CN109331885B - 一种镍金属有机骨架担载纳米钒酸铋催化剂及其制备方法 - Google Patents

一种镍金属有机骨架担载纳米钒酸铋催化剂及其制备方法 Download PDF

Info

Publication number
CN109331885B
CN109331885B CN201811373895.8A CN201811373895A CN109331885B CN 109331885 B CN109331885 B CN 109331885B CN 201811373895 A CN201811373895 A CN 201811373895A CN 109331885 B CN109331885 B CN 109331885B
Authority
CN
China
Prior art keywords
metal organic
organic framework
nickel metal
bismuth vanadate
supported nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811373895.8A
Other languages
English (en)
Other versions
CN109331885A (zh
Inventor
薛蒙伟
刘广卿
张敦林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Xiaozhuang University
Original Assignee
Nanjing Xiaozhuang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Xiaozhuang University filed Critical Nanjing Xiaozhuang University
Priority to CN201811373895.8A priority Critical patent/CN109331885B/zh
Publication of CN109331885A publication Critical patent/CN109331885A/zh
Application granted granted Critical
Publication of CN109331885B publication Critical patent/CN109331885B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/36Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种镍金属有机骨架担载纳米钒酸铋催化剂及其制备方法,该催化剂载体为镍金属有机骨架,活性担载物为具有表面氧缺陷位的纳米钒酸铋。该催化剂是通过预先制备镍金属有机骨架,然后在镍金属有机骨架上沉积纳米钒酸铋,最后置于还原性气氛经部分还原而制得。该催化剂具有较高的光催化反应活性和稳定性,在污水处理、光能转换等领域有较大的应用前景。

Description

一种镍金属有机骨架担载纳米钒酸铋催化剂及其制备方法
技术领域
本发明涉及光催化技术领域,特别涉及一种金属有机骨架担载纳米钒酸铋催化剂及其制备方法。
背景技术
以太阳能为能源,利用光催化技术,实现光催化产氢和有机污染物降解是解决当前日益严重的环境污染和能源危机的一条有效途径。钒酸铋是一种具有可见光响应的新型光催化剂,它是一种典型的层状结构半导体,具有一系列诸如窄带隙、稳定性高、无毒、可反复使用等优异的性质,因此受到人们的广泛关注。但是,由于纯钒酸铋空穴扩散距离较短且表面反应动力学较慢,极易发生电子-空穴复合现象,造成量子转换效率低,不利于其在光催化反应中的应用。
通过将其它材料与钒酸铋复合,构筑钒酸铋复合光催化剂,可显著增强钒酸铋光催化剂的光催化性能。专利C201810329038.1公开了一种硫化铜/钒酸铋双层膜复合材料的制备及作为光电阳极的应用,该专利采用简单的滴涂法将硫化铜负载于钒酸铋电极上,得到硫化铜/钒酸铋双层膜复合材料。这种材料有助于光生载流子的快速分离,从而提高了钒酸铋的光电化学性能。专利CN201810233687.1公开了一种钒酸铋插层氧化石墨烯可见光催化功能织物的制备方法,该专利预先用氧化石墨烯改性织物,随后在改性织物上沉积钒酸铋,得到具有高可见光催化净化效果的功能织物。但是目前,钒酸铋复合材料的比表面积较小,其物理吸附作用较差,同时光生载流子对的复合率仍然偏高,使该材料的使用存在一定的局限性。
发明内容
本发明的目的在于提供一种镍金属有机骨架担载纳米钒酸铋催化剂及其制备方法,该催化剂载体为镍金属有机骨架,活性担载物为具有表面氧缺陷位的纳米钒酸铋。该催化剂是通过预先制备镍金属有机骨架,然后在镍金属有机骨架上沉积纳米钒酸铋,最后置于还原性气氛经部分还原而制得。所述镍金属有机骨架的有机配体为芳香族二元羧酸及其衍生物。该催化剂具有较高的光催化反应活性和稳定性,在污水处理、光能转换等领域有较大的应用前景。
为了达到上述目的,本发明是通过以下技术方案实现的:
(1)室温下,按二甲基甲酰胺与去离子水的质量比10:1~20:1,配置二甲基甲酰胺水溶液,按无水乙醇与去离子水的质量比0.5:1~2:1,加入无水乙醇,搅拌10~30 min,按有机配体与二甲基甲酰胺的质量比0.005:1~0.02:1,加入有机配体,再按镍盐与有机配体的质量比1:1~2:1,加入镍盐,搅拌30~60min,再按三乙胺与二甲基甲酰胺的质量比0.01:1~0.05:1,加入三乙胺,搅拌,20~80℃下反应5~12h,离心分离,沉淀用5~10倍二甲基甲酰胺质量的乙醇洗涤,70~100℃下干燥6~12h,得镍金属有机骨架;
(2)室温下,按铋盐与去离子水的质量比0.02:1~0.1:1,配置铋盐水溶液,按镍金属有机骨架与铋盐的质量比2:1~10:1,加入镍金属有机骨架,再按偏钒酸盐与铋盐的质量比0.1:1~0.5:1,加入偏钒酸盐,搅拌10~30 min,用质量分数为2%~5%的无机碱水溶液调节混合溶液的pH至4~7,转移至反应釜中,100~200℃反应8~16h,冷却至室温,离心分离,沉淀依次用10~50倍镍金属有机骨架质量的去离子水和乙醇洗涤,60~80℃下真空干燥8~12h,得镍金属有机骨架担载纳米钒酸铋初产物;
(3)将镍金属有机骨架担载纳米钒酸铋初产物放入管式炉中,通入还原性气体,控制气体流量为10~40mL/min,于200~350℃下反应2~6h,自然冷却至室温,得镍金属有机骨架担载纳米钒酸铋催化剂。
上述制备方法中,所述的有机配体为对苯二甲酸二甲酯、对苯二甲酸中的一种。所述的镍盐为六水合氯化镍、六水合硝酸镍中的一种。所述的铋盐为五水合硝酸铋、氯化铋中的一种。所述的偏钒酸盐为偏钒酸铵、偏钒酸钾、偏钒酸钠中的一种。所述的还原性气体为高纯氢或氢气体积分数为5~20%的氢氩混合气。
本发明的特点如下:
(1)利用还原性气体在纳米钒酸铋表面进行部分还原,产生表面氧空位缺陷,增加催化剂的活性位点数量,促进了催化剂对可见光的利用效果,有助于提高催化剂的催化活性。
(2)钒酸铋与镍金属有机骨架间存在的强协同效应,可以提高光催化过程中光生电子-空穴的转移效率,从而有利于提升催化剂的催化活性。
(3)将纳米钒酸铋担载于镍金属有机骨架上可显著抑制纳米钒酸铋颗粒的团聚,进而提高催化剂的稳定性,同时镍金属有机骨架的多孔结构和高比表面积可以促进催化剂对反应介质的吸附效果,并为反应介质提供更好的扩散途径,有利于促进催化反应的进行,进而提高催化剂的催化活性。
具体实施方式
实施例1
25℃下,量取10mL二甲基甲酰胺,加入1mL无水乙醇和1mL去离子水,搅拌10min,得到混合溶液;分别加入0.18g对苯二甲酸和0.36g六水合氯化镍,继续搅拌60min,再加入0.14mL三乙胺,20℃下反应12h,离心分离,沉淀用50mL乙醇洗涤,70℃下干燥10h,得镍金属有机骨架;
25℃下,称取1g氯化铋,加入到50mL去离子水中,搅拌均匀,得到氯化铋水溶液,依次加入2g镍金属有机骨架和0.1g偏矾酸铵,搅拌10min,用质量分数为2%的氢氧化钠溶液调节pH至4,得到混合液,将该混合液转移至反应釜中,100℃下反应12h,冷却至室温,离心分离,用100mL乙醇和100mL的去离子水洗涤沉淀,80℃下真空干燥12h,得到镍金属有机骨架担载纳米钒酸铋初产物;
将制得的镍金属有机骨架担载纳米钒酸铋初产物放入管式炉中,通入高纯氢气,控制气体流量为30mL/min,于200℃下反应6h,自然冷却至室温,得镍金属有机骨架担载纳米钒酸铋催化剂。
该催化剂中镍金属有机骨架成片状结构,平均尺寸为0.57μm,纳米钒酸铋均匀沉积于镍金属有机骨架上,X射线光电子能谱分析和拉曼光谱测试表明该材料中具有明显的氧缺陷位,将该催化剂应用于可见光下光解水制氢反应中,催化剂的平均产氢速率为497μmol·h-1·g-1,催化剂经连续循环反应5次后,产氢速率仍能维持于468μmol·h-1·g-1
实施例2
25℃下,量取10.6mL二甲基甲酰胺,加入2.5mL无水乙醇和1mL去离子水,搅拌30min,得到混合溶液;分别加入0.052g对苯二甲酸二甲酯和0.052g六水合氯化镍,继续搅拌30min,再加入0.5mL三乙胺,80℃下反应5h,离心分离,沉淀用100mL乙醇洗涤,90℃下干燥6h,得镍金属有机骨架;
25℃下,称取3g五水合硝酸铋,加入到70mL去离子水中,搅拌均匀,得到硝酸铋水溶液,依次加入30g镍金属有机骨架和1.5g偏钒酸钾,搅拌15min,用质量分数为5%的氢氧化钠溶液调节pH至7,得到混合液,将该混合液转移至反应釜,140℃下反应8h,冷却至室温,离心分离,用400mL乙醇和400mL的去离子水洗涤沉淀,70℃下真空干燥11h,得到镍金属有机骨架担载纳米钒酸铋初产物;
将制得的镍金属有机骨架担载纳米钒酸铋初产物放入管式炉中,通入高纯氢气,控制气体流量为10mL/min,于350℃下反应5h,自然冷却至室温,得金属有机骨架负载具有表面氧缺陷的纳米钒酸铋催化剂。
该催化剂中镍金属有机骨架成片状结构,平均尺寸为0.68μm,纳米钒酸铋均匀沉积于镍金属有机骨架上,X射线光电子能谱分析和拉曼光谱测试表明该材料中具有明显的氧缺陷位,将该催化剂应用于可见光下光解水制氢反应中,催化剂的平均产氢速率为456μmol·h-1·g-1,催化剂经连续循环反应5次后,产氢速率仍能维持于432μmol·h-1·g-1
实施例3
25℃下,量取21.1mL二甲基甲酰胺,加入2mL无水乙醇和2.2mL去离子水,搅拌30min,得到混合溶液;分别加入0.18g对苯二甲酸和0.18g六水合硝酸镍,继续搅拌50min,再加入0.28mL三乙胺,30℃下反应7h,离心分离,沉淀用130mL乙醇洗涤,80℃下干燥7h,得镍金属有机骨架;
25℃下,称取1.6g五水合硝酸铋,加入到16mL去离子水中,搅拌均匀,得到硝酸铋水溶液,依次加入10g镍金属有机骨架和0.5g偏矾酸铵,搅拌30min,用质量分数为4%的氨水溶液调节pH至7,得到混合液,将该混合液转移至反应釜,120℃下反应16h,冷却至室温,离心分离,用300mL乙醇和300mL的去离子水洗涤沉淀,65℃下真空干燥9h,得到镍金属有机骨架担载纳米钒酸铋初产物;
将制得的镍金属有机骨架担载纳米钒酸铋初产物放入管式炉中,通入高纯氢气,控制气体流量为40mL/min,于300℃下反应3h,自然冷却至室温,得金属有机骨架负载具有表面氧缺陷的纳米钒酸铋催化剂。
该催化剂中镍金属有机骨架成片状结构,平均尺寸为0.81μm,纳米钒酸铋均匀沉积于镍金属有机骨架上,X射线光电子能谱分析和拉曼光谱测试表明该材料中具有明显的氧缺陷位,将该催化剂应用于可见光下光解水制氢反应中,催化剂的平均产氢速率为501μmol·h-1·g-1,催化剂经连续循环反应5次后,产氢速率仍能维持于478μmol·h-1·g-1
实施例4
25℃下,量取20mL二甲基甲酰胺,加入1.8mL无水乙醇和1.2mL去离子水,搅拌10min,得到混合溶液;分别加入0.2g对苯二甲酸二甲酯和0.3g六水合氯化镍,继续搅拌60min,再加入1mL三乙胺,50℃下反应9h,离心分离,沉淀用170mL乙醇洗涤,80℃下干燥9h,得镍金属有机骨架;
25℃下,称取3g氯化铋,加入到30mL去离子水中,搅拌均匀,得到氯化铋水溶液,依次加入15g镍金属有机骨架和1g偏钒酸钠,搅拌20min,用质量分数为2%的氨水调节pH至6,得到混合液,将该混合液转移至反应釜,180℃下反应14h,冷却至室温,离心分离,用600mL乙醇和600mL的去离子水洗涤沉淀,75℃下真空干燥10h,得到镍金属有机骨架担载纳米钒酸铋初产物;
将制得的镍金属有机骨架担载纳米钒酸铋初产物放入管式炉中,通入氢气体积分数为5%的氢氩混合气,控制气体流量为30mL/min,于230℃下反应4h,自然冷却至室温,得金属有机骨架负载具有表面氧缺陷的纳米钒酸铋催化剂。
该催化剂中镍金属有机骨架成片状结构,平均尺寸为0.79μm,纳米钒酸铋均匀沉积于镍金属有机骨架上,X射线光电子能谱分析和拉曼光谱测试表明该材料中具有明显的氧缺陷位,将该催化剂应用于可见光下光解水制氢反应中,催化剂的平均产氢速率为445μmol·h-1·g-1,催化剂经连续循环反应5次后,产氢速率仍能维持于423μmol·h-1·g-1
实施例5
25℃下,量取32mL二甲基甲酰胺,加入2.5mL乙醇和3.0mL去离子水,搅拌20min,得到混合溶液;分别加入0.3g对苯二甲酸和0.5g六水合硝酸镍,继续搅拌40min,再加入0.9mL三乙胺,60℃下反应8h,离心分离,沉淀用250mL乙醇洗涤,100℃下干燥12h,得镍金属有机骨架;
25℃下,称取2g五水合硝酸铋,加入到20mL去离子水中,搅拌均匀,得到硝酸铋水溶液,依次加入20g镍金属有机骨架和0.6g偏钒酸钾,搅拌25min,用质量分数为5%的氨水溶液调节pH至5,得到混合液,将该混合液转移至反应釜,200℃下反应10h,冷却至室温,离心分离,用400mL乙醇和200mL的去离子水洗涤沉淀,60℃下真空干燥8h,得到镍金属有机骨架担载纳米钒酸铋初产物;
将制得的镍金属有机骨架担载纳米钒酸铋初产物放入管式炉中,通入氢气体积分数为20%的氢氩混合气,控制气体流量为20mL/min,于270℃下反应2h,自然冷却至室温,得金属有机骨架负载具有表面氧缺陷的纳米钒酸铋催化剂。
该催化剂中镍金属有机骨架成片状结构,平均尺寸为0.79μm,纳米钒酸铋沉积于镍金属有机骨架上,X射线光电子能谱分析和拉曼光谱测试表明该材料中具有明显的氧缺陷位,将该催化剂应用于可见光下降解罗丹明B反应中,罗丹明B可在2h内降解完全,催化剂经连续循环反应6次后,降解速率基本不变。

Claims (7)

1.一种镍金属有机骨架担载纳米钒酸铋催化剂的制备方法,其特征在于,包括以下步骤:
(1)室温下,按二甲基甲酰胺与去离子水的质量比10:1~20:1,配置二甲基甲酰胺水溶液,按无水乙醇与去离子水的质量比0.5:1~2:1,加入无水乙醇,搅拌10~30min,按有机配体与二甲基甲酰胺的质量比0.005:1~0.02:1,加入有机配体,再按镍盐与有机配体的质量比1:1~2:1,加入镍盐,搅拌30~60min,再按三乙胺与二甲基甲酰胺的质量比0.01:1~0.05:1,加入三乙胺,搅拌,20~80℃下反应5~12h,离心分离,沉淀用5~10倍二甲基甲酰胺质量的乙醇洗涤,70~100℃下干燥6~12h,得镍金属有机骨架;
(2)室温下,按铋盐与去离子水的质量比0.02:1~0.1:1,配置铋盐水溶液,按镍金属有机骨架与铋盐的质量比2:1~10:1,加入镍金属有机骨架,再按偏钒酸盐与铋盐的质量比0.1:1~0.5:1,加入偏钒酸盐,搅拌10~30 min,用质量分数为2%~5%的无机碱水溶液调节混合溶液的pH至4~7,转移至反应釜中,100~200℃反应8~16h,冷却至室温,离心分离,沉淀依次用10~50倍镍金属有机骨架质量的去离子水和乙醇洗涤,60~80℃下真空干燥8~12h,得镍金属有机骨架担载纳米钒酸铋初产物;
(3)将镍金属有机骨架担载纳米钒酸铋初产物放入管式炉中,通入还原性气体,控制气体流量为10~40mL/min,于200~350℃下反应2~6h,自然冷却至室温,得镍金属有机骨架担载纳米钒酸铋催化剂。
2.根据权利要求1所述的一种镍金属有机骨架担载纳米钒酸铋催化剂的制备方法,其特征在于,步骤(1)中所述的有机配体为对苯二甲酸二甲酯、对苯二甲酸中的一种。
3.根据权利要求1所述的一种镍金属有机骨架担载纳米钒酸铋催化剂的制备方法,其特征在于,步骤(1)中所述的镍盐为六水合氯化镍、六水合硝酸镍中的一种。
4.根据权利要求1所述的一种镍金属有机骨架担载纳米钒酸铋催化剂的制备方法,其特征在于,步骤(2)中所述的铋盐为五水合硝酸铋、氯化铋中的一种。
5.根据权利要求1所述的一种镍金属有机骨架担载纳米钒酸铋催化剂的制备方法,其特征在于,步骤(2)中所述的偏钒酸盐为偏钒酸铵、偏钒酸钾、偏钒酸钠中的一种。
6.根据权利要求1所述的一种镍金属有机骨架担载纳米钒酸铋催化剂的制备方法,其特征在于,步骤(2)中所述的无机碱为氢氧化钠或氨水。
7.根据权利要求1所述的一种镍金属有机骨架担载纳米钒酸铋催化剂的制备方法,其特征在于,步骤(3)中所述的还原性气体为高纯氢或氢气体积分数为5~20%的氢氩混合气。
CN201811373895.8A 2018-11-19 2018-11-19 一种镍金属有机骨架担载纳米钒酸铋催化剂及其制备方法 Active CN109331885B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811373895.8A CN109331885B (zh) 2018-11-19 2018-11-19 一种镍金属有机骨架担载纳米钒酸铋催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811373895.8A CN109331885B (zh) 2018-11-19 2018-11-19 一种镍金属有机骨架担载纳米钒酸铋催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN109331885A CN109331885A (zh) 2019-02-15
CN109331885B true CN109331885B (zh) 2021-11-09

Family

ID=65316092

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811373895.8A Active CN109331885B (zh) 2018-11-19 2018-11-19 一种镍金属有机骨架担载纳米钒酸铋催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN109331885B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109876867A (zh) * 2019-03-05 2019-06-14 西北师范大学 一种双金属-有机骨架/钒酸铋复合光电阳极材料的制备方法
CN110791777B (zh) * 2019-10-29 2021-11-16 天津大学 一种富含表层氧空位的钒酸铋电极及其制备方法和应用
CN111715300B (zh) * 2020-06-22 2021-08-24 江南大学 一种铁酸锌/Bi-MOF/单宁酸复合可见光催化剂
CN116786140A (zh) * 2023-06-09 2023-09-22 浙江工业大学 一种碳限域纳米NiCl2催化剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775615A (zh) * 2010-01-20 2010-07-14 南京大学 BiVO4纳米光电极及其在分解水制氢方面的应用
CN105732728A (zh) * 2016-01-26 2016-07-06 国家纳米科学中心 金属有机骨架配合物纳米片、制备方法及其用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9856567B2 (en) * 2014-06-16 2018-01-02 Wisconsin Alumni Research Foundation Synthesis of high-surface-area nanoporous BiVO4 electrodes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775615A (zh) * 2010-01-20 2010-07-14 南京大学 BiVO4纳米光电极及其在分解水制氢方面的应用
CN105732728A (zh) * 2016-01-26 2016-07-06 国家纳米科学中心 金属有机骨架配合物纳米片、制备方法及其用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment;Ji‐Wook Jang;《Adv. Energy Mater.》;20170825;第7卷;摘要,第2页第3段,第4页右栏第1段,第8页第4节 *
Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution;Shenlong Zhao;《NATURE ENERGY》;20161128;第1页右栏第2段,第7页Methods *
金属有机骨架/铋系半导体复合材料的制备、表征及其可见光催化性能的研究;丁洁;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20180715(第07期);第1页第3-4段,第6页第1.2节,第20-21页第2.2节,第30页图3-2, *

Also Published As

Publication number Publication date
CN109331885A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
CN109331885B (zh) 一种镍金属有机骨架担载纳米钒酸铋催化剂及其制备方法
Li et al. Direct Z-scheme charge transfer of Bi2WO6/InVO4 interface for efficient photocatalytic CO2 reduction
Xu et al. MOFs-derived C-In2O3/g-C3N4 heterojunction for enhanced photoreduction CO2
CN104959158B (zh) 一种Mo2C/CdS复合光催化剂及其制备和应用
Duan et al. Efficient photocatalytic hydrogen production from formic acid on inexpensive and stable phosphide/Zn3In2S6 composite photocatalysts under mild conditions
CN110252346B (zh) 一种MoS2/SnS2/r-GO复合光催化剂的制备方法与用途
CN108607593B (zh) 硫化镉纳米粒子修饰的五氧化二铌纳米棒/氮掺杂石墨烯复合光催化剂与应用
Yang et al. NiCo LDH in situ derived NiCoP 3D nanoflowers coupled with a Cu 3 P p–n heterojunction for efficient hydrogen evolution
CN112791730B (zh) 一种z型纳米钒酸铜基复合光催化剂及其制备方法和应用
CN109201115B (zh) 一种光催化产氢催化剂及其制备方法和用途
CN110961133B (zh) 非金属BCN/g-C3N4范德华异质结光催化剂及其制备方法和应用
Zheng et al. A visible-light active pn heterojunction ZnO/Co3O4 composites supported on Ni foam as photoanode for enhanced photoelectrocatalytic removal of methylene blue
CN111203256A (zh) 一种SnS2/Au/g-C3N4复合光催化剂的制备方法及其应用
CN116139867B (zh) 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用
CN111203219B (zh) 一种用于二氧化碳制甲酸的铜基催化剂、制备方法及应用
CN111054414B (zh) 一种RhPx/g-C3N4复合光催化剂及其制备方法和应用
CN114768846A (zh) 一种可见光高效降解依诺沙星催化材料制备方法及应用
Yin et al. Enhanced charge transfer and photocatalytic carbon dioxide reduction of copper sulphide@ cerium dioxide pn heterojunction hollow cubes
Cheng et al. Photo-induced CO2 cycloaddition and tetracycline degradation over novel FeOx modified defective graphitic carbon nitride composite
Wang et al. Nanoarchitectonics of hierarchical FeCdS-CdS nanorods and Ni-Salens for high-efficiency photocatalytic hydrogen production
CN114622227B (zh) 一种纳米片状镍基电催化剂、制备方法和应用
CN113457744B (zh) 一种银/酞菁铜/钼酸铋柔性光催化材料及其制备方法与应用
Ning et al. Graphdiyne based CoWO4/NC heterojunction boosting photocatalytic hydrogen production
CN115608388A (zh) 一种壳核型Cs3PMo12O40/MnIn2S4复合光催化剂及其制备方法和应用
CN112264013B (zh) 一种纤维素基钴氧复合磷酸银光催化异质结的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant