CN109351191A - 一种高性能反渗透复合膜及其制备方法 - Google Patents

一种高性能反渗透复合膜及其制备方法 Download PDF

Info

Publication number
CN109351191A
CN109351191A CN201811387181.2A CN201811387181A CN109351191A CN 109351191 A CN109351191 A CN 109351191A CN 201811387181 A CN201811387181 A CN 201811387181A CN 109351191 A CN109351191 A CN 109351191A
Authority
CN
China
Prior art keywords
composite membrane
reverse osmosis
preparation
membrane
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811387181.2A
Other languages
English (en)
Inventor
俞三传
吕振华
刘梅红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN201811387181.2A priority Critical patent/CN109351191A/zh
Publication of CN109351191A publication Critical patent/CN109351191A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明涉及一种用于膜蒸馏的小孔径疏水复合膜制备方法,本发明通过以聚砜为膜材料、N,N‑二甲基乙酰胺为溶剂,加热搅拌至形成透明的铸膜液;在乙醇水溶液中,配置含硅烷偶联剂和羟基硅油的疏水改性液;以聚丙烯无纺布为增强材料,采用相转化工艺制备初生态聚砜微孔膜;将初生态聚砜微孔膜在疏水改性液中进行浸泡处理,后经热处理即得到疏水性良好的聚砜微孔膜。本发明的优点是以聚丙烯无纺布为增强材料,结合相分离‑表面改性工艺,在获得微孔直径小、分布窄的复合膜的同时,实现膜表面的疏水化,有利于膜蒸馏过程的长期稳定运行。本发明制造方法简单,所制备的小孔径疏水复合膜具有广阔的用途。

Description

一种高性能反渗透复合膜及其制备方法
技术领域
本发明涉及一种高性能反渗透复合膜,该复合膜包括无纺布层、微孔支撑层、聚酰胺过渡层、超薄分离层,在保持反渗透膜原有截留性能的基础上,显著提升反渗透膜现有的渗透通量。
背景技术
由于反渗透技术具有设备简单、操作条件温和、分离效率高、规模易于扩大等优点,已在海水和苦咸水淡化、特种分离、饮用水净化及水回用等领域得到广泛应用,并已取得了很好的经济和社会效益。
作为反渗透技术的核心,反渗透膜的研究和应用一直是反渗透技术领域最热门的研究方向,虽然芳香聚酰胺反渗透复合膜因其高脱盐率、优化学稳定性等优点,成为目前反渗透膜领域的主流产品,但其在实际使用过程中的运行压力较高,导致运行成本较高,严重制约了反渗透技术的进一步推广应用。因此,开发高渗透通量、低运行压力但又不降低脱盐率的反渗透复合膜成为当前研究的重中之重。
在提高聚酰胺类复合反渗透膜的渗透通量方面,主要通过改变复合反渗透膜的聚酰胺类高分子脱盐层的微结构和化学物理性质来实现,具体包括两大类:(1)在界面聚合过程中,选用新的功能单体,如专利CN 102658027 A提供了一种新型的三元胺单体以替换传统的间苯二胺,虽然可以获得高水通量,但该类单体非商品化试剂,不利于大规模工业化生产;(2)改变界面聚合水相或有机相组成,在界面聚合反应中的水相或有机相中添加有机小分子、亲水性聚合物、无机纳米粒子或非质子性溶剂对复合膜的结构进行调控,提高膜水通量。如专利CN 103846014 B在水相溶液中加入羟基吡啶类衍生物或羟基吗啉类衍生物、专利CN 104607067 B在有机相溶液中加入酯类及酮类衍生物、专利CN 105396471 A在界面聚合过程中添加极性非质子溶剂,上述研究在不同程度上提高了反渗透复合膜的水通量,但却以牺牲截留性能为代价,使其在高盐度进水时出现截留性能骤降的风险。
因而,尽管目前在提高聚酰胺类反渗透膜的渗透通量方面已取得了很大的进展,但是如何不以牺牲截留性能为代价且又操作简单、易于工业化的方法制备高通量复合反渗透膜,仍是反渗透膜领域的研究重点。
发明内容
为解决上述技术问题,本发明提供一种高性能反渗透复合膜及其制备方法,本发明的具体技术方案如下:
一种高性能反渗透复合膜,其特征在于,依次包括无纺布层、微孔支撑层、聚酰胺过渡层、超薄分离层。
一种高性能反渗透复合膜的制备方法,其特征在于,包括以下步骤:
(1)在无纺布层上涂溥微孔膜作为支撑层;
(2)在支撑层上用间苯二胺为水相单体、均苯三甲酰氯为有机相单体,通过界面聚合制备疏松的聚酰胺高分子作为过渡层;
(3)再利用1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐能活化羧基并与氨基反应形成超薄分离层;
(4)将上述制备所得的膜经烘箱热处理即可制得反渗透复合膜。
作为优选,上述制备方法的步骤(2)中间苯二胺水溶液的质量浓度为2%—4%,接触时间为1—5分钟。
作为优选,上述制备方法的步骤(2)中均苯三甲酰氯有机溶液的质量浓度为0.1%-2.0%,接触时间为1—5分钟。
作为优选,上述制备方法的步骤(3)中的1-(3-二甲氨基丙基)-3-乙基碳二亚胺质量浓度为0.1%~5.0%,接触时间为6—15分钟;1-(3-二甲氨基丙基)-3-乙基碳二亚胺在本发明中作为催化剂使用;
作为优选,上述制备方法的步骤(3)中1-(3-二甲氨基丙基)-3-乙基碳二亚胺水溶液的范围为3.0~8.5。
本发明即以微孔膜为支撑层、间苯二胺为水相单体、均苯三甲酰氯为有机相单体,通过界面聚合制备疏松的聚酰胺高分子作为过渡层,接着利用1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐能活化羧基并与氨基反应的特性,提高上述疏松聚酰胺高分子的近表层的交联度,使其符合反渗透过程中所需的截留性能,较大程度上减少传统反渗透膜聚酰胺分离层的渗透阻力,从而实现高性能反渗透复合膜的制备。
本发明的高性能反渗透复合膜,包括无纺布层、微孔支撑层、聚酰胺过渡层、超薄分离层,所述的超薄分离层是将传统界面聚合制备的低交联度聚酰胺高分子与含催化剂的1-(3-二甲氨基丙基)-3-乙基碳二亚胺水溶液接触而制备得到。
与现有技术相比本发明的有益效果为:本发明首先通过传统的界面聚合过程制备交联度适当偏低的聚酰胺高分子作为过渡层,接着利用催化剂对聚酰胺过渡层表面残留的氨基、羧基进行酰胺化反应提高交联度以使其截留性能符合反渗透过程的需求,最终得到高性能反渗透复合膜。一方面,利用催化剂促使聚酰胺过渡层表面残留的氨基、羧基进一步反应获得所需的截留性能;另一方面,催化剂无法渗透至聚酰胺过渡层内部,仅使聚酰胺过渡层表面发生酰胺化而提高交联度,过渡层内部则仍维持低交联度、低渗透阻力的特性,从而克服传统反渗透复合膜通量偏低的问题。
附图说明
图1本发明的膜结构的电镜图
图2本发明的膜结构截面电镜图
图3本发明的膜孔径的分布图
具体实施方式
下面对本发明的实施作具体说明;
比较例1:
将聚砜支撑膜浸入到质量浓度为2%的间苯二胺水溶液中,2分钟后去除多余的水溶液并与质量浓度为1%的均苯三甲酰氯有机溶液接触1分钟进行界面聚合反应,随后进入100℃的烘箱热处理5分钟,完成传统反渗透复合膜的制备。
反渗透复合膜的脱盐率及水通量在NaCl浓度为2000mg/l、压力为1.55MPa、温度为25℃、pH为7.0~8.0的条件下测试,所得结果见表1。
实施例1-4:
将聚砜支撑膜浸入到质量浓度为2%的间苯二胺水溶液中,2分钟后去除多余的水溶液并与质量浓度为0.2%的均苯三甲酰氯有机溶液接触1分钟进行界面聚合反应,随后进入80℃的烘箱热处理5分钟,并与质量浓度为0.1%~5.0%、pH为4.5的1-(3-二甲氨基丙基)-3-乙基碳二亚胺水溶液接触10分钟,用纯水漂洗干净后即完成高性能反渗透复合膜的制备。
反渗透复合膜的脱盐率及水通量在NaCl浓度为2000mg/l、压力为1.55MPa、温度为25℃、pH为7.0~8.0的条件下测试,这几个实施例是在研究催化剂浓度对反渗透复合膜分离性能的影响,所得结果见表2。
实施例5-8:
将聚砜支撑膜浸入到质量浓度为2%的间苯二胺水溶液中,2分钟后去除多余的水溶液并与质量浓度为0.2%的均苯三甲酰氯有机溶液接触1分钟进行界面聚合反应,随后进入80℃的烘箱热处理5分钟,并与质量浓度为1.0%、pH为3.0~8.5的1-(3-二甲氨基丙基)-3-乙基碳二亚胺水溶液接触10分钟,用纯水漂洗干净后即完成高性能反渗透复合膜的制备。
反渗透复合膜的脱盐率及水通量在NaCl浓度为2000mg/l、压力为1.55MPa、温度为25℃、pH为7.0~8.0的条件下测试,这几个实施例是在研究改性液pH对反渗透复合膜分离性能的影响,所得结果见表3。
表1:比较例1
上述比较例表明:采用现有常规技术制备反渗透复合膜,具有较好的脱盐率,但渗透通量相对较低。
表2:实施例1-4
与比较例相比,上述实施例表明:先利用界面聚合制备低交联度聚酰胺高分子层,然后再利用不同浓度的1-(3-二甲氨基丙基)-3-乙基碳二亚胺水溶液对其表面进行酰胺化提升交联度,在保持截留性能不变的同时,大幅度提高渗透通量,且在催化剂质量浓度为0.5%~1.0%时获得较优的分离性能。
表3:实施例5-8
与比较例相比,上述实施例表明:先利用界面聚合制备低交联度聚酰胺高分子层,然后再利用不同pH值的1-(3-二甲氨基丙基)-3-乙基碳二亚胺水溶液对其表面进行酰胺化提升交联度,在保持截留性能不变的同时,大幅度提高渗透通量,且在改性溶液pH为4.5时获得较优的分离性能。

Claims (6)

1.一种高性能反渗透复合膜,其特征在于,依次包括无纺布层、微孔支撑层、聚酰胺过渡层、超薄分离层。
2.根据权利要求所述的一种高性能反渗透复合膜的制备方法,其特征在于,包括以下步骤:
(1)在无纺布层上涂溥微孔膜作为支撑层;
(2)在支撑层上用间苯二胺为水相单体、均苯三甲酰氯为有机相单体,通过界面聚合制备疏松的聚酰胺高分子作为过渡层;
(3)再利用1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐能活化羧基并与氨基反应形成超薄分离层;
(4)将上述制备所得的膜经烘箱热处理即可制得反渗透复合膜。
3.根据权利要求2所述的制备方法,其特征在于,步骤(2)中间苯二胺水溶液的质量浓度为2%—4%,接触时间为1—5分钟。
4.根据权利要求2所述的制备方法,其特征在于,步骤(2)中均苯三甲酰氯有机溶液的质量浓度为0.1%-2.0%,接触时间为1—5分钟。
5.根据权利要求2所述的制备方法,其特征在于,步骤(3)中的1-(3-二甲氨基丙基)-3-乙基碳二亚胺质量浓度为0.1%~5.0%,接触时间为6—15分钟。
6.根据权利要求2所述的制备方法,其特征在于,步骤(3)中1-(3-二甲氨基丙基)-3-乙基碳二亚胺水溶液的范围为3.0~8.5。
CN201811387181.2A 2018-11-21 2018-11-21 一种高性能反渗透复合膜及其制备方法 Pending CN109351191A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811387181.2A CN109351191A (zh) 2018-11-21 2018-11-21 一种高性能反渗透复合膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811387181.2A CN109351191A (zh) 2018-11-21 2018-11-21 一种高性能反渗透复合膜及其制备方法

Publications (1)

Publication Number Publication Date
CN109351191A true CN109351191A (zh) 2019-02-19

Family

ID=65332432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811387181.2A Pending CN109351191A (zh) 2018-11-21 2018-11-21 一种高性能反渗透复合膜及其制备方法

Country Status (1)

Country Link
CN (1) CN109351191A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743383A (zh) * 2019-10-21 2020-02-04 浙江理工大学 一种提高聚酰胺复合膜渗透通量的改性方法
CN113634133A (zh) * 2021-08-05 2021-11-12 宁波水艺膜科技发展有限公司 一种高产水量半透膜及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743383A (zh) * 2019-10-21 2020-02-04 浙江理工大学 一种提高聚酰胺复合膜渗透通量的改性方法
CN113634133A (zh) * 2021-08-05 2021-11-12 宁波水艺膜科技发展有限公司 一种高产水量半透膜及其制备方法
CN113634133B (zh) * 2021-08-05 2023-11-07 宁波水艺膜科技发展有限公司 一种高产水量半透膜及其制备方法

Similar Documents

Publication Publication Date Title
Shockravi et al. A new high performance polyamide as an effective additive for modification of antifouling properties and morphology of asymmetric PES blend ultrafiltration membranes
Wang et al. Developing thin‐film‐composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization
Song et al. Preparation, characterization, and application of thin film composite nanofiltration membranes
KR101944772B1 (ko) 용매 내성 폴리아미드 나노여과 막
US11148099B2 (en) Graphene-based membrane and method of producing the same
Liu et al. Modification of polyamide TFC nanofiltration membrane for improving separation and antifouling properties
Ehsan Yakavalangi et al. Effect of surface properties of polysulfone support on the performance of thin film composite polyamide reverse osmosis membranes
CN108325389B (zh) 一种吖内酯基聚酰胺膜及其制备方法
Wei et al. Structure–performance study of polyamide composite nanofiltration membranes prepared with polyethyleneimine
CN104474925A (zh) 一种高水通量聚酰胺反渗透复合膜的制备方法
JP6642860B2 (ja) 水処理分離膜およびその製造方法
CN111013391A (zh) 一种改性纳滤膜及其制备方法
CN105148750A (zh) 一种聚酰胺复合膜表面改性的方法
CN102258949A (zh) 一种调节聚酰胺反渗透复合膜界面结构的方法
Sadare et al. Blended polysulfone/polyethersulfone (PSF/PES) membrane with enhanced antifouling property for separation of succinate from organic acids from fermentation broth
CN109351191A (zh) 一种高性能反渗透复合膜及其制备方法
Chen et al. Preparation and characterization of a composite nanofiltration membrane from cyclen and trimesoyl chloride prepared by interfacial polymerization
CN110201544A (zh) 一种高通量高选择性纳滤膜及其制备方法
Waheed et al. Synthesis of co-polyamide reverse osmosis membrane constituting a linear aliphatic triamine and m-phenylenediamine for enhanced desalination performance
Song et al. Custom-tailoring loose nanocomposite membrane incorporated bipiperidine/graphene quantum dots for high-efficient dye/salt fractionation in hairwork dyeing effluent
Wei et al. One-step fabrication of recyclable polyimide nanofiltration membranes with high selectivity and performance stability by a phase inversion-based process
Zhang et al. Enhanced antifouling and separation properties of Tröger's base polymer ultrafiltration membrane via ring-opening modification
CN101912741A (zh) 含纳米材料的聚酰胺复合反渗透膜
Wanjiya et al. Nanofiltration membranes for sustainable removal of heavy metal ions from polluted water: A review and future perspective
Mansourpanah et al. Surface modification and preparation of nanofiltration membrane from polyethersulfone/polyimide blend—Use of a new material (polyethyleneglycol‐triazine)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190219

RJ01 Rejection of invention patent application after publication