CN109327029B - 考虑电动汽车充电负荷的微电网风光优化配比方法 - Google Patents

考虑电动汽车充电负荷的微电网风光优化配比方法 Download PDF

Info

Publication number
CN109327029B
CN109327029B CN201811084056.4A CN201811084056A CN109327029B CN 109327029 B CN109327029 B CN 109327029B CN 201811084056 A CN201811084056 A CN 201811084056A CN 109327029 B CN109327029 B CN 109327029B
Authority
CN
China
Prior art keywords
charging
wind
load
power
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811084056.4A
Other languages
English (en)
Other versions
CN109327029A (zh
Inventor
严浩军
马益平
王吉庆
郭高鹏
康家乐
豆书亮
汪雅静
张志刚
顾辰方
陈云辉
刘波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Electric Power Design Institute Co ltd
Shanghai Electric Power Design Institute Co Ltd
Original Assignee
Ningbo Electric Power Design Institute Co ltd
Shanghai Electric Power Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Electric Power Design Institute Co ltd, Shanghai Electric Power Design Institute Co Ltd filed Critical Ningbo Electric Power Design Institute Co ltd
Priority to CN201811084056.4A priority Critical patent/CN109327029B/zh
Publication of CN109327029A publication Critical patent/CN109327029A/zh
Application granted granted Critical
Publication of CN109327029B publication Critical patent/CN109327029B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/383
    • H02J3/386
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了考虑电动汽车充电负荷的微电网风光优化配比方法;步骤如下:首先,基于各类车型的特点及驾驶者的行为特点,利用蒙特卡洛拟合各类车型的充电曲线;其次,以充电功率峰谷差最小化为目的,设定电动汽车充换电优化策略;再次,以拟采用换电方式的车辆比例为变量,利用粒子群算法优化得到该值;然后,将充换电负荷叠加原有负荷,形成新的负荷曲线;之后,加入微电网风光电源出力特性,以总负荷峰谷差最小化为目的,设定微电网风光优化配比的策略;最后,以风光装机容量比例为优化变量,利用粒子群算法优化得到结果。本发明通过电动汽车有序充换电优化得到换电比例,再根据负荷曲线优化得到微电网风光配比,最大程度降低峰谷差。

Description

考虑电动汽车充电负荷的微电网风光优化配比方法
技术领域
本发明涉及风光微电网技术领域,特别涉及考虑电动汽车充电负荷的微电网风光优化配比方法。
背景技术
在现有技术中,微电网作为公用电网的有益补充,可以在电网末端起到提高用户供电可靠性,加强电网供电能力的作用。
但微电网位于负荷末端,其规划设计必须紧密联系负荷情况确定。目前电网末端的负荷逐渐趋向于多元化,电动汽车充放电负荷成为其中重要因素。如何在多元负荷情况下进行微电网风光优化配置,成为重要课题。
因此,急需一种能够考虑电动汽车充电负荷的微电网风光优化配比方法,以克服现有技术的不足。
发明内容
有鉴于现有技术的上述缺陷,本发明提供考虑电动汽车充电负荷的微电网风光优化配比方法,实现的目的之一是通过电动汽车有序充换电优化得到换电比例,再根据负荷曲线优化得到微电网风光配比,最大程度降低峰谷差。克服现目前微电网优化配比技术中,既没有特别从降低峰谷差角度考虑配置并设定目标函数,又没有通过两层优化来降低峰谷差的缺陷。
为实现上述目的,本发明公开了考虑电动汽车充电负荷的微电网风光优化配比方法;步骤如下:
a.基于各类车型的特点及驾驶者的行为特点,利用蒙特卡洛拟合各类所述车型的充电曲线;
b.以充电功率峰谷差最小化为目的,设定电动汽车充换电优化策略,公式如下:
Figure GDA0003274851540000021
式中,PEV表示电动汽车充换电优化策略的目标函数;
i代表第“i”辆车;
Figure GDA0003274851540000022
表示第i辆车,从1点到24点的充电总负荷;
Figure GDA0003274851540000023
表示第i辆车,从1点到N点的充电总负荷;
n代表第n点;
N代表自然数;
PEV-n,i代表第“i”辆车在第n点的充电负荷;
x表示待优化的选择直接充电的电动汽车比例;
(1-x)表示选择换电的电动汽车比例;
E表示每一车辆在每一天正常使用需要的电池电量;
Ecar表示汽车电池总量;
Pbat.表示汽车电池最大充电功率;
Figure GDA0003274851540000024
表示电动汽车停止充电时,电池的电量;
PEV-i表示电动汽车充电功率;
c.以拟采用换电方式的车辆比例为变量,利用粒子群算法优化得到采用换电池方法满足汽车电耗的车辆占总车辆的比例;
d.将充换电负荷叠加原有负荷,形成新的负荷曲线;
e.加入微电网风光电源出力特性,以总负荷峰谷差最小化为目的,设定微电网风光优化配比的策略,公式如下:
Figure GDA0003274851540000031
式中,F表示微电网风光优化配比的策略的目标函数;
Pwind表示风电出力;
Psolar表示光伏出力;
Pload表示叠加风光出力、电动汽车充放电负荷及基本负荷后的总负荷;
P表示不计风光出力、电动汽车充放电负荷的基本负荷;
y为待优化的风光比例;
C为受地形限制,风光最高装机容量之和;
f.以风光装机容量比例为优化变量,利用粒子群算法优化得到指总量一定下,风光装机容量之间的比例。
本发明的有益效果:
本发明通过电动汽车有序充换电优化得到换电比例,再根据负荷曲线优化得到微电网风光配比,最大程度降低峰谷差。克服现目前微电网优化配比技术中,既没有特别从降低峰谷差角度考虑配置并设定目标函数,又没有通过两层优化来降低峰谷差的缺陷。以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1示出本发明一实施例的流程图。
图2示出本发明以公交车的典型日为实施例的电动汽车充换电曲线图。
图3示出本发明以典型日为实施例的电动汽车充换电总体负荷曲线图。
具体实施方式
实施例
如图1至图3所示,考虑电动汽车充电负荷的微电网风光优化配比方法;步骤如下:
a.基于各类车型的特点及驾驶者的行为特点,利用蒙特卡洛拟合各类车型的充电曲线;
b.以充电功率峰谷差最小化为目的,设定电动汽车充换电优化策略,公式如下:
Figure GDA0003274851540000041
式中,PEV表示电动汽车充换电优化策略的目标函数;
i代表第“i”辆车;
Figure GDA0003274851540000042
表示第i辆车,从1点到24点的充电总负荷;
Figure GDA0003274851540000043
表示第i辆车,从1点到N点的充电总负荷;
n代表第n点;
N代表自然数;
PEV-n,i代表第“i”辆车在第n点的充电负荷;
x表示待优化的选择直接充电的电动汽车比例;
(1-x)表示选择换电的电动汽车比例;
E表示每一车辆在每一天正常使用需要的电池电量;
Ecar表示汽车电池总量;
Pbat.表示汽车电池最大充电功率;
Figure GDA0003274851540000044
表示电动汽车停止充电时,电池的电量;
PEV-i表示电动汽车充电功率;
c.以拟采用换电方式的车辆比例为变量,利用粒子群算法优化得到采用换电池方法满足汽车电耗的车辆占总车辆的比例;
d.将充换电负荷叠加原有负荷,形成新的负荷曲线;
e.加入微电网风光电源出力特性,以总负荷峰谷差最小化为目的,设定微电网风光优化配比的策略,公式如下:
Figure GDA0003274851540000051
式中,F表示微电网风光优化配比的策略的目标函数;
Pwind表示风电出力;
Psolar表示光伏出力;
Pload表示叠加风光出力、电动汽车充放电负荷及基本负荷后的总负荷;
P表示不计风光出力、电动汽车充放电负荷的基本负荷;
y为待优化的风光比例;
C为受地形限制,风光最高装机容量之和;
f.以风光装机容量比例为优化变量,利用粒子群算法优化得到总量一定下,风光装机容量之间的比例。
本发明的原理在于,微电网为了实现利益最大化,需要尽量降低峰谷差,提高设备利用效率是非常必要的。
在微电网供电范围内,有可能会存在一定量的电动汽车,电动汽车的有序充换电策略可以通过部分车辆充电,部分车辆换电(换下的电池可以在谷电时充电)的方式降低峰谷差,这就是第一层优化的意义。
在此基础上,受限于地形因素,微电网风光总容量一定的情况下,通过合理的配比,使风光出力进一步抵消负荷曲线,可以进一步使峰谷差下降,这就是第二层优化。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (1)

1.考虑电动汽车充电负荷的微电网风光优化配比方法;步骤如下:
a.基于各类车型的特点及驾驶者的行为特点,利用蒙特卡洛拟合各类车型的充电曲线;
b.以充电功率峰谷差最小化为目的,设定电动汽车充换电优化策略,公式如下:
Figure FDA0003274851530000011
式中,PEV表示电动汽车充换电优化策略的目标函数;
i代表第“i”辆车;
Figure FDA0003274851530000012
表示第i辆车,从1点到24点的充电总负荷;
Figure FDA0003274851530000013
表示第i辆车,从1点到N点的充电总负荷;
n代表第n点;
N代表自然数;
PEV-n,i代表第“i”辆车在第n点的充电负荷;
x表示待优化的选择直接充电的电动汽车比例;
(1-x)表示选择换电的电动汽车比例;
E表示每一车辆在每一天正常使用需要的电池电量;
Ecar表示汽车电池总量;
Pbat.表示汽车电池最大充电功率;
Figure FDA0003274851530000014
表示电动汽车停止充电时,电池的电量;
PEV-i表示电动汽车充电功率;
c.以拟采用换电方式的车辆比例为变量,利用粒子群算法优化得到采用换电池方法满足汽车电耗的车辆占总车辆的比例;
d.将充换电负荷叠加原有负荷,形成新的负荷曲线;
e.加入微电网风光电源出力特性,以总负荷峰谷差最小化为目的,设定微电网风光优化配比的策略,公式如下:
Figure FDA0003274851530000021
式中,F表示微电网风光优化配比的策略的目标函数;
Pwind表示风电出力;
Psolar表示光伏出力;
Pload表示叠加风光出力、电动汽车充放电负荷及基本负荷后的总负荷;
P表示不计风光出力、电动汽车充放电负荷的基本负荷;
y为待优化的风光比例;
C为受地形限制,风光最高装机容量之和;
f.以风光装机容量比例为优化变量,利用粒子群算法优化得到总量一定下,风光装机容量之间的比例。
CN201811084056.4A 2018-09-18 2018-09-18 考虑电动汽车充电负荷的微电网风光优化配比方法 Active CN109327029B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811084056.4A CN109327029B (zh) 2018-09-18 2018-09-18 考虑电动汽车充电负荷的微电网风光优化配比方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811084056.4A CN109327029B (zh) 2018-09-18 2018-09-18 考虑电动汽车充电负荷的微电网风光优化配比方法

Publications (2)

Publication Number Publication Date
CN109327029A CN109327029A (zh) 2019-02-12
CN109327029B true CN109327029B (zh) 2021-11-23

Family

ID=65266048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811084056.4A Active CN109327029B (zh) 2018-09-18 2018-09-18 考虑电动汽车充电负荷的微电网风光优化配比方法

Country Status (1)

Country Link
CN (1) CN109327029B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077780A1 (ja) * 2009-12-24 2011-06-30 株式会社 日立製作所 電気自動車を用いた電力系統制御システム、電力系統制御装置、情報配信装置及び情報配信方法
CN102436607A (zh) * 2011-11-10 2012-05-02 山东大学 电动汽车换电站充电功率的多时间尺度决策方法
CN103944175A (zh) * 2014-03-28 2014-07-23 上海电力设计院有限公司 风光储联合发电系统出力特性优化方法
CN104600729A (zh) * 2014-08-19 2015-05-06 浙江工业大学 基于v2g技术的电动汽车参与经济调度优化控制方法
CN107133415A (zh) * 2017-05-22 2017-09-05 河海大学 一种考虑用户满意和配网安全的电动汽车充放电优化方法
CN107769235A (zh) * 2017-09-29 2018-03-06 国网上海市电力公司 一种基于混合储能与电动汽车的微网能量管理方法
CN108306336A (zh) * 2018-04-10 2018-07-20 武汉市华和智联科技有限公司 一种面向电动汽车和风光发电的配电网调控装置及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070170886A1 (en) * 2006-10-03 2007-07-26 Plishner Paul J Vehicle equipped for providing solar electric power for off-vehicle use and systems in support thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077780A1 (ja) * 2009-12-24 2011-06-30 株式会社 日立製作所 電気自動車を用いた電力系統制御システム、電力系統制御装置、情報配信装置及び情報配信方法
CN102436607A (zh) * 2011-11-10 2012-05-02 山东大学 电动汽车换电站充电功率的多时间尺度决策方法
CN103944175A (zh) * 2014-03-28 2014-07-23 上海电力设计院有限公司 风光储联合发电系统出力特性优化方法
CN104600729A (zh) * 2014-08-19 2015-05-06 浙江工业大学 基于v2g技术的电动汽车参与经济调度优化控制方法
CN107133415A (zh) * 2017-05-22 2017-09-05 河海大学 一种考虑用户满意和配网安全的电动汽车充放电优化方法
CN107769235A (zh) * 2017-09-29 2018-03-06 国网上海市电力公司 一种基于混合储能与电动汽车的微网能量管理方法
CN108306336A (zh) * 2018-04-10 2018-07-20 武汉市华和智联科技有限公司 一种面向电动汽车和风光发电的配电网调控装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
An optimization strategy of controlled electric vehicle charging considering demand side response and regional wind and photovoltaic;Hong Liu et al;《Journal of Modern Power Systems and Clean Energy》;20150630;第3卷(第2期);232-239 *
计及运营特性的电动汽车换电站时空双层调度;张颖等;《电网技术》;20160930;第40卷(第9期);2616-2622 *

Also Published As

Publication number Publication date
CN109327029A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
Diouf et al. Potential of lithium-ion batteries in renewable energy
Chukwu et al. V2G parking lot with PV rooftop for capacity enhancement of a distribution system
CN105027379B (zh) 具有多个电池的二次电池系统及充放电功率等的分配方法
Pirouzi et al. Evaluating the security of electrical energy distribution networks in the presence of electric vehicles
CN104283292A (zh) 用于居民小区内的家用电动汽车自动充电控制系统及方法
CN101640427A (zh) 电动车光伏离网充电系统
Shemami et al. Load shedding mitigation through plug-in electric Vehicle-to-Home (V2H) system
Liu et al. Multi-objective optimization of energy management strategy on hybrid energy storage system based on radau pseudospectral method
CN104123598A (zh) 一种基于多目标优化的电动私家车充电模式选择方法
Becherif et al. Design and sizing of a stand-alone recharging point for battery electrical vehicles using photovoltaic energy
Yao et al. Optimization of PHEV charging schedule for load peak shaving
CN109978285B (zh) 一种电动汽车大规模接入的区域微电网优化调度方法
Zhang et al. HESS and its application in series hybrid electric vehicles
CN113270884A (zh) 一种基于v2g微网系统的电力能源管理系统和方法
CN113054671A (zh) 一种基于计及储能无功调节模型的配电网日前-实时优化控制方法
Bampoulas et al. Provision of frequency regulation by a residential microgrid integrating PVs, energy storage and electric vehicle
CN109327029B (zh) 考虑电动汽车充电负荷的微电网风光优化配比方法
Bonaiuto et al. A Matlab Simulink model for the study of smart grid—Grid-integrated vehicles interactions
Pathipati et al. Standalone DC level-1 EV Charging using pv/Grid infrastructure, MPPT algorithm and CHAdeMO protocol
Usmani et al. Power management for hybrid energy storage system in electric vehicles
Duan et al. An electric vehicle battery modular balancing system based on solar energy harvesting
Tehrani et al. Performance analysis of hybrid energy storage in different driving cycles
Guneser et al. An energy management approach for solar charge stations in smart cities
Wieczorek et al. Hybrid battery energy storage for light electric vehicle—From lab to real life operation tests
Bae et al. A study on optimal operation strategy for mild hybrid electric vehicle based on hybrid energy storage system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant