12-13 2012-05-02 浙江省环境保护科学设计研究院 一种太阳能生活污水厌氧处理装置及其方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙怀卫等: "《设施种植区面源污染过程优化调控》", 31 January 2017, 武汉大学出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110217894A (zh) * 2019-05-23 2019-09-10 北京博泰至淳生物科技有限公司 一种能直接投放的可完全生物降解的缓释固体碳源及其制备方法及应用
CN110217894B (zh) * 2019-05-23 2021-12-14 北京博泰至淳生物科技有限公司 一种能直接投放的可完全生物降解的缓释固体碳源及其制备方法及应用
CN110182947A (zh) * 2019-06-24 2019-08-30 南京泽辉环保科技有限公司 一种湿地反硝化填料及其应用
CN110372104A (zh) * 2019-07-09 2019-10-25 阳江职业技术学院 一种养殖水体的硝酸盐氮脱除方法
CN111825209A (zh) * 2020-07-16 2020-10-27 同济大学 一种利用自然基生物质材料促进微生物反硝化的方法
CN114602460A (zh) * 2022-03-30 2022-06-10 苏州彼定新材料科技有限公司 一种脱氮炭基载体贵金属催化剂制备方法

Similar Documents

Publication Publication Date Title
CN109354179A (zh) 一种反硝化生物膜脱氮生物反应器、其使用方法和应用
Vashi et al. Extensive studies on the treatment of pulp mill wastewater using aerobic granular sludge (AGS) technology
TWI594957B (zh) 移除難分解之有機污染物的方法
US6068774A (en) Biological control of agricultural waste odor
CN109368926A (zh) 一种污水处理用微米载体及污水处理系统和方法
Dhamole et al. A review on alternative carbon sources for biological treatment of nitrate waste
CN109879545A (zh) 一种高含盐、高浓度有机废水处理工艺及方法
Aydın et al. Oxidation mechanism of chlortetracycline in a membrane aerated biofilm reactor
EP1210407B1 (en) Bacterial consortium ebc1000 and a method using the bacterial consortium ebc1000 for remedying biologically recalcitrant toxic chemicals contained in industrial wastewater, waste materials and soils
Tabernacka et al. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system
Chandran et al. Biological treatment solutions using bioreactors for environmental contaminants from industrial waste water
CN1273946A (zh) 处理废污水和/或废污泥的方法
CN100460498C (zh) 一种采用序批式活性污泥法去除污水氨氮的方法
Juneson et al. Biodegradation of dimethyl phthalate with high removal rates in a packed-bed reactor
CN109370961B (zh) 一种好氧反硝化菌剂及其制备方法
CN112175878A (zh) 苯胺高效降解菌剂、其制备方法及其在化工废水中的应用
Melián et al. Degradation and detoxification of formalin wastewater with aerated biological filters and wetland reactors
JP6153304B2 (ja) 石油汚染土壌の浄化方法
CN100460500C (zh) 一种序批式活性污泥法去除污水氨氮的方法
CN109370957B (zh) 一种污水处理复合菌剂及其制备方法
JP2018166418A (ja) 石油汚染土壌の浄化用組成物の製造方法
US20010054587A1 (en) Biodegradation of ethers using fatty acid enhanced microbes
Lajayer et al. Removal of pharmaceuticals and personal care products from water and wastewater through biological processes: An overview
Yazdanbakhsh et al. High nitrate removal in a packed bed bioreactor using microbial cellulose
WO1996035780A1 (en) New hydrogel compositions for use in bioreactors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190219

WD01 Invention patent application deemed withdrawn after publication