CN109350747A - 一种zl006环己酯聚合物纳米递药系统及其制备方法 - Google Patents

一种zl006环己酯聚合物纳米递药系统及其制备方法 Download PDF

Info

Publication number
CN109350747A
CN109350747A CN201811282887.2A CN201811282887A CN109350747A CN 109350747 A CN109350747 A CN 109350747A CN 201811282887 A CN201811282887 A CN 201811282887A CN 109350747 A CN109350747 A CN 109350747A
Authority
CN
China
Prior art keywords
cyclohexyl
polymer
delivery system
polymer nanocomposite
glucan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811282887.2A
Other languages
English (en)
Other versions
CN109350747B (zh
Inventor
辛洪亮
徐剑培
李新瑞
尹昊媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Medical University
Original Assignee
Nanjing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Medical University filed Critical Nanjing Medical University
Priority to CN201811282887.2A priority Critical patent/CN109350747B/zh
Publication of CN109350747A publication Critical patent/CN109350747A/zh
Application granted granted Critical
Publication of CN109350747B publication Critical patent/CN109350747B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/60Salicylic acid; Derivatives thereof
    • A61K31/606Salicylic acid; Derivatives thereof having amino groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种ZL006环己酯聚合物纳米递药系统及其制备方法,该纳米递药系统由聚合物和ZL006环己酯组成,聚合物材料和ZL006环己酯的重量比为5~15:1。所述的ZL006环己酯聚合物纳米递药系统可以通过乳化溶剂挥发法制备得到。本发明ZL006环己酯聚合物纳米递送系统粒径小,包封率高,载药量大,有效提高了ZL006环己酯的溶解度。

Description

一种ZL006环己酯聚合物纳米递药系统及其制备方法
技术领域
本发明属于医药技术领域,具体涉及一种ZL006环己酯聚合物纳米载体及其制备方法。
背景技术
随着人类社会的不断进步,社会老龄化问题日趋严重,脑血管疾病发生率也在逐年增加,并已成为当前老年人疾病防治的重点。其中脑卒中是严重危害人类健康和生命安全的常见的难治性疾病,存在着明显四高(发病率高、致残率高、死亡率高和复发率高)现象,被列为人类仅次于心血管疾病和恶性肿瘤的第三大杀手。临床上87%的脑卒中属于缺血性脑卒中,所以,对缺血性脑卒中的药物治疗研究具有重大的临床意义。
脑组织在缺血条件下,兴奋性氨基酸(如谷氨酸)过度释放,引起N-甲基-D天门冬氨酸受体(NMDAR)过度激活,导致通过NMDAR-PSD-95-nNOS途径病理性一氧化氮(NO)释放增多,提示缺血性脑卒中的产生可能与细胞浆内的nNOS和细胞膜上新PSD95结合增多有关。现有技术文件【Nat Med.2010,16(12):1439-1443】公开了一种nNOS-PSD-95分子解偶联剂(ZL006),其化学名为4-(2-羟基-3,5-二氯苄胺基)-2-羟基苯甲酸。研究表明,ZL006能够有效抑制nNOS从细胞浆到细胞膜的转位,抑制NO的病理性释放,对谷氨酸刺激下的神经细胞损伤显示出明显的神经保护作用,改善中脑动脉闭塞(MCAO)再灌注动物神经缺陷症状、缩小梗死容积。同时,ZL006避免了直接干预NMDAR、nNOS可能引起的学习记忆障碍、行为异常等副作用,具有很高的安全性。由于ZL006的极性过大,在生理环境下容易解离,导致透过血脑屏障(BBB)能力非常有限,对其发挥治疗作用有一定程度的限制。因此,现有公开技术文件【Bioorg Med Chem Lett.2016,26(9):2152-2155】通过对其结构修饰,优化筛选了一种ZL006的衍生物,其化学名为4-(2-羟基-3,5-二氯苄胺基)-2-羟基苯甲酸环己酯(简称ZL006环己酯),使其增加脑组织的分布。结构如图1所示。然而,ZL006环己酯溶解度非常差,严重影响其后续制剂的开发。此外,ZL006环己酯是通过前药技术,提高分子的脂溶性从而增加BBB(blood-brain barrier脑血屏障)的渗透性。但是这样一来,ZL006环己酯提高BBB渗透性的同时,对机体其他生物膜也无选择性地渗透,可能造成ZL006环己酯在非靶组织的分布而带来不可预测的脱靶毒性。
发明内容
本发明的目的是,鉴于目前ZL006环己酯溶解性差及体内分布选择性差等缺陷,提供一种ZL006环己酯聚合物纳米粒载体,该载体可以显著提高ZL006环己酯的溶解度,增强其稳定性,通过本发明方法制备的聚合物纳米载体具有较高的包封率和载药量,有效地实现ZL006环己酯药物递送,提高治疗效果。
而且,本发明选择了合适的方法将ZL006环己酯制成聚合物纳米粒后,不仅可以有效解决ZL006环己酯的溶解性差的问题,后期可以对其进行靶向修饰,以提高其抗缺血性脑卒中作用同时,减少非靶组织的分布。
本发明是通过以下技术方案实现的:
一种ZL006环己酯聚合物纳米递药系统,该递药系统由聚合物材料和ZL006环己酯组成,聚合物材料和ZL006环己酯的重量比为5~15:1。该纳米载体具有规整的球形外观,平均粒径在102±15nm。
优选上述聚合物材料和ZL006环己酯的重量比为5:1。
上述聚合物材料优选为2-乙氧基丙烯缩合葡聚糖(m-Dextran)、聚乳酸(PLA)、聚乳酸-羟基乙酸(PLGA)、聚己内酯(PCL)、聚乙二醇聚乳酸共聚物(PEG-PLA)、聚乙二醇聚乳酸-羟基乙酸共聚物(PEG-PLGA)、聚乙二醇聚己内酯共聚物(PEG-PCL)等材料中的一种或几种的混合物。最优选2-乙氧基丙烯缩合葡聚糖。
ZL006环己酯以物理包裹的方式包载在纳米递送系统中。
2-乙氧基丙烯缩合葡聚糖可以市售获得,也可以按照文献如J.AM.CHEM.SOC.2008,130,10494–10495公开的方法制备得到。优选2-乙氧基丙烯缩合葡聚糖制备步骤是:将葡聚糖溶于二甲亚砜中,依次加入乙氧基丙烯和对甲苯磺酸吡啶盐,通氮气反应后,室温搅拌,加三乙胺终止反应,得到2-乙氧基丙烯缩合葡聚糖。
ZL006环己酯聚合物纳米递药系统可以由乳化溶剂挥发法制备获得,其制备步骤是:将ZL006环己酯、聚合物材料溶解于二氯甲烷中,混合均匀,得到有机相,把有机相加入到含有3%PVA的PBS溶液中,超声乳化后再分散到含有0.3%PVA的PBS溶液中,持续搅拌至二氯甲烷挥发完全,得到所述ZL006环己酯聚合物纳米递药系统。
所述含有3%PVA的PBS溶液和0.3%PVA的PBS溶液所用的PBS溶液为pH=7.4,摩尔浓度为10mM的磷酸盐缓冲液,制备聚合物纳米粒时3%PVA溶液与二氯甲烷的体积比为2~4:1。
聚合物纳米载体溶液可以通过高速离心法除去乳化剂和残留有机溶剂,所述得到的聚合物纳米递药系统的包封率平均90%以上,最高达到95.99%;载药量(质量)平均10%以上,最高可达14.07%。
与现有技术比较本发明有益效果是:
(1)本发明构建的ZL006环己酯聚合物纳米递药系统,利用ZL006环己酯脂溶性大的性能,将其物理包裹于聚合物纳米的核心中,通过疏水作用,使得药物包封能力大,稳定性好。
(2)本发明构建的聚合物纳米递药系统使得载药量高达14.07%,同时将ZL006环己酯的溶解度提高了2000倍,有利于后续ZL006环己酯制剂开发;本发明制备出的ZL006环己酯聚合物纳米递药系统可将粒径控制在102±15nm,具有较好的稳定性。
(3)本发明采用乳化溶剂挥发法制备聚合物纳米递药系统,方法简单易行,成本低。特别是在制备过程中,采用PBS溶液作为乳化剂PVA溶剂,这与传统的制备方法中用水作为乳化剂的溶剂不同。由于PVA具有一定的酸性(PH为4.5-6.5),PBS具有适宜pH缓冲作用,所以PBS作为溶剂有效的改变了PVA溶液的酸性环境,避免了制备过程中由于溶液酸度过高对纳米粒制备造成的影响。
(4)针对本发明构建的ZL006环己酯聚合物纳米递药系统,易于对其表面进行灵活的靶向修饰,提高ZL006环己酯的体内循环时间和缺血病灶的靶向分布,有效降低ZL006环己酯的脱靶分布与毒性。
附图说明
图1是载体材料(m-Dextran)的分子式(上)与核磁共振图谱(下)。
图2是ZL006环己酯m-Dextran聚合物纳米递药系统的透射电镜图。
图3是ZL006环己酯m-Dextran聚合物纳米递药系统的体外释放曲线图。
具体实施方式
下面结合具体实施例和附图对本发明作进一步的阐述,具体实施例是在本发明的优选条件下进行。所述方法如无特别说明均为常规方法,所述原材料如无特别说明均能从公开商业途径而得。
实施例1:载体材料m-Dextran的制备与表征
取1.0g葡聚糖(Mn~9-11kDa)加入到烘干的圆底烧瓶内,并用氮气吹干。加入10mL无水二甲亚砜,搅拌至葡聚糖充分溶解。先后加入4.16mL(37mmoL)乙氧基丙烯和15.6mg(0.062mmoL)对甲苯磺酸吡啶盐(PPTS)。反应液通氮气,吹2-3min后,用封口膜密封以防止溶剂挥发。室温搅拌30min即得到m-Dextran,此时加入1mL三乙胺以终止反应。反应得到白色沉淀,用碱性水溶液(pH~8)冲洗3次以防止降解,高速离心(8000rpm,15min)纯化产物。冻干去除多余的水分,得到白色固体产物(m-Dextran)。核磁共振仪检测其核磁氢谱,见图1。
实施例2:ZL006环己酯聚合物纳米递药系统的制备与表征
取神经保护剂ZL006环己酯4mg和实施例1制备的m-Dextran 20mg于15mL离心管内,加入2mL二氯甲烷,涡旋至完全溶解,加入3%PBS(pH7.4)配制的PVA溶液4mL。超声波细胞粉碎仪冰浴超声(35%功率,超声2s/停2s,5min)。将超声后的白色乳液缓慢导入,高速搅拌(800rpm)中的0.3%PBS(pH7.4)配制的PVA溶液15mL中。持续搅拌约1-2h后,二氯甲烷挥发完全,溶液澄清透明,呈蓝色纳米粒乳光。高速离心(12000rpm,40min),弃上清,加水复溶,重复2-3次以洗去乳化剂,最终分散于1mL去离子水中,得到聚合物纳米载体溶液即聚合物纳米递药系统。用透射电镜表征其形态见图3。图3中显示透射电镜下观察该聚合物纳米递药系统具有规整的球形外观,大小均匀,粒径在100nm左右。激光粒度分析表明,所得聚合物纳米递药系统平均粒径为102±15nm,多分散性为0.012。
实施例3:ZL006环己酯聚合物纳米递药系统的包封率(EE%)和载药量(DL%)测定
(1)HPLC法建立ZL006标准曲线:
色谱条件,色谱柱:HanbonPhecda C18(4.6mm×150mm,5μm;江苏汉邦科技有限公司);流动相:甲醇-水(90:10;v/v);流速:1.0mL/min;紫外检测波长:311nm;柱温:30℃;进样量20μL。
标准曲线绘制:精密称定在105℃干燥至恒重的ZL006环己酯0.0252g于50mL容量瓶,用流动相稀释至刻度,得浓度约为504μg/mL的标准贮备液。分别精密移取0.05、0.1、0.2、0.5、1.0、2.0、5.0、8.0、10.0mL的系列贮备液于50mL容量瓶中,流动相稀释至刻度,得1.0、2.0、5.0、10.0、20.0、50.0、80.0和100.0μg/mL样品液,再分别精密量取上述各液20μL注入高效液相色谱仪,记录峰面积。以峰面积值A为纵坐标,进样量浓度C为横坐标作图,得到回归方程:
Y=78.336C-123.73
式中:Y为峰面积,C为ZL006环己酯浓度(μg/mL)。
(2)包封率(EE%)和载药量(DL%)计算:
EE%=聚合物纳米递药系统中的ZL006环己酯量/ZL006环己酯投药量×100%
DL%=聚合物纳米递药系统中的ZL006环己酯量/(ZL006环己酯量+聚合物材料量)×100%
测得实施例2中通过乳化溶剂挥发法制备获得的ZL006环己酯量的包封率(EE%):91.83%;载药量(质量)(DL%):14.07%。
实施例4:ZL006环己酯聚合物纳米递药系统的体外释放
精密移取制备的ZL006环己酯聚合物纳米递药系统溶液2mL(含ZL006环己酯2.5mg)于已处理好的透析袋中,两端用绳子系紧后放入装有50mL释放介质(加入0.5%吐温80醋酸盐缓冲液,pH为5.6以及pH为7.4)的锥形瓶中,摇床37℃条件下恒温振荡,转速为160rpm,分别于0.5、1、2、4、6、8、12、24h取介质0.5mL,同时补加相同温度相同体积的新鲜释放介质。取出的介质经0.22μm的微孔滤膜过滤后,采用HPLC测定。
计算累积释放量(Qn):
计算累积释放百分率(F%):F%=Qn/C0×100%
式中Qn为各时间点的累积释放量;F%为各时间点的累积释放百分率;Cn为第n个取样时间点的实测药物浓度;V0为溶出介质总体积;Vi为每次取样体积;Ci为第i个取样时间点实测药物浓度;C0为总药物浓度。
以时间t(h)为横坐标,释放百分率F(%)为纵坐标,作出ZL006环己酯聚合物纳米粒在两种pH介质中的释放曲线,见图3。
由图3可知,在两种不同的pH介质中,ZL006环己酯聚合物纳米递药系统在pH为5.6时释放药物明显要优于pH为7.4时,24h药物已基本完全释放,pH为5.6时释放速度快且释放量较高,24h的累计释放百分率达85.2%,pH为7.4时释放速度相对比较慢且释放量低,24h的累计释放百分率为28.6%。
实施例5:ZL006环己酯溶解度及ZL006环己酯m-Dextran纳米递药系统药物浓度测定
称取ZL006环己酯约10mg,分散在10mL去离子水,然而置于37°水浴摇床,使其充分溶解。24小时后取出,10000rpm高速离心,取上清,0.22μm过滤后,取续滤液,HPLC测定ZL006环己酯的饱和溶解度。
取神经保护剂ZL006环己酯10mg和m-Dextran聚合物材料50mg于50mL离心管内,加入5mL二氯甲烷,涡旋至完全溶解,加入3%PBS(pH7.4)配制的PVA溶液10mL。超声波细胞粉碎仪冰浴超声(35%功率,超声2s/停2s,15min)。将超声后的白色乳液缓慢导入,高速搅拌(800rpm)中的0.3%PBS(pH7.4)配制的PVA溶液35mL中。持续搅拌约1-2h后,二氯甲烷挥发完全,溶液澄清透明,呈蓝色纳米粒乳光。高速离心(30000g,60min),弃上清,加水复溶,重复2-3次以洗去乳化剂,最后超声分散于2mL去离子水中,得到聚合物纳米载体溶液。加入8mL甲醇破乳,10000rpm高速离心,取上清,0.22μm过滤后,取续滤液,HPLC测定ZL006环己酯的浓度。
实验结果显示,ZL006环己酯在水中的饱和溶解度约为2.3μg/mL,而ZL006环己酯聚合物纳米载体溶液中ZL006环己酯浓度约4.5mg/mL。由此可见,ZL006环己酯经过包载在聚合物纳米递药系统中,其溶解度大约提高了2000倍。
对比例1:ZL006环己酯聚己内酯纳米粒溶液的制备及药物浓度测定
取神经保护剂ZL006环己酯10mg和聚己内酯聚合物材料50mg于50mL离心管内,加入5mL二氯甲烷,涡旋至完全溶解,加入3%PBS(pH7.4)配制的PVA溶液10mL。超声波细胞粉碎仪冰浴超声(35%功率,超声2s/停2s,15min)。将超声后的白色乳液缓慢导入,高速搅拌(800rpm)中的0.3%PBS(pH7.4)配制的PVA溶液35mL中。持续搅拌约1-2h后,二氯甲烷挥发完全,溶液澄清透明,呈蓝色纳米粒乳光。高速离心(30000g,60min),弃上清,加水复溶,重复2-3次以洗去乳化剂,最后超声分散于2mL去离子水中,得到聚己内酯聚合物纳米溶液。加入8mL甲醇破乳,10000rpm高速离心,取上清,0.22μm过滤后,取续滤液,HPLC测定ZL006环己酯的浓度。
结果显示,该纳米粒溶液中ZL006环己酯的浓度为2.1mg/mL。与ZL006环己酯水溶液相比,其溶解度也有大幅度提高。但相对于m-Dextran聚合物纳米递药系统,其增溶效果明显不足。其中可能的原因是m-Dextran聚合物的环状结构侧链与ZL006环己酯分子中的三个环互相嵌合,可以将药物分子牢固锁在其网状内核中。

Claims (9)

1.一种ZL006环己酯聚合物纳米递药系统,其特征在于:该递药系统由聚合物材料和ZL006环己酯组成,聚合物材料和ZL006环己酯的重量比为5~15:1。
2.根据权利要求1所述的ZL006环己酯聚合物纳米递药系统,其特征在于:所述聚合物材料和ZL006环己酯的重量比为5:1。
3.根据权利要求1所述的ZL006环己酯聚合物纳米递药系统,ZL006环己酯聚合物纳米粒,其特征在于:所述聚合物材料为2-乙氧基丙烯缩合葡聚糖、聚乳酸、聚乳酸-羟基乙酸、聚己内酯、聚乙二醇聚乳酸共聚物、聚乙二醇聚乳酸-羟基乙酸共聚物、聚乙二醇聚己内酯共聚物中的一种或几种的混合物。
4.根据权利要求1所述的ZL006环己酯聚合物纳米递药系统,其特征在于:ZL006环己酯聚合物纳米粒的平均粒径为87-117nm。
5.根据权利要求1所述的ZL006环己酯聚合物纳米递药系统,环己酯聚合物纳米粒,其特征在于:所述聚合物材料为2-乙氧基丙烯缩合葡聚糖。
6.根据权利要求5所述的ZL006环己酯聚合物纳米粒,其特征在于所述聚合物2-乙氧基丙烯缩合葡聚糖制备步骤是:将葡聚糖溶于二甲亚砜中,依次加入乙氧基丙烯和对甲苯磺酸吡啶盐,通氮气反应后,室温搅拌,加三乙胺终止反应,得到2-乙氧基丙烯缩合葡聚糖。
7.根据权利要求1所述的ZL006环己酯聚合物纳米递药系统,其特征在于:ZL006环己酯以物理包裹的方式包载在纳米递送系统中。
8.一种权利要求1-7任意一项权利要求所述的ZL006环己酯聚合物纳米递药系统的制备方法,其特征在于该方法包括以下步骤:将ZL006环己酯、聚合物材料溶解于二氯甲烷中,混合均匀,得到有机相,把有机相加入到质量浓度为3%PVA的PBS溶液中,超声乳化后再分散到0.3%PVA的PBS溶液中,持续搅拌至二氯甲烷挥发完全,得到所述ZL006环己酯聚合物纳米递药系统。
9.根据权利要求8所述的ZL006环己酯聚合物纳米递药系统的制备方法,其特征在于:所述PBS溶液为pH=7.4,浓度为10mM的磷酸盐缓冲液;制备聚合物纳米粒时3%PVA的PBS溶液与二氯甲烷的体积比为2~4:1。
CN201811282887.2A 2018-10-31 2018-10-31 一种zl006环己酯聚合物纳米递药系统及其制备方法 Expired - Fee Related CN109350747B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811282887.2A CN109350747B (zh) 2018-10-31 2018-10-31 一种zl006环己酯聚合物纳米递药系统及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811282887.2A CN109350747B (zh) 2018-10-31 2018-10-31 一种zl006环己酯聚合物纳米递药系统及其制备方法

Publications (2)

Publication Number Publication Date
CN109350747A true CN109350747A (zh) 2019-02-19
CN109350747B CN109350747B (zh) 2022-03-01

Family

ID=65347404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811282887.2A Expired - Fee Related CN109350747B (zh) 2018-10-31 2018-10-31 一种zl006环己酯聚合物纳米递药系统及其制备方法

Country Status (1)

Country Link
CN (1) CN109350747B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110559255A (zh) * 2019-09-06 2019-12-13 南京医科大学 Zl006 温敏凝胶及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102988374A (zh) * 2012-11-20 2013-03-27 东南大学 聚乳酸羟基乙酸-聚赖氨酸-聚乙二醇-汉防己甲素和柔红霉素共聚物纳米粒及其制备和应用
CN103494773A (zh) * 2013-10-12 2014-01-08 南京医科大学 一种zl006脂质体及其制备方法
CN103860468A (zh) * 2014-02-12 2014-06-18 南京医科大学 一种t7肽修饰的zl006长循环脂质体及其制备方法
US20140377361A1 (en) * 2000-05-10 2014-12-25 Novartis Ag Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery
CN107157957A (zh) * 2017-05-25 2017-09-15 长春金赛药业股份有限公司 黄体酮缓释微球及纳米粒、其制备方法和黄体酮缓释注射剂
CN107353372A (zh) * 2017-06-21 2017-11-17 南京医科大学 一种基于磁性介孔分子筛的nNOS‑PSD‑95解偶联剂表面印记聚合物的制备方法
CN111233789A (zh) * 2020-02-21 2020-06-05 南京缘聚医药科技有限公司 一类2-哌嗪乙基氨基甲酸苯酯衍生物及其药物用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140377361A1 (en) * 2000-05-10 2014-12-25 Novartis Ag Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery
CN102988374A (zh) * 2012-11-20 2013-03-27 东南大学 聚乳酸羟基乙酸-聚赖氨酸-聚乙二醇-汉防己甲素和柔红霉素共聚物纳米粒及其制备和应用
CN103494773A (zh) * 2013-10-12 2014-01-08 南京医科大学 一种zl006脂质体及其制备方法
CN103860468A (zh) * 2014-02-12 2014-06-18 南京医科大学 一种t7肽修饰的zl006长循环脂质体及其制备方法
CN107157957A (zh) * 2017-05-25 2017-09-15 长春金赛药业股份有限公司 黄体酮缓释微球及纳米粒、其制备方法和黄体酮缓释注射剂
CN107353372A (zh) * 2017-06-21 2017-11-17 南京医科大学 一种基于磁性介孔分子筛的nNOS‑PSD‑95解偶联剂表面印记聚合物的制备方法
CN111233789A (zh) * 2020-02-21 2020-06-05 南京缘聚医药科技有限公司 一类2-哌嗪乙基氨基甲酸苯酯衍生物及其药物用途

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DONGYIN CHEN等: "Metabolic investigation on ZL006 for the discovery of a potent prodrug for the treatment of cerebral ischemia", 《BIOORGANIC & MEDICINAL CHEMISTRY LETTERS》 *
ERIC M. BACHELDER等: "Acetal-Derivatized Dextran: An Acid-Responsive Biodegradable Material for Therapeutic Applications", 《JACS》 *
JIANPEI XU等: "Sequentially Site-Specific Delivery of Thrombolytics and Neuroprotectant for Enhanced Treatment of Ischemic Stroke", 《ACS NANO》 *
梁新童,等: "纳米技术在抗脑卒中治疗中的应用进展", 《中国新药杂志》 *
王迎军: "《新型材料科学与技术 无机材料卷 下》", 31 October 2016, 华南理工大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110559255A (zh) * 2019-09-06 2019-12-13 南京医科大学 Zl006 温敏凝胶及其制备方法

Also Published As

Publication number Publication date
CN109350747B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
Hao et al. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery
Chan et al. Polymeric nanoparticles for drug delivery
Hu et al. Preparation and characterization of rifampicin-PLGA microspheres/sodium alginate in situ gel combination delivery system
Rajan et al. Formation and characterization of chitosan-polylacticacid-polyethylene glycol-gelatin nanoparticles: A novel biosystem for controlled drug delivery
KR101706178B1 (ko) 약물 부하된 중합체성 나노입자, 및 이의 제조 및 사용 방법
CN103601878B (zh) 高稳定性聚乙二醇-聚酯聚合物及其应用
Parikh et al. Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain
CN105232459B (zh) 一种复溶自组装的水难溶性药物聚合物胶束组合物及其制备方法
Zhou et al. Shape regulated anticancer activities and systematic toxicities of drug nanocrystals in vivo
CN102743337B (zh) 一种纳米粒子药物组合物及其制备方法
Elzeny et al. Polyphosphoester nanoparticles as biodegradable platform for delivery of multiple drugs and siRNA
CN104177624A (zh) 含二硫键与酰腙键的双重敏感两亲性三嵌段共聚物及其制备方法与应用
CN104606142A (zh) 用于治疗阿尔茨海默病的可植入头颅中的装置
CN105030795A (zh) 一种纳米载药系统及其制备方法和应用
US20080095856A1 (en) Encapsulated Nanoparticles for Drug Delivery
Guo et al. High oral bioavailability of 2-methoxyestradiol in PEG-PLGA micelles-microspheres for cancer therapy
CN101984958A (zh) 纳米级阿苯达唑微粉及其制备方法
Du et al. Preparation and passive target of 5-fluorouracil solid lipid nanoparticles
Li et al. Biocompatible supramolecular pseudorotaxane hydrogels for controllable release of doxorubicin in ovarian cancer SKOV-3 cells
CN106361724B (zh) 一种20(R)-人参皂苷Rg3缓释纳米微球组合及其制备方法
Baviskar et al. Development and evaluation of N-acetyl glucosamine-decorated vitamin-E-based micelles incorporating resveratrol for cancer therapy
Tian et al. Dextran-doxorubicin prodrug nanoparticles conjugated with CD147 monoclonal antibody for targeted drug delivery in hepatoma therapy
CN107441043B (zh) 一种pH敏感性混合胶束及其制备方法与应用
CN109350747A (zh) 一种zl006环己酯聚合物纳米递药系统及其制备方法
Su et al. Construction of mannose-modified polyethyleneimine-block-polycaprolactone cationic polymer micelles and its application in acute lung injury

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220301