CN109336074A - 铝行业抛光清洗废水回收复合肥的方法 - Google Patents

铝行业抛光清洗废水回收复合肥的方法 Download PDF

Info

Publication number
CN109336074A
CN109336074A CN201810843394.5A CN201810843394A CN109336074A CN 109336074 A CN109336074 A CN 109336074A CN 201810843394 A CN201810843394 A CN 201810843394A CN 109336074 A CN109336074 A CN 109336074A
Authority
CN
China
Prior art keywords
polished
compound fertilizer
waste
liquid
cleaned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810843394.5A
Other languages
English (en)
Other versions
CN109336074B (zh
Inventor
熊映明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FOSHAN SANSHUI XIONGYING INNOVATIVE CENTER FOR ALUMINUM SURFACE TECHNOLOGIES Co Ltd
Original Assignee
FOSHAN SANSHUI XIONGYING INNOVATIVE CENTER FOR ALUMINUM SURFACE TECHNOLOGIES Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FOSHAN SANSHUI XIONGYING INNOVATIVE CENTER FOR ALUMINUM SURFACE TECHNOLOGIES Co Ltd filed Critical FOSHAN SANSHUI XIONGYING INNOVATIVE CENTER FOR ALUMINUM SURFACE TECHNOLOGIES Co Ltd
Priority to CN201810843394.5A priority Critical patent/CN109336074B/zh
Publication of CN109336074A publication Critical patent/CN109336074A/zh
Application granted granted Critical
Publication of CN109336074B publication Critical patent/CN109336074B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/36Aluminium phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B7/00Fertilisers based essentially on alkali or ammonium orthophosphates
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F5/00Fertilisers from distillery wastes, molasses, vinasses, sugar plant or similar wastes or residues, e.g. from waste originating from industrial processing of raw material of agricultural origin or derived products thereof
    • C05F5/002Solid waste from mechanical processing of material, e.g. seed coats, olive pits, almond shells, fruit residue, rice hulls
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G1/00Mixtures of fertilisers belonging individually to different subclasses of C05
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Botany (AREA)
  • Hydrology & Water Resources (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Pest Control & Pesticides (AREA)
  • Fertilizers (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开了铝行业抛光清洗废水回收复合肥的方法,包括以下步骤:a、收集包含磷酸根、硝酸根、硫酸根和镍离子的抛光清洗废水;b、向废水中加入液氨,至pH值6.5‑7.5,搅拌、冷却、固液分离、漂洗、烘干,回收磷酸铝和磷酸镍固体;c、再次过滤滤液,回收液体N‑P复合肥。采用向抛光清洗废液中添加液氨的方法,获得磷酸铝、磷酸镍和液体N‑P复合肥,变废为宝;废液处理成本低,解决了现有抛光废液中含磷和镍的行业难题,大幅节约抛光清洗废水废渣处理费用,降低环保成本。

Description

铝行业抛光清洗废水回收复合肥的方法
技术领域
本发明涉及铝材加工技术领域,尤其涉及铝行业抛光清洗废水回收复合肥的方法。
背景技术
铝合金具有加工性能优良、耐蚀性好、表面美观、回收率高等优点,在建筑、交通运输、机械、电力等行业获得了广泛应用。近年来,铝代铜、铝代木、铝代钢、扩大铝应用范围的趋势更加明显。铝加工业既是传统产业,更是充满勃勃生机的朝阳产业。据统计,欧美发达国家人均年消费铝合金32kg以上,而我国人均只有13kg左右,只是发达国家的三分之一左右,国内铝合金消费还有巨大的增长空间。但是,铝加工行业能源消耗高、排污总量大、资源回收利用率低的共性问题,突显为制约行业发展的瓶颈和障碍。
铝行业生产包括电解、熔铸、压力加工、表面处理等工序,生产时各工序均会产生不同程度的废气、废水、废渣。电解及熔铸时产生大量的铝灰,挤压工序产生煲模碱性废液,表面处理过程产生各类含有酸、碱、处理药剂及铬、镍重金属离子等成分复杂的废水废渣。
采用“以废治废”的方式,煲模废液、氧化线废水、喷涂线废水、抛光线废水均排放至废水中心进行中和,废水中心收集的废水,含有Al3+、Na+、NH4+、 Ni2+、Sn2+、Cr6+等阳离子,SO42-、F-、NO3-、NO2-、S2-、Cl-、酒石酸根、葡萄糖酸根、醋酸根等阴离子,以及有机酚、表面活性剂和丙烯酸树脂等有机物等。酸性废水、碱性废水通常是混合中和处理,而含铬废水、含镍废水必须单独处理。近年来氧化电泳材比例下降,但大多数铝材厂还是酸性废水多于碱性废水,酸碱水全部混在一起处理,废水混合后呈酸性,需要投入大量的片碱、石灰及PAC、PAM,产生了大量废渣。废渣中的大量金属铝、酸、碱等有用资源没有得到利用,造成巨大资源浪费。废渣属于危险废物,含有氢氧化铝、氟化物、硫化物、镍盐、苯酚、硝酸盐、亚硝酸盐等多种有毒有害物质,环境危害巨大,不可填埋,具有极大的环境危害性。废水中心处理、固液分离后,中水含有钠离子、铵离子、硫酸根、硝酸根、亚硝酸根、醋酸根、酒石酸根、硫代硫酸根、氯离子、硫离子、氟离子等,不可回用。当前的环保形势,迫使企业要向节能减排及资源循环利用方向转型发展,但缺乏成熟可靠的技术。实现中水全部回用、废渣零产出、资源利用价值最大化,具有重大的环境效益、社会效益和经济效益。
2016年8月1日起施行的最新版《国家危险废物名录》已将酸性及碱性废水废渣列入名录管理,废物类别分别是HW34、HW35。酸、碱渣、铬渣、镍渣已列入最新版《国家危险废物名录》。
铝合金抛光是生产高档铝材的重要手段,各类电子产品外壳、高铁内装修、卫浴设备等,一般选用抛光铝材。抛光除大气污染外,更大的污染是三酸水污染。每生产一吨抛光材,消耗三酸250-350Kg,随后面的清洗槽,排放进废水中心。这种粗放的生产方式危害巨大,一是损失了三酸,浪费了金属铝,三酸消耗达到300kg/t以上;二是处理废酸增加了相当大的成本;三是巨量废渣造成环境危害。
采用抛光后不流动水洗槽截留抛光液、进行蒸发回用曾是被广泛使用的节酸手段。但是,截留三酸蒸发过程产生大量烟雾,污染环境,处理成本巨大;三酸蒸发过程能耗巨大,成本不可小视;蒸发容器腐蚀过快,每两年需要更换一次,投入太多。三酸回收实际运行中,存在污染大、能耗高、效率低、成本大等不足。鉴于三酸回收的糟糕使用效果,大部分铝加工企业,已逐步停用三酸回收,恢复了直接排放进废水中心的传统方法。
铝业铝灰铝渣减量化资源化方向:
1、遵循的原则:减量化控制、无害化处理、资源化利用,必须政府推动、企业主导、第三方市场化配置资源,三力合一,才能取得积极进展;
2、源头控制,对各药剂槽分类截留,在线转化,资源化利用,降低废水废渣排放量;
3、改进表面处理药剂配方,采用无毒、低毒、易回收、易清除的化学组分取代传统的含Na+、NH4 +、Ni2+、Sn2+、Cr6+、NO2 -、NO3 -、Cl-、F-、CH3COO-、葡萄糖酸根、酒石酸根、S2O32-等的化合物,从源头做起,降低废水回用和固废无害化、资源化利用的技术门槛;
4、加强产学研联合,拓展废渣综合利用的思路和领域,实现综合利用价值最大化。
铝合金抛光废酸液在一些区域量非常大,如佛山地区,年消耗抛光酸约20 万吨,含硫酸6万吨、磷酸13万吨和硝酸1万吨,约占全国用量40万吨的一半。处理这些抛光废酸,全国每年产生含磷废渣100万吨以上,同时消耗约5000 万吨用水。产生废水废酸的传统抛光线如图1所示。1#、5#、8#、11#、14#槽为工作槽,每个工作槽配一套流动水洗槽,抛光处理需要16个槽位,其中1# 槽为抛光槽,其后续水洗2#、3#、4#槽清洗含硫酸、磷酸和硝酸的抛光液,废水进入废水处理中心,与着色和封孔槽的含镍废水混合,产生含Ni-P-Al的废渣。目前,通常用石灰处理废水废酸,生成硫酸钙和磷酸钙。这种处理方式,成本高、废渣量大,且存在氨氮排放。
现代铝加工企业,有抛光废液急需处理,而传统的清洗用水大混合后再处理的方法过于简单,产生海量的含磷和镍的废渣,处理这些废渣,社会为此付出昂贵的环保成本,迫切开发新技术,解决抛光废酸的环保问题。
发明内容
本发明的目的在于提出铝行业抛光清洗废水回收复合肥的方法,具有节省成本的特点。
为达此目的,本发明采用以下技术方案:
铝行业抛光清洗废水回收复合肥的方法,包括以下步骤:
a、收集包含磷酸根、硝酸根、硫酸根和镍离子的抛光清洗废水;
b、向抛光清洗废水中加入液氨,至pH值6.5-7.5,搅拌、冷却、使固液分离、漂洗、烘干,回收磷酸铝和磷酸镍固体;
c、再次过滤滤液,回收液体N-P复合肥。
因此,采用向抛光废液中添加液氨,获得固体磷酸铝和磷酸镍,液体N-P 复合肥,变废为宝,废液处理成本低,解决了现有技术中抛光废液中含磷和镍的废渣处理费用高昂以及环保成本高的问题。
进一步的,抛光清洗废水的回收药剂密度在1.25-1.31g/cm3。当废水达到此密度后,达到废水收集指标,避免抛光材因为高密度废水而逐步失光。为了保持抛光亮度,必须控制抛光清洗废水的酸浓度和温度。由于磷酸不易准确滴定,用第一不流动水洗槽的密度监控酸浓度,易于现场操作。
进一步的,还包括以下步骤:
将回收的液体N-P复合肥进行浓缩结晶,将晶体烘干研磨得到含硫酸铵-磷酸铵-硝酸铵的N-P复合肥。
进一步的,还包括制备粒状有机-无机复合肥步骤:
在回收的液体N-P复合肥中加入有机废渣和含发酵菌废渣,发酵熟化,制成粒状有机-无机复合肥,有机废渣的含水率≤10%。
考虑到液体N-P复合肥浓缩结晶成本较高,利用有机废渣吸水以及添加含发酵菌废渣生产粒状有机-无机复合肥,既省去了浓缩结晶的能耗和环保成本,又开拓了有机废渣的用途,还解决了复合肥结块和土壤板结的难题,可谓一举多得。
进一步的,在制备粒状有机-无机复合肥步骤中,先在液体N-P复合肥中添加含发酵菌废渣,然后逐步加入有机废渣,混合均匀的混合物,进行通风发酵,至混合物发乌发黑为熟化终点,得到粒状有机-无机复合肥;
有机废渣的添加量以混合物不滴水为止。
通过对有机废渣添加量和熟化终点的设定能够降低工艺难度。
进一步的,有机废渣为植物性来源的有机废渣和/或农副产品加工产生的有机废渣;
含发酵菌废渣为干鲜酒糟。植物性来源的有机废渣包括稻草、玉米、花生、豆类等农作物秸秆渣以及稻壳粉,以及林业生产过程中的树脂木条、落叶、干枯藤蔓、杂草、果壳等的废渣。农副产品加工产生的有机废渣是指甘蔗渣、土豆渣、甜菜渣等。本发明采用的有机废渣含水率较低,有良好的吸水性,能够达到与液体N-P复合肥混合不滴水的效果。
干鲜酒糟中含有足够的酵母菌,可以满足混合物熟化。
进一步的,收集抛光清洗废水的步骤为:
铝材在抛光槽进行抛光后,依次经第一不流动水洗槽、第二不流动水洗槽和高压雾化喷淋槽,第一不流动水洗槽、第二不流动水洗槽和高压雾化喷淋槽反向串联;
收集第一流动水洗槽内的废水,即抛光清洗废水;
当第一流动水洗槽中的水位下降后,由第二不流动水洗槽内的水补足;当第二不流动水洗槽中的水位下降后,由高压雾化喷淋槽的喷淋废水补足。
本发明在抛光槽后一次设置第一不流动水洗槽、第二不流动水洗槽和高压雾化喷淋槽,并使三者反向串联,保证清洗废水单独处理,避免了与其他用水混合后再处理这些海量废水的麻烦,大幅降低处理含磷和氨氮废水处理量和环保成本,大幅减少含镍固体危废排放量。
进一步的,当第一流动水洗槽中的回收药剂密度达到1.29-1.31g/cm3时,进行废水收集。
进一步的,第一流动水洗槽设置有冷却设备,第一流动水洗槽的生产温度控制在≤50℃。
进一步的,高压雾化喷淋槽连接有用于存储喷淋废水的储存罐,储存罐与、第二不流动水洗槽相连通。因此,抛光清洗废水截留存储,不与其他废水混合,实现抛光清洗废水单独处理。
本发明的有益效果为:
1、采用向抛光废液中添加液氨,获得固体磷酸铝和磷酸镍、液体N-P复合肥,变废为宝,废液处理成本低,解决了现有技术中抛光废液中含磷和镍的废渣处理费用高昂以及环保成本高的问题;
2、本发明首次在抛光槽后一次设置第一不流动水洗槽、第二不流动水洗槽和高压雾化喷淋槽,并使三者反向串联,保证清洗废水单独处理,避免了与其他用水混合后再处理这些海量废水的麻烦,大幅降低处理含磷、镍和氨氮废水处理量和环保成本,大幅减少含镍固体危废排放量;
3、首次利用有机废渣(植物性来源的有机废渣和/或农副产品加工产生的有机废渣)(含水率≤10%)吸收液体N-P复合肥中的水分,固液混合制成有机- 无机复合肥。按本发明回收的液体N-P复合肥,含50%以上的水分,浓缩结晶既耗能,又不环保,还增加成本。利用有机废渣,适当添加干鲜酒糟,引入酵母,混合本发明回收的液体N-P复合肥,生产有机-无机复合肥,既省去了浓缩结晶的能耗和环保成本,又开拓了有机废渣的用途,还解决了复合肥结块和土壤板结的难题,可谓一举多得。
附图说明
图1是现有技术中铝材抛光生产线示意图;
图2是本发明抛光液回收采用的抛光线配置系统及下游生产线的示意图;
其中,抛光槽1、第一不流动水洗槽2、第二不流动水洗槽3、高压雾化喷淋槽4、储存罐5、二号泵6、一号泵7、冷却管道8、三号泵9、除灰槽10、第一流动水洗槽11、第二流动水洗槽12、氧化槽13、第三流动水洗槽14、第四流动水洗槽15、着色槽16、第五流动水洗槽17、第六流动水洗槽18、封孔槽19、第七流动水洗槽20和第八流动水洗槽21;一号单向阀01、二号单向阀02、三号单向阀03、四号单向阀04、五号单向阀05、六号单向阀06、七号阀07、八号阀08、九号阀09、十号阀010。
具体实施方式
下面结合附图及具体实施方式进一步说明本发明的技术方案。
铝合金抛光目的是提高铝合金的装饰性。一般采用两酸、三酸和电解抛光。三酸抛光液一般含硫酸、磷酸和硝酸。以三酸抛光为例,抛光槽的槽液控制指标为(槽液配制按100份重量计):
硫酸30wt.%;
磷酸65wt.%;
硝酸5wt.%;(1)
温度100-110℃;
时间20s-120s;
滴流时间<20s;
除烟雾外,抛光最大的困惑是滴流时间。无论是电解抛光、两酸抛光或三酸抛光,滴流时间均不能太长,一般不超过20s,太长容易烧坏铝材,形成花斑或泪痕,抛光材不合格。
如图1所示,现有技术中,设置三道水洗槽的目的是清洗抛光槽带出的残留抛光液,保护除灰槽。自来水从4#槽进,经3#,2#槽出,反向串联,水耗为 2.0-3.0吨/吨材左右,耗水量太大,且排出的是含硫酸、磷酸、硝酸和镍离子 (抛光槽为不锈钢槽,抛光过程中槽壁被溶解,镍离子进入抛光液)的废水。受滴流时间所限,一般抛光一吨铝材,带入水洗槽的混合酸达250-350Kg。通常用石灰处理这些废酸,生成硫酸钙和磷酸钙。这种处理方式,成本高、废渣量大,且存在氨氮排放。
本发明将传统的清洗水混合后再处理改为在线分类处理,避免与着色槽和封孔槽的清洗水混合,处理后形成含镍固废。传统工艺设计理念不合理,图1 中,11#和14#为含镍槽液,铝材着色和封孔后直接进入12#、13#、15#、16#四道流动水洗槽,将含镍废水带入废水中心,污染整条氧化线其他工序的清洗用水;混合后,再处理这些含镍废水,并需要达标排放,难度可想而知,成本惊人,并产生含镍固废。这种方式迫切需要改进,用在线分类单独处理,取代传统的混合处理方式,降低环保成本;
本发明将传统抛光4#槽流动清洗用水,改为高压雾化喷淋清洗,大幅降低清洗用水,节约处理成本,为在线分类处理、设备小型化打下坚实基础。1#抛光槽后设置2#、3#和4#三道水洗槽的目的是清洗抛光槽带出的残留抛光液,保护5#除灰槽。自来水从4#槽进,经3#,2#槽出,反向串联,水耗为2.0-3.0吨/吨材左右,耗水量太大,且排出的是含硫酸、磷酸和硝酸的废水,增加环保处理压力;本发明将2#、3#水洗槽改为不流动水洗槽,将4#流动清洗槽改为高压雾化喷淋槽,大幅降低清洗用水,为抛光废液在线回收,回收设备小型化奠定基础;
本发明摒弃传统的被动处理废水废渣理念,从资源化的角度出发处理抛光废液废渣,化危废为贵重的化工资源,既大幅降低处理成本,又实现含磷化工产品价值利用的最大化。传统工艺设计理念是,1#抛光槽为含磷和氨氮的槽液,铝材抛光后直接进入2#、3#和4#三道流动水洗槽,将含磷和氨氮的废水带入废水中心,污染整条氧化线其他工序的清洗用水;废水中心对这些废水进行中和、沉淀、压滤,得含磷和镍的固体废渣,排放氨氮;这些海量含磷和镍的废渣,国家环保部已明确规定为危废。全行业每年产生100万吨抛光固废,消耗0.5 亿吨水。在付出环保成本的同时,还浪费了宝贵的磷资源。这种粗放的生产方式迫切需要改进,本发明将2#和3#槽设置为不流动水洗截留槽,主动截留抛光液,并配置专用设备,在线回收含磷产品,变废为宝,实现危废资源化利用。
现代铝加工企业,有抛光废液急需处理,而传统的清洗用水大混合后再处理的方法过于简单,产生海量的含磷和镍的废渣,处理这些废渣,社会为此付出昂贵的环保成本,迫切开发新技术,解决抛光废酸的环保问题。
本发明的铝行业抛光清洗废水回收复合肥的方法,是在充分认识铝加工企业的生产困惑,经多年研发,对现有铝加工企业废水废渣量大、环保压力巨大的抛光处理工艺,进行了前所未有的系统研究后,诞生的一项新技术。
本发明是按如下理论依据、定量定性分析来实现的。
一、铝行业抛光清洗废水回收复合肥方法的理论依据
以三酸抛光为例,抛光槽控制指标为:硫酸30wt.%,磷酸65wt.%,硝酸5wt.%,温度100-110℃,抛光时间20s-120s,滴流时间<20s。传统生产方式为:铝材按20s-120s时间抛光后,起挂滴流<20s,进入2#流动水洗槽;清洗1min,起挂滴流30s,进入3#流动水洗槽;清洗1min,起挂滴流30s,进入4#流动水洗槽;清洗1min,起挂滴流30s,完成抛光与水洗流程。
按本发明在线截留抛光液的要求,高压雾化喷淋槽配置储存罐,减少清洗用水,降低废水回收量。取第一不流动水洗槽截留的抛光液与水的混合物,添加液氨,发生如下化学反应:
2H2SO4+3NH3=NH4HSO4+(NH4)2SO4
3H3PO4+6NH3=NH4H2PO4+(NH4)2HPO4+(NH4)3PO4 (1)
HNO3+NH3=NH4NO3
Al3++PO4 3-=AlPO4↓(或其他重金属)
3Ni2++2PO4 3-=(Ni)3(PO4)2
随着液氨添加量的增加,反应向NH4H2PO4(pH4.5)→(NH4)2HPO4(pH6.5-7.5) →(NH4)3PO4(pH14.0)移动,随着反应液pH值上升,AlPO4逐步析出。当pH 值=6.5-7.5时,停止加药。过滤磷酸铝,可得含(NH4)2SO4、(NH4)2HPO4、NH4H2PO4和NH4NO3混合液,浓缩结晶可生产复合肥产品。除钠、钾外,其他重金属磷酸盐的溶解度非常低,可确保复合肥所含重金属达标。
二、铝行业抛光清洗废水回收复合肥方法定量定性分析与实验结果
不流动水洗截留后,第一不流动水洗槽、第二不流动水洗槽截留抛光液,高压雾化喷淋槽喷淋抛光材,进一步截留抛光液,喷淋用水流入储存罐备用。按此截留方式生产抛光材,第一不流动水洗槽内的清洗液酸浓度不断升高、温度升高、密度增加,抛光材因为不流动水洗而逐步失光。为了保持抛光亮度,必须控制第一不流动水洗槽的酸浓度和温度。由于磷酸不易准确滴定,用第一不流动水洗槽的密度监控酸浓度,易于现场操作。
1、第一不流动水洗槽的不流动水洗截留槽不同密度(酸浓度)对抛光材亮度的影响
固定第一不流动水洗槽的温度为50℃,生产抛光材,经第一不流动水洗槽、第二不流动水洗槽的不流动水洗后,喷淋水洗,晾干,检测第一不流动水洗槽的密度(常温下检测)和抛光材亮度值(GU),结果如表1所示:
亮度 1.0 1.1 1.2 1.3 1.4 1.5 1.6
密度 663 654 646 632 541 465 343
表1是第一不流动水洗槽的槽液(50℃下)不同密度对抛光材亮度的影响。表1表明,第一不流动水洗槽的槽液密度(酸浓度)对抛光亮度影响严重,可接受的控制范围为第一不流动水洗槽的槽液密度≤1.3g/cm3,否则,抛光材严重失光。
2、第一不流动水洗槽的槽液不同温度对抛光材亮度的影响
固定第一不流动水洗槽的槽液密度为1.3g/cm3,生产抛光材,经第一不流动水洗槽、第二不流动水洗槽的不流动水洗后,喷淋水洗,晾干,检测2#的温度(℃)和抛光材亮度值(GU),结果如表2所示:
亮度 10 20 30 40 50 60 70
温度 680 664 648 636 635 565 443
表2是第一不流动水洗槽的槽液(1.3g/cm3密度下)不同温度对抛光材亮度的影响。表2表明,第一不流动水洗槽的槽液温度对抛光亮度影响严重,可接受的控制范围为第一不流动水洗槽的槽液温度≤50℃,否则,抛光材严重失光。由于抛光槽温度为110℃左右,生产时,带出的抛光液使第一不流动水洗槽、第二不流动水洗槽升温,为此,第一不流动水洗槽、第二不流动水洗槽需要配置冷却系统,确保温度低于50℃,保护抛光材亮度。
3、固液分离第一不流动水洗槽的槽液的铝离子和镍离子,生成磷酸铝磷酸镍
取第一不流动水洗槽的槽液1L(密度1.3g/cm3),按(1)式,添加液氨,边加边冷却、边搅拌,至反应液为pH值为6.5-7.5。按(1)式,反应液逐步浑浊,至pH=6.5-7.5时,停止加药,静置2小时,烧杯底部沉淀一层磷酸铝白色固体和少量磷酸镍。将反应产物进行固液分离,漂洗固体物,烘干,得磷酸铝和磷酸镍产品。
4、浓缩结晶分离液,生成N-P复合肥
取上述分离液1000g,进行浓缩结晶,烘干,研磨,得到453g含硫酸铵- 磷酸铵-硝酸铵的N-P复合肥,液体复合肥含固化物45.3%,含水为54.7%。
5、添加粉状甘蔗渣(含水率≤10%),生产有机-无机复合肥
取上述含水率为54.7%的液体复合肥1000g,添加干鲜酒糟10g,逐步加入干燥的粉状甘蔗渣(含水率≤10%),至不滴水为止,甘蔗渣(含水率≤10%)的用量为250g,成品为粒状有机-无机复合肥,经50天发酵沤肥后,甘蔗渣(含水率≤10%)发黑分解熟化。沤肥厂区配备通风设备,以防甲烷累积着火爆炸。本方法适合南方甘蔗产区就地取材生产制作。
6、添加粉状秸秆渣(含水率≤10%),生产有机-无机复合肥
取上述含水率为54.7%的液体复合肥1000g,添加干鲜酒糟10g,逐步加入干燥的粉状秸秆渣(含水率≤10%),至不滴水为止,秸秆渣(含水率≤10%)的用量为280g,成品为粒状有机-无机复合肥,经50天发酵沤肥后,秸秆渣(含水率≤10%)发黑分解熟化。沤肥厂区配备通风设备,以防甲烷累积着火爆炸。本方法适合北方玉米产区就地取材生产制作。
7、添加粉状稻壳粉(含水率≤10%),生产有机-无机复合肥
取上述含水率为54.7%的液体复合肥1000g,添加干鲜酒糟10g,逐步加入干燥的稻壳粉(含水率≤10%),至不滴水为止,稻壳粉(含水率≤10%)的用量为340g,成品为粒状有机-无机复合肥,经50天发酵沤肥后,稻壳粉(含水率≤10%)发黑分解熟化。沤肥厂区配备通风设备,以防甲烷累积着火爆炸。本方法适合南方水稻产区就地取材生产制作。
需要说明的是,甘蔗渣、秸秆渣和稻壳粉可以由植物性来源的有机废渣和农副产品加工产生的有机废渣代替,例如稻草、玉米渣、豆类、花生等农作物秸秆渣,林业生产过程中残余的树枝木条渣、落叶渣、干枯藤蔓渣、杂草渣、果壳渣、土豆渣、甜菜渣。
如图2所示,铝业抛光液的抛光线配置系统包括依次设置的抛光槽1、第一不流动水洗槽2、第二不流动水洗槽3和高压雾化喷淋槽4;
高压雾化喷淋槽4、第二不流动水洗槽3和第一不流动水洗槽2依次连通,高压雾化喷淋槽4、第二不流动水洗槽3和第一不流动水洗槽2用于截留来自抛光槽1的抛光液;
高压雾化喷淋槽4连接有用于存储喷淋废水的储存罐5,高压雾化喷淋槽4 通过储存罐5与第二不流动水洗槽3相连通;
储存罐5与第二不流动水洗槽3通过管道相连通,该管道上设置有二号泵6,二号泵6用于将储存罐5内的喷淋废液泵入第二不流动水洗槽3。二号泵6与储存罐5之间连通的管道上设置有五号单通阀05,储存罐5与高压雾化喷淋槽4 之间连通的管道上设置有四号单通阀04,二号泵6与第二不流动水洗槽3之间连通的管道上设置有六号单通阀06。
采用水洗槽截留抛光液,进行集中处理,避免了与其他用水混合后再处理这些海量废水的麻烦,大幅降低处理含磷和氨氮废水的环保成本,大幅减少含镍固体危废排放。采用高压雾化喷淋槽,减少废液回收量。
第一不流动水洗槽2和第二不流动水洗槽3的连通处设置有二号单通阀02。当第一不流动水洗槽2内的水位下降后,第二不流动水洗槽4内的槽液能够通过二号单向阀02进入第一不流动水洗槽2,二号单向阀02能够防止第一不流动水洗槽2内的高浓度槽液进入第二不流动水洗槽3。
第一不流动水洗槽3通过管道连接有一号泵7,一号泵7用于将第一不流动水洗槽2内的槽液泵出。当第一不流动水洗槽2内的槽液浓度较高时,一号泵7 将其泵出,收集废液进行集中处理。一号泵7与第一不流动水洗槽2之间连通的管道上设置有一号单通阀01。
该系统还包括冷却管道8,冷却管道8依次经过第一不流动水洗槽2和第二不流动水洗槽3,冷却管道8用于对第一不流动水洗槽2和第二不流动水洗槽3 内的槽液进行冷却降温。冷却管道8的设置能够保证两不流动水洗槽的槽液处于较低的温度水平,降低抛光材亮度损失。
高压雾化喷淋槽4连接有三号泵9,冷却管道8经过第二不流动水洗槽3后与三号泵9的进口相连通,三号泵9用于将冷却管道8内的水泵入高压雾化喷淋槽4作为喷淋用水。冷却管道8为高压雾化喷淋槽4供水,最大限度的提高对两不流动水洗槽的降温能力,简化系统的管路结构。三号泵9与冷却管道8 连通的管道上设置有三号单通阀03。
本发明的抛光液回收的抛光线配置系统的下游依次设置除灰槽10、第一流动水洗槽11、第二流动水洗槽12、氧化槽13、第三流动水洗槽14、第四流动水洗槽15、着色槽16、第五流动水洗槽17、第六流动水洗槽18、封孔槽19、第七流动水洗槽20和第八流动水洗槽21。冷却管道8依次与第二流动水洗槽12、第四流动水洗槽15、第六流动水洗槽18和第八流动水洗槽21相连通,为这些流动水洗槽供水。冷却管道8与第二流动水洗槽12、第四流动水洗槽15、第六流动水洗槽18和第八流动水洗槽21之间的管道上分别设置有七号阀07、八号阀08、九号阀09、十号阀010。第一流动水洗槽11和第二流动水洗槽12 相连通;第三流动水洗槽14和第四流动水洗槽15相连通;第五流动水洗槽17 和第六流动水洗槽18相连通;第七流动水洗槽20和第八流动水洗槽21相连通。第一流动水洗槽11、第三流动水洗槽14、第五流动水洗槽17和第七流动水洗槽20中的水洗废水均流入废水中心进行集中处理。
抛光液回收的抛光线配置系统的操作流程如下:
1、抛光清洗废水截留系统操作流程:打开七号阀07、八号阀08、九号阀 09、十号阀10,开启流动冷却管道8中的清洗水,冷却第一不流动水洗槽2、第二不流动水洗槽3;当第一不流动水洗槽2温度控制≤50℃时,开始抛光;铝合金进抛光槽抛光20s-120s后,滴流20s;进入第一不流动水洗槽2,清洗 60s,滴流30s;进入第二不流动水洗槽3,清洗60s,滴流30s;进入高压雾化喷淋槽4,喷淋30s,喷淋水流入储存罐5;完成抛光液废水截留系统操作流程;
2、抛光液废水收集系统操作流程:检测第一不流动水洗槽2密度,当密度达到1.3g/m3时,打开一号单向阀01和一号泵7,将第一不流动水洗槽2截留的抛光液泵入反应罐;二号泵6,将储存罐5截留的抛光液泵入第二不流动水洗槽 3,截留液经二号单向阀02,流回第一不流动水洗槽2,完成抛光液废水收集系统操作流程。
第一不流动水洗槽2截留的抛光液泵入反应罐后,按实验结果3,添加液氨,回收磷酸铝和N-P复合肥。
三、本发明的创新点
1、首次设置两个不流动水洗槽和高压雾化喷淋槽和储存罐,反向串联,负责截留抛光槽带出的抛光液,留存于两个不流动水洗槽和喷淋储存罐中,单独处理,避免了与其他用水混合后再处理这些海量废水的麻烦,大幅降低处理含磷和氨氮废水处理量和环保成本,大幅减少含镍固体危废排放量;
2、首次在抛光清洗废水中,加入液氨,用液氨回收Al3+,反应生成磷酸铝,并确认pH值达到6.5-7.5时为反应终点,经固液分离,得磷酸铝和液体N-P 复合肥;
3、首次利用甘蔗渣(含水率≤10%)吸收液体N-P复合肥中的水分,固液混合制成有机-无机复合肥。按本发明回收的液体N-P复合肥,含50%以上的水分,浓缩结晶既耗能,又不环保,还增加成本。利用甘蔗产区大量的制糖废渣,适当添加干鲜酒糟,引入酵母,混合本发明回收的液体N-P复合肥,生产有机- 无机复合肥,既省去了浓缩结晶的能耗和环保成本,又开拓了甘蔗渣(含水率≤10%)的用途,还解决了复合肥结块和土壤板结的难题,可谓一举多得;
4、首次利用秸秆渣(含水率≤10%)吸收液体N-P复合肥中的水分,固液混合制成有机-无机复合肥。按本发明回收的液体N-P复合肥,含50%以上的水分,浓缩结晶既耗能,又不环保,还增加成本。利用玉米产区大量的秸秆废渣,适当添加干鲜酒糟,引入酵母,混合本发明回收的液体N-P复合肥,生产有机- 无机复合肥,既省去了浓缩结晶的能耗和环保成本,又开拓了秸秆渣(含水率≤10%)的用途,还解决了复合肥结块和土壤板结的难题,可谓一举多得;
5、首次利用稻壳粉(含水率≤10%)吸收液体N-P复合肥中的水分,固液混合制成有机-无机复合肥。按本发明回收的液体N-P复合肥,含50%以上的水分,浓缩结晶既耗能,又不环保,还增加成本。利用水稻产区大量的稻壳粉(含水率≤10%),适当添加干鲜酒糟,引入酵母,混合本发明回收的液体N-P复合肥,生产有机-无机复合肥,既省去了浓缩结晶的能耗和环保成本,又开拓了稻壳粉(含水率≤10%)的用途,还解决了复合肥结块和土壤板结的难题,可谓一举多得。
铝业减渣之抛光液回收复合肥的方法,涉及铝加工行业产生大量含磷废渣一大来源,即铝合金抛光废酸液。此类废酸在一些区域量非常大,如佛山地区,年消耗抛光酸约20万吨,含硫酸6万吨、磷酸13万吨和硝酸1万吨,约占全国用量40万吨的一半。处理这些抛光废酸,全国每年产生含磷废渣100万吨以上,同时消耗约5000万吨用水。同时还浪费了宝贵的磷资源。这种粗放的生产方式迫切需要改进,本发明将设置两道不流动水洗截留槽和高压雾化喷淋槽,主动截留抛光液,在线回收含磷产品,变废为宝,实现危废资源化利用。
以下通过具体实施例进一步阐述本发明。
实施例1磷酸铝与液体N-P复合肥回收。
抛光清洗废水截留:铝合金进抛光槽抛光20s-120s后,滴流20s;铝合金进入第一不流动水洗槽,清洗60s,滴流30s,第一流动水洗槽设置有冷却设备,所述第一流动水洗槽的生产温度控制在≤50℃;之后,铝合金进入第二不流动水洗槽,清洗60s,滴流30s;再进入高压雾化喷淋槽,喷淋30s,喷淋水流入储存罐;完成抛光液废水截留;当第一流动水洗槽中的水位下降后,由第二不流动水洗槽内的水补足;当第二不流动水洗槽中的水位下降后,由与高压雾化喷淋槽连通的储液罐中的喷淋废水补足;
抛光清洗废水收集:检测第一不流动水洗槽内的槽液密度,当密度达到 1.25-1.31g/cm3时,收集第一不流动水洗槽的槽液,即为抛光清洗废水,抛光清洗废水中包括磷酸根离子、硝酸根离子、硫酸根离子和镍离子;其中,优选的当第一不流动水洗槽的槽液密度达到1.29-1.31g/cm3时收集槽液,进一步优选的,第一不流动水洗槽的槽液密度达到1.30g/cm3时收集槽液;
磷酸铝与液体N-P复合肥回收:在收集的抛光清洗废水中缓慢加入液氨,反应生成混合酸的铵盐;边加边检测pH值,当pH值达到6.5-7.5时,停止加药,继续搅拌30min;冷却反应液至40℃以下,固液分离,漂洗后回收固体磷酸铝和磷酸镍固体;回收液体N-P复合肥。
实施例2液体N-P复合肥浓缩结晶分离液,生成N-P复合肥。
取实施例1在当第一不流动水洗槽的槽液密度达到1.29-1.31g/cm3时收集槽液以及当pH值达到6.5-7.5停止加药的条件下,获得的液体N-P复合肥1000g。浓缩结晶,烘干,研磨,得到453g含硫酸铵-磷酸铵-硝酸铵的N-P复合肥,液体N-P复合肥中固体含量为45.3%,水含量为54.7%。
实施例3液体N-P复合肥与甘蔗渣(含水率≤10%)混合,生产粒状有机- 无机复合肥。
取实施例1在当第一不流动水洗槽的槽液密度达到1.29-1.31g/cm3时收集槽液以及当pH值达到6.5-7.5停止加药的条件下,获得的含水率为54.7%的液体N-P复合肥1000g,添加干鲜酒糟10g,逐步加入干燥的粉状甘蔗渣(含水率≤10%),至不滴水为止,甘蔗渣(含水率≤10%)的用量为250g,成品为粒状有机-无机复合肥;在配备通风设备沤肥厂区,发酵60天沤肥,复合肥发乌发黑为熟化终点;
实施例4液体N-P复合肥与秸秆渣(含水率≤10%)混合,生产粒状有机- 无机复合肥。
取实施例1在当第一不流动水洗槽的槽液密度达到1.29-1.31g/cm3时收集槽液以及当pH值达到6.5-7.5停止加药的条件下,获得的含水率为54.7%的液体N-P复合肥1000g,添加干鲜酒糟10g,逐步加入干燥的粉状秸秆渣(含水率≤10%),至不滴水为止,秸秆渣(含水率≤10%)的用量为280g,成品为粒状有机-无机复合肥;在配备通风设备沤肥厂区,发酵60天沤肥,复合肥发乌发黑为熟化终点;
实施例5液体N-P复合肥与稻壳粉(含水率≤10%混合,生产粒状有机-无机复合肥。
取实施例1在当第一不流动水洗槽的槽液密度达到1.29-1.31g/cm3时收集槽液以及当pH值达到6.5-7.5停止加药的条件下,获得的含水率为54.7%的液体N-P复合肥1000g,添加干鲜酒糟10g,逐步加入干燥的稻壳粉(含水率≤10%),至不滴水为止,稻壳粉(含水率≤10%)的用量为340g,成品为粒状有机-无机复合肥;在配备通风设备沤肥厂区,发酵60天沤肥,复合肥发乌发黑为熟化终点。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (10)

1.铝行业抛光清洗废水回收复合肥的方法,其特征在于,包括以下步骤:
a、收集包含磷酸根、硝酸根、硫酸根和镍离子的抛光清洗废水;
b、向抛光清洗废水中加入液氨,至pH值6.5-7.5,搅拌、冷却、固液分离、漂洗、烘干,回收磷酸铝和磷酸镍固体;
c、再次过滤滤液,回收液体N-P复合肥。
2.根据权利要求1所述的铝行业抛光清洗废水回收复合肥的方法,其特征在于,所述抛光清洗废水的回收药剂密度在1.25-1.31g/cm3
3.根据权利要求1所述的铝行业抛光清洗废水回收复合肥的方法,其特征在于,还包括以下步骤:
将回收的液体N-P复合肥进行浓缩结晶,将晶体烘干研磨得到含硫酸铵-磷酸铵-硝酸铵的N-P复合肥。
4.根据权利要求1所述的铝行业抛光清洗废水回收复合肥的方法,其特征在于,还包括制备粒状有机-无机复合肥步骤:
在回收的液体N-P复合肥中加入有机废渣和含发酵菌废渣,发酵熟化,制成粒状有机-无机复合肥,所述有机废渣的含水率≤10%。
5.根据权利要求4所述的铝行业抛光清洗废水回收复合肥的方法,其特征在于,在所述制备粒状有机-无机复合肥步骤中,先在液体N-P复合肥中添加含发酵菌废渣,然后逐步加入有机废渣,混合均匀的混合物,进行通风发酵,至混合物发乌发黑为熟化终点,得到粒状有机-无机复合肥;
所述有机废渣的添加量以混合物不滴水为止。
6.根据权利要求4所述的铝行业抛光清洗废水回收复合肥的方法,其特征在于,所述有机废渣为植物性来源的有机废渣和/或农副产品加工产生的有机废渣;
所述含发酵菌废渣为干鲜酒糟。
7.根据权利要求1-6任一项所述的铝行业抛光清洗废水回收复合肥的方法,其特征在于,所述收集抛光清洗废水的步骤为:
铝材在抛光槽进行抛光后,依次经第一不流动水洗槽、第二不流动水洗槽和高压雾化喷淋槽,所述第一不流动水洗槽、第二不流动水洗槽和高压雾化喷淋槽反向串联;
收集第一流动水洗槽内的废水,即抛光清洗废水;
当第一流动水洗槽中的水位下降后,由第二不流动水洗槽内的水补足;当第二不流动水洗槽中的水位下降后,由高压雾化喷淋槽的喷淋废水补足。
8.根据权利要求7所述的铝行业抛光清洗废水回收复合肥的方法,其特征在于,当第一流动水洗槽中的回收药剂密度达到1.29-1.31g/cm3时,进行废水收集。
9.根据权利要求7所述的铝行业抛光清洗废水回收复合肥的方法,其特征在于,所述第一流动水洗槽设置有冷却设备,所述第一流动水洗槽的生产温度控制在≤50℃。
10.根据权利要求7所述的铝行业抛光清洗废水回收复合肥的方法,其特征在于,所述高压雾化喷淋槽连接有用于存储喷淋废水的储存罐,所述储存罐与、第二不流动水洗槽相连通。
CN201810843394.5A 2018-07-27 2018-07-27 铝行业抛光清洗废水回收复合肥的方法 Active CN109336074B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810843394.5A CN109336074B (zh) 2018-07-27 2018-07-27 铝行业抛光清洗废水回收复合肥的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810843394.5A CN109336074B (zh) 2018-07-27 2018-07-27 铝行业抛光清洗废水回收复合肥的方法

Publications (2)

Publication Number Publication Date
CN109336074A true CN109336074A (zh) 2019-02-15
CN109336074B CN109336074B (zh) 2020-08-11

Family

ID=65296722

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810843394.5A Active CN109336074B (zh) 2018-07-27 2018-07-27 铝行业抛光清洗废水回收复合肥的方法

Country Status (1)

Country Link
CN (1) CN109336074B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642646A (zh) * 2019-10-30 2020-01-03 福建桑玛作物营养科技有限公司 一种含磷废料制备钙镁磷肥的方法
CN114408888A (zh) * 2021-12-23 2022-04-29 广东臻鼎环境科技有限公司 一种利用含铝废酸液制备电池级磷酸铁粉末的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294186A (ja) * 1986-06-12 1987-12-21 Nippon M & T Kk アルミニウム及びその合金の化学研磨浴
CN102139868A (zh) * 2010-12-30 2011-08-03 何云 用含锰废液制备磷酸盐及磷酸钠和硫酸氨混合产品的方法
US20120052682A1 (en) * 2010-08-25 2012-03-01 Samsung Electronics Co., Ltd. Polishing slurry and method of manufacturing semiconductor device using the same
CN104005031A (zh) * 2014-05-06 2014-08-27 湖北三江航天万峰科技发展有限公司 一种铸造铝合金化学抛光液及抛光工艺方法
CN104925775A (zh) * 2015-05-29 2015-09-23 瓮福(集团)有限责任公司 一种回收铝合金抛光废渣中磷资源的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294186A (ja) * 1986-06-12 1987-12-21 Nippon M & T Kk アルミニウム及びその合金の化学研磨浴
US20120052682A1 (en) * 2010-08-25 2012-03-01 Samsung Electronics Co., Ltd. Polishing slurry and method of manufacturing semiconductor device using the same
CN102139868A (zh) * 2010-12-30 2011-08-03 何云 用含锰废液制备磷酸盐及磷酸钠和硫酸氨混合产品的方法
CN104005031A (zh) * 2014-05-06 2014-08-27 湖北三江航天万峰科技发展有限公司 一种铸造铝合金化学抛光液及抛光工艺方法
CN104925775A (zh) * 2015-05-29 2015-09-23 瓮福(集团)有限责任公司 一种回收铝合金抛光废渣中磷资源的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
卞恒磊等: "铝材抛光废水中磷的回收", 《上海应用技术学院学报(自然科学版》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642646A (zh) * 2019-10-30 2020-01-03 福建桑玛作物营养科技有限公司 一种含磷废料制备钙镁磷肥的方法
CN114408888A (zh) * 2021-12-23 2022-04-29 广东臻鼎环境科技有限公司 一种利用含铝废酸液制备电池级磷酸铁粉末的方法
CN114408888B (zh) * 2021-12-23 2023-09-19 广东臻鼎环境科技有限公司 一种利用含铝废酸液制备电池级磷酸铁粉末的方法

Also Published As

Publication number Publication date
CN109336074B (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
CN101503762B (zh) 一种焙烧钒矿先脱硫后提钒工艺
CN109336074A (zh) 铝行业抛光清洗废水回收复合肥的方法
CN108149017B (zh) 一种煲模液代替碱蚀液并回收氢氧化铝的系统
CN107162034B (zh) 一种利用煤化工三废制备纳米碳酸钙及氨基复肥的系统及工艺
CN103991893A (zh) 一种高纯碱式碳酸铜的制备方法
CN103588339B (zh) 一种荒煤气余热处理焦化脱硫废液工艺
CN203408621U (zh) 一种酸性烟气处理系统
CN204874418U (zh) 煤催化气化系统
CN109112537B (zh) 氧化液及除油中和液回收氢氧化铝和硫酸钠的装置及工艺
CN101757843B (zh) 一种利用含硫烟气吸收物进行亚铵法制浆的改进工艺
CN106986400A (zh) 一种去除蒸汽中cod、氨氮的处理系统
CN218188871U (zh) 一种用于磷酸铁合成的物料循环系统
CN109179357A (zh) 铝行业抛光清洗废水回收复合肥方法与系统配置
CN206680207U (zh) 一种去除蒸汽中cod、氨氮的处理系统
CN109161896A (zh) 铝行业抛光清洗废水回收复合肥方法与抛光线配置
CN206911091U (zh) 复合型船舶压载水及船舶废气处理系统
CN206645962U (zh) 一种综合处理化工浓盐水系统
CN206304563U (zh) 一种软锰矿浆脱除烟气中so2及其资源化利用的装置
CN213865389U (zh) 利用水泥窑窑尾废气和磷石膏制备硫酸铵的系统
CN102258934B (zh) 电解铝用炭素生产中石油焦煅烧烟气脱硫除尘一体化方法
CN213506408U (zh) 一种小颗粒油页岩干馏废水处理及综合利用装置
CN211987966U (zh) 一种用于垃圾渗滤液处理的新型洗气系统
CN101760975B (zh) 一种利用含硫烟气吸收物进行亚铵法制浆的循环工艺
CN107126826A (zh) 一种纯碱制备中含氨尾气处理装置及方法
CN109112546B (zh) 煲模液回收氢氧化铝和硫酸钠的氧化线系统及工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant