CN109323714B - 数据有效性检测的方法及装置 - Google Patents

数据有效性检测的方法及装置 Download PDF

Info

Publication number
CN109323714B
CN109323714B CN201710648651.5A CN201710648651A CN109323714B CN 109323714 B CN109323714 B CN 109323714B CN 201710648651 A CN201710648651 A CN 201710648651A CN 109323714 B CN109323714 B CN 109323714B
Authority
CN
China
Prior art keywords
measurement data
data
previous
measurement
judging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710648651.5A
Other languages
English (en)
Other versions
CN109323714A (zh
Inventor
梁宇恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Xaircraft Technology Co Ltd
Original Assignee
Guangzhou Xaircraft Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Xaircraft Technology Co Ltd filed Critical Guangzhou Xaircraft Technology Co Ltd
Priority to CN202011335156.7A priority Critical patent/CN112504320B/zh
Priority to CN201710648651.5A priority patent/CN109323714B/zh
Publication of CN109323714A publication Critical patent/CN109323714A/zh
Application granted granted Critical
Publication of CN109323714B publication Critical patent/CN109323714B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本发明实施例提供了一种数据有效性检测的方法及装置,其中所述方法包括:当达到测量时机时,获取所述无人机中的指定传感器测量的测量数据;获取所述无人机的飞行参数;基于所述飞行参数,判断所述测量数据是否有效。本发明实施例可以避免无效的数据对测量精度的影响,提高测量的精确度,从而提高无人机的作业质量。

Description

数据有效性检测的方法及装置
技术领域
本发明涉及无人飞行器技术领域,特别是涉及一种数据有效性检测的方法、一种数据有效性检测的装置、一种飞行器以及一种计算机可读存储介质。
背景技术
无人驾驶飞机简称无人机(Unmanned Aerial Vehicle,简称UAV),是一种不载人飞机。无人机的用途广泛,经常被应用于植保、城市管理、地质、气象、电力、抢险救灾、视频拍摄等行业。
无人机要实现低空尤其是近地面的自主飞行,除了要知道无人机当前的海拔高度外,还需知道无人机相对于地面的高度(即对地高度)。其中,无人机的海拔高度信息一般通过气压计、GPS等测量得到,而对地高度可以使用声纳测距、激光测距、微波雷达测距以及机器视觉测量方法等方式进行测距。然而,由于激光测距方案容易受到光线的影响且价格成本较高,机器视觉测量方法较为复杂且也容易受到光线的影响,雷达测距和声纳测距不受光线影响,可全天候使用,且价格成本相对低廉,系统复杂性低。因此,雷达测距和声纳测距是比较常用的测距方式。
现有的雷达传感器以及声纳传感器多安装在移动的机器人上,或者安装在固定的空间内等,在此类环境下雷达传感器或声纳测传感器测得的数据本身就较为准确,不需要进行复杂的滤波操作。然而,在无人机的应用环境中,由于存在无人机螺旋桨高速转动引起的机身高频振动、螺旋桨转动引起的气流扰动、无人机在飞行过程中的姿态快速反复倾斜变化、螺旋桨在高速转动过程中引起的电源不稳定等较为复杂的因素,导致无人机机载的声纳测距或雷达测距引入较为严重噪声,甚至会使得测距失败,影响测量的精确度,从而影响无人机作业的质量。
发明内容
鉴于上述问题,提出了本发明实施例以便提供一种克服上述问题或者至少部分地解决上述问题的一种数据有效性检测的方法和相应的一种数据有效性检测的装置、一种飞行器以及一种计算机可读存储介质。
为了解决上述问题,本发明实施例公开了一种数据有效性检测的方法,应用于无人机中,所述方法包括:
当达到测量时机时,获取所述无人机中的指定传感器测量的测量数据;
获取所述无人机的飞行参数;
基于所述飞行参数,判断所述测量数据是否有效。
优选地,所述基于所述飞行参数,判断所述测量数据是否有效的步骤包括:
判断所述测量数据是否满足预设的基础条件;
若否,则判定所述测量数据无效;
若是,则基于所述飞行参数,获取所述测量数据的跳变量,并基于所述跳变量,判断所述测量数据是否有效。
优选地,所述判断所述测量数据是否满足预设的基础条件的步骤包括:
判断所述测量数据是否大于所述指定传感器的预设设计量程;
若是,则判定所述测量数据不满足所述基础条件;
若否,则获取所述指定传感器前N个时刻测量的M个在先测量数据,若所述测量数据与所述M个在先测量数据均相同,则判定所述测量数据不满足所述基础条件;若所述测量数据以及所述M个在先测量数据均不相同,则判定所述测量数据满足所述基础条件,其中,N大于1,M大于1。
优选地,所述飞行参数包括无人机所在的海拔高度;所述基于所述飞行参数,获取所述测量数据的跳变量的步骤包括:
确定所述无人机当前时刻的海拔高度与上一时刻的海拔高度之间的海拔变化量;
确定当前时刻的测量数据与上一时刻的在先测量数据之间的测量变化值;
将所述测量变化值补偿所述海拔变化量,得到所述测量数据的跳变量。
优选地,所述指定传感器具有有效计数器,所述基于所述跳变量,判断所述测量数据是否有效的步骤包括:
若所述跳变量小于或等于第一预设阈值,则在判定当前时刻的测量数据与上一时刻的在先测量数据不相同时,将所述有效计数器自增预设步长;
当所述有效计数器中的计数大于预设计数阈值时,则判定所述测量数据有效。
优选地,所述指定传感器至少包括第一传感器以及第二传感器,则所述测量数据包括所述第一传感器测量的第一测量数据以及所述第二传感器测量的第二测量数据;所述跳变量包括第一测量数据对应的第一跳变量以及所述第二测量数据对应的第二跳变量;
所述基于所述跳变量,判断所述测量数据是否有效的步骤包括:
针对第一测量数据,在所述第一跳变量大于第一预设阈值时,若所述第二测量数据不满足所述基础条件,则判定所述第一测量数据无效;
若所述第二测量数据满足所述基础条件,则基于所述第一测量数据以及所述第二测量数据,判定所述第一测量数据是否有效。
优选地,所述基于所述第一测量数据以及所述第二测量数据,判定所述第一测量数据是否有效的步骤包括:
计算所述第一测量数据与所述第二测量数据的第一差值,以及所述第一差值对应的变化趋势;
若所述第一差值小于第二预设阈值且所述变化趋势小于第三预设阈值,则判定所述第一测量数据有效;
若所述第一差值大于或等于第二预设阈值,和/或,所述变化趋势大于或等于第三预设阈值,则判定所述第一测量数据无效。
优选地,所述方法还包括:
在所述第一测量数据因所述第一跳变量大于第一预设阈值的情况被判定为有效时,若上一时刻的在先第二测量数据因第二跳变量大于第一预设阈值的情况被判定无效,则将所述在先第二测量数据改判为有效。
优选地,所述方法还包括:
若上一时刻的在先测量数据有效,但当前时刻的测量数据无效,则将所述有效计数器清零。
本发明实施例还公开了一种数据有效性检测的装置,应用于无人机中,所述装置包括:
测量数据获取模块,用于当达到测量时机时,获取所述无人机中的指定传感器测量的测量数据;
飞行参数获取模块,用于获取所述无人机的飞行参数;
有效判断模块,用于基于所述飞行参数,判断所述测量数据是否有效。
优选地,所述有效判断模块包括:
基础条件判断子模块,用于判断所述测量数据是否满足预设的基础条件;若否,则调用无效判定子模块;若是,则调用跳变量判断子模块;
无效判定子模块,用于判定所述测量数据无效;
跳变量判断子模块,用于基于所述飞行参数,获取所述测量数据的跳变量,并基于所述跳变量,判断所述测量数据是否有效。
优选地,所述基础条件判断子模块包括:
设计量程判断单元,用于判断所述测量数据是否大于所述指定传感器的预设设计量程;若是,则判定所述测量数据不满足所述基础条件;若否,则调用连续数据判断单元;
连续数据判断单元,用于获取所述指定传感器前N个时刻测量的M个在先测量数据,若所述测量数据与所述M个在先测量数据均相同,则判定所述测量数据不满足所述基础条件;若所述测量数据与所述M个在先测量数据均不相同,则判定所述测量数据满足所述基础条件,其中,N大于1,M大于1。
优选地,所述飞行参数包括无人机所在的海拔高度;所述跳变量判断子模块包括:
海拔变化量确定单元,用于确定所述无人机当前时刻的海拔高度与上一时刻的海拔高度之间的海拔变化量;
测量变化值确定单元,用于确定当前时刻的测量数据与上一时刻的在先测量数据之间的测量变化值;
跳变量确定单元,用于将所述测量变化值补偿所述海拔变化量,得到所述测量数据的跳变量。
优选地,所述指定传感器具有有效计数器,所述跳变量判断子模块包括:
计数器自增单元,用于若所述跳变量小于或等于第一预设阈值,则在判定当前时刻的测量数据与上一时刻的在先测量数据不相同时,将所述有效计数器自增预设步长;
有效判定单元,用于当所述有效计数器中的计数大于预设计数阈值时,则判定所述测量数据有效。
优选地,所述指定传感器至少包括第一传感器以及第二传感器,则所述测量数据包括所述第一传感器测量的第一测量数据以及所述第二传感器测量的第二测量数据;所述跳变量包括第一测量数据对应的第一跳变量以及所述第二测量数据对应的第二跳变量;
所述跳变量判断子模块包括:
无效判定单元,用于针对第一测量数据,在所述第一跳变量大于第一预设阈值时,若所述第二测量数据不满足所述基础条件,则判定所述第一测量数据无效;
有效性判断单元,用于若所述第二测量数据满足所述基础条件,则基于所述第一测量数据以及所述第二测量数据,判定所述第一测量数据是否有效。
优选地,所述有效性判断单元包括:
差值计算子单元,用于计算所述第一测量数据与所述第二测量数据的第一差值,以及所述第一差值对应的变化趋势;
有效判定子单元,用于若所述第一差值小于第二预设阈值且所述变化趋势小于第三预设阈值,则判定所述第一测量数据有效;
无效判定子单元,用于若所述第一差值大于或等于第二预设阈值,和/或,所述变化趋势大于或等于第三预设阈值,则判定所述第一测量数据无效。
优选地,所述装置还包括:
改判模块,用于在所述第一测量数据因所述第一跳变量大于第一预设阈值的情况被判定为有效时,若上一时刻的在先第二测量数据因第二跳变量大于第一预设阈值的情况被判定无效,则将所述在先第二测量数据改判为有效。
优选地,所述装置还包括:
计数器清零模块,用于若上一时刻的在先测量数据有效,但当前时刻的测量数据无效,则将所述有效计数器清零。
本发明实施例还公开了一种飞行器,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述方法的步骤。
本发明实施例还公开了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述方法的步骤。
本发明实施例包括以下优点:
在本发明实施例中,当达到测量时机时,无人机的飞行控制器可以获取无人机中的指定传感器测量的测量数据,结合获取的无人机实时的飞行参数,可以对该测量数据进行有效性判断,以避免无效的数据对测量精度的影响,提高测量的精确度,从而提高无人机的作业质量。
附图说明
图1是本发明的本发明的一种数据有效性检测的方法实施例一的步骤流程图;
图2是本发明的本发明的一种数据有效性检测的方法实施例二的步骤流程图;
图3是本发明的一种数据滤波的步骤流程图;
图4是本发明的数据融合步骤流程图;
图5是本发明的一种数据有效性检测的装置实施例的结构框图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
在无人机植保作业过程中,可以通过飞行控制系统(简称飞控)控制无人机完成起飞、空中飞行、执行作业任务和返航等整个飞行过程,飞控对于无人机相当于驾驶员对于有人机的作用,是无人机最核心的技术之一。
该飞行控制系统可以包括地面站,地面站可以通过通信模块与无人机进行通信,在实现中,该地面站可以为手持地面站,其中可以内置高精度GPS,支持不规则地块边界的快速测绘,使用该地面站时,无需连接电脑,即可直接调节无人机飞行参数。该地面站具有智能航线规划功能,支持喷洒点开关预设,可有效避免作业过程中出现重喷或漏喷现象。在喷洒过程中,用户还可以通过地面站实时监测飞行及喷洒状态,让喷洒更精准、高效。
无人机中可以安装有用于进行距离测量的传感器,使得无人机能够实时获取自身所在的高度。在本发明实施例可以通过无人机中的指定传感器来获得测量数据,并对测量数据进行有效性判断,以避免无效的数据对测量精度的影响,提高测量的精确度,从而提高无人机的作业质量。
参照图1,示出了本发明的一种数据有效性检测的方法实施例一的步骤流程图,该方法可以应用于无人机中,本发明实施例可以包括如下步骤:
步骤101,当达到测量时机时,获取所述无人机中的指定传感器测量的测量数据;
步骤102,获取所述无人机的飞行参数;
步骤103,基于所述飞行参数,判断所述测量数据是否有效。
在本发明实施例中,当达到测量时机时,无人机的飞行控制器可以获取无人机中的指定传感器测量的测量数据,结合获取的无人机实时的飞行参数,可以对该测量数据进行有效性判断,以避免无效的数据对测量精度的影响,提高测量的精确度,从而提高无人机的作业质量。
参照图2,示出了本发明的一种数据有效性检测的方法实施例二的步骤流程图,该方法可以应用于无人机中,本发明实施例可以包括如下步骤:
步骤201,当达到测量时机时,获取所述无人机中的指定传感器测量的测量数据;
在本发明实施例中,该指定传感器可以包括声纳传感器、雷达传感器等的至少一种。
声纳传感器发出一个声波信号,当遇到物体后会反射回来,依据反射时间及波型可以计算无人机距离物体的距离及位置。
雷达传感器能通过发射与接收微波来感应物体的存在、运动速度、静止距离、物体所处角度等。
该测量数据可以为传感器测量得到的无人机的对地距离值。
在实际中,若指定传感器包括第一传感器以及第二传感器,则对应的测量数据可以包括第一传感器测量的第一测量数据,以及,第二传感器测量的第二测量数据。
例如,当第一传感器为声纳传感器时,第一测量数据可以为声纳传感器测量得到的无人机的对地距离值hs。当第二传感器为雷达传感器时,第二测量数据可以为雷达传感器测量得到的无人机的对地距离值hr,下述可以用hs表示第一测量数据,hr表示第二测量数据。
在具体实现中,可以通过飞行控制器预先设定测量间隔以及测量生命周期,例如,设定每秒测量20次,则可以根据时间间隔确定测量时机,如测量时机可以分别为1/20s、1/10s、3/20s、…、1s。
步骤202,获取所述无人机的飞行参数;
在具体实现中,飞行控制器还可以获取无人机实时的飞行参数,作为一种示例,该飞行参数可以包括但不限于:无人机实时的海拔高度、水平飞行速度、飞行航向角等。
步骤203,判断所述测量数据是否满足预设的基础条件;若否,则执行步骤204;若是,则执行步骤205;
步骤204,判定所述测量数据无效;
本发明实施例可以预先设定基础条件,作为有效性判断的第一道判断程序。
在本发明实施例的一种优选实施例中,步骤203进一步可以包括如下子步骤:
子步骤S11,判断所述测量数据是否大于所述指定传感器的预设设计量程;若是,则执行子步骤S12,若否,则执行子步骤S13;
子步骤S12,判定所述测量数据不满足所述基础条件;
例如,指定传感器的预设设计量程为4米,测量数据的回波是5米,则该测量数据超过设计量程,此时,可以判定该测量数据不满足所述基础条件,进而可以判定该测量数据无效。
子步骤S13,获取所述指定传感器前N个时刻测量的M个在先测量数据,若所述测量数据与所述M个在先测量数据均相同,则判定所述测量数据不满足所述基础条件;若所述测量数据以及所述M个在先测量数据均不相同,则判定所述测量数据满足所述基础条件,其中,N大于1,M大于1。
如果测量数据没有超出指定传感器的设计量程,则继续执行子步骤S13。
在具体实现中,由于无人机在飞行过程中的对地距离是会发生变化的,或者是有波动的,如果在一段时间内测量的M个数据都相等,则表示该传感器测量的测量数据不满足基础条件,进而可以判定该测量数据无效。
在实际中,N、M可以根据传感器的测量精度、测量频率以及无人机载体的移动速度选取的一个适当的值,在实际中,N与M可以取值相同,例如,可以将N、M取值为5。
若当前时刻测量的测量数据以及前M个在先测量数据均不相同,则可以判定当前时刻的测量数据满足基础条件(即,该测量数据既不超过预设设计量程,又与前M个在先测量数据均不相同),此时,可以继续执行步骤205。
步骤205,基于所述飞行参数,获取所述测量数据的跳变量,并基于所述跳变量,判断所述测量数据是否有效。
在本发明实施例的一种优选实施例中,上述基于所述飞行参数,获取所述测量数据的跳变量的步骤可以包括如下子步骤:
子步骤S21,确定所述无人机当前时刻的海拔高度与上一时刻的海拔高度之间的海拔变化量;
子步骤S22,确定当前时刻的测量数据与上一时刻的在先测量数据之间的测量变化值;
子步骤S23,将所述测量变化值补偿所述海拔变化量,得到所述测量数据的跳变量。
在本发明实施例中,该跳变量可以包括第一测量数据对应的第一跳变量,以及,第二测量数据对应的第二跳变量。
例如,针对hr,其对应的测量变化值dr=|hr-hr_o|,其中,hr为当前时刻的测量数据,hr_o为上一时刻的在先测量数据。
hr对应的第二跳变量dr1=|hr-hr_o+hg_o-hg|,其中,hg_o-hg为根据无人机当前时刻的海拔高度与上一时刻的海拔高度计算的海拔变化量。
针对hs,其对应的测量变化值ds=|hs-hs_o|,其中,hs为当前时刻的测量数据,hs_o为上一时刻的在先测量数据。
hs对应的第一跳变量ds1=|hs-hs_o+hg_o-hg|。
需要说明的是,当海拔精度较差或者没有海拔数据时,可以用dr、ds代替dr1、ds1,即不进行载体海拔变化量补偿。
在具体实现中,N1和T1可以根据传感器的测量频率和无人机的移动速度选取一个适当的值,例如,N1可以取值为10,T1可以取值为0.3m。
在本发明实施例的一种优选实施例中,该指定传感器具有对应的有效计数器,步骤205进一步可以包括如下子步骤:
子步骤S31,若所述跳变量小于或等于第一预设阈值,则在判定当前时刻的测量数据与上一时刻的在先测量数据不相同时,将所述有效计数器自增预设步长;
子步骤S32,当所述有效计数器中的计数大于预设计数阈值时,则判定所述测量数据有效。
例如,若ds1<=T2,当hs!=hs_o时,对应的有效计数器Tc_s++,当Tc_s>预设计数阈值时,判定该hs有效,此时,可以将当前时刻的hs的状态设置为有效状态,即True_s=1。
在具体实现中,第一预设阈值T2可以根据传感器的具体特性进行设置,例如,设定第一预设阈值T2为1m。
第四预设阈值可以根据传感器的测量频率和实际传感器的特性取值,例如,可以将第四预设阈值取值为3。
在本发明实施例的一种优选实施例中,当指定传感器至少包括第一传感器以及第二传感器时,步骤205进一步可以包括如下子步骤:
子步骤S41,针对第一测量数据,在所述第一跳变量大于第一预设阈值时,若所述第二测量数据不满足所述基础条件,则判定所述第一测量数据无效;
例如,若当前进行有效性判断的传感器为声纳传感器,当ds1>T2时,若雷达传感器测量的数据hr因超出雷达传感器的设计量程或者连续M个数据相等的情况无效时(即hr不满足基础条件),则可以判定当前时刻的hs也无效。
子步骤S42,若所述第二测量数据满足所述基础条件,则基于所述第一测量数据以及所述第二测量数据,判定所述第一测量数据是否有效。
例如,如果hr满足基础条件时,可以根据hr以及hs,判断hs是否有效。
在本发明实施例的一种优选实施例中,子步骤S42进一步可以包括如下子步骤:
子步骤S421,计算所述第一测量数据与所述第二测量数据的第一差值,以及所述第一差值对应的变化趋势;
子步骤S422,若所述第一差值小于第二预设阈值且所述变化趋势小于第三预设阈值,则判定所述第一测量数据有效;
子步骤S423,若所述第一差值大于或等于第二预设阈值,和/或,所述变化趋势大于或等于第三预设阈值,则判定所述第一测量数据无效。
具体的,当ds1>T2时,若雷达传感器测量的数据hr并没有因超出雷达传感器的设计量程或者连续M个数据相等的情况导致无效,则可以计算当前时刻的hr与hs的第一差值,以及该第一差值对应的变化趋势。
在一种实施方式中,第一差值drs=|hr-hs|,表示两个传感器的测量距离差。
第一差值对应的变化趋势ddrs=|hr-hs|-|hr_o-hs_o|,即当前距离差减去上一时刻的距离差。
如果drs小于第二预设阈值且ddrs小于第三预设阈值,则可以判定当前时刻的第一测量数据有效;否则,如果drs大于或等于第二预设阈值和/或ddrs大于或等于第三预设阈值,则可以判定当前时刻的第一测量数据无效。
在具体实现中,第二预设阈值可以设定为T3,其可以根据传感器的具体特性进行设置,通常阈值T2>2*阈值T3,例如,设定第二预设阈值T3为0.4m。
第三阈值可以设定为数值0。
在本发明实施例的一种优选实施例中,还可以包括如下步骤:
若上一时刻的在先测量数据有效,但当前时刻的测量数据无效,则将所述有效计数器清零。
例如,若上一时刻的测量数据有效,即True_s=1,当前时刻的测量数据无效,即True_s=0,则对应的有效计数器Tc_s清零,即Tc_s=0。
在本发明实施例中,无人机中一个传感器的数据有效性判断还会影响另一传感器的数据的有效性判断结果,则本发明实施例还可以包括如下步骤:
在所述第一测量数据因所述第一跳变量大于第一预设阈值的情况被判定为有效时,若上一时刻的在先第二测量数据因第二跳变量大于第一预设阈值的情况被判定无效,则将所述在先第二测量数据改判为有效。
例如,如果True_s=1,若上一时刻的hr_o状态无效,且是因为上一时刻或者之前对应的第二跳变量大于第一预设阈值而判定为无效状态,即由于dr1>T2时drs大于或等于第二预设阈值和/或ddrs大于或等于第三预设阈值,导致无效的,将hr_o的结果改判为有效。
在本发明实施例中,可以基于无人机的飞行参数,来对指定传感器测量的测量数据进行有效性判断,从而可以避免无效的数据对测量精度的影响,提高测量的精确度,从而提高无人机的作业质量。
在本发明实施例的一种优选实施例中,对测量数据进行有效性判断后,还可以基于有效的测量数据,确定初始对地距离。
在具体实现中,针对最新的N1个时刻获得的测量数据,可以确定其中的有效的测量数据的数量,以及,有效的测量数据的跳变量。如果这N1个时刻的测量数据没有同时发生无效,且有效的测量数据的数量不少于N1个,以及有效的测量数据的跳变量均小于阈值T1,则可以剔除无效的测量数据,对剩余的有效的测量数据进行加和取均值得到初始对地距离。
在本发明实施例中,还可以包括数据滤波流程
参考图3示出了一种数据滤波的步骤流程图,可以包括如下步骤:
步骤301,基于所述飞行参数,确定所述测量数据对应的滤波系数;
在本发明实施例中,可以基于飞行参数来确定滤波系数。
在本发明实施例的一种优选实施例中,步骤301进一步可以包括如下子步骤:
步骤301-1,基于所述飞行参数,确定所述测量数据对应的第一衰减参数;
在本发明实施例的一种优选实施例中,步骤301-1可以包括如下子步骤:
步骤301-1-1,获取所述无人机当前时刻的测量数据与上一时刻的目标测量数据的测量差值;
具体的,若指定传感器为一个,则测量差值为当前时刻的测量数据与上一时刻的目标测量数据的测量差值。
例如,hs对应的测量差值ds2=|hs-hsf|,hr对应的测量差值dr2=|hr-hrf|,其中,hsf、hrf分别为上一时刻的测量数据经过滤波处理后得到的目标测量数据。
在实际中,若指定传感器为两个以上,则测量差值可以为当前时刻的测量数据与在上一时刻的进行融合处理后的数据的测量差值。
例如,hs对应的测量差值ds4=|hs-hout|,hr对应的测量差值dr4=|hr-hout|,其中,hout为上一时刻的测量数据经过滤波及融合处理后得到的数据。
步骤301-1-2,在上一时刻对应的衰减参数小于所述测量数据对应的跳变量时,若所述跳变量小于或等于预设跳变量阈值,则将所述衰减参数设置为所述跳变量,作为第一衰减参数;若所述跳变量大于预设跳变量阈值,则将所述第一衰减参数设置为根据所述变化趋势调节后的跳变量;
若测量数据为hs,其对应的第一衰减参数可以表示为Epfs,如果上一时刻的Epfs小于跳变量ds1,则判断另一传感器测量的测量数据hr是否有效以及ds1是否较大(如大于预设跳变量阈值fds1),如果此时hr有效且ds1>fds1,则计算Epfs=ds1+ddrs,如果hr无效或者跳变量dr1<=fds1则计算Epfs=ds1。
在具体实现中,fds1可以根据传感器的测量频率以及测量精度等实际情况设置,例如,fds1可以设置为0.5m。
得到Epfs以后,可以对Epfs进行限位处理,在一种实施方式中,其中一种限位处理方式如下:若Epfs>阈值EP1,则Epfs=EP1;若Epfs<数值0,则Epfs=数值0。
在具体实现中,EP1可以根据传感器的测量频率以及测量精度等特性的实际情况设置,例如,EP1可以设置为1m。
在实际中,指定传感器还具有对应的跳变计数器Cpfs,在对Epfs进行限位处理以后,还可以清零该跳变计数器,即Cpfs=0。
步骤301-1-3,当上一时刻对应的衰减参数大于或等于所述跳变量时,若所述跳变量大于预设跳变量阈值,则清零所述跳变计数器,若所述跳变量小于或等于预设跳变量阈值,则将所述跳变计数器自增第一预设步长;若所述跳变计数器中的计数大于预设的延时系数阈值,则对上一时刻对应的衰减参数按照预设的衰减因子进行衰减计算,得到第一衰减参数;
具体的,如果上一时刻的Epfs大于或等于跳变量ds1,若ds1>fds1,则清零跳变计数器,即Cpfs=0,若ds1<=fds1,则将跳变计数器自增第一预设步长,即Cpfs++。
若Cpfs>预设的延时系数阈值J_R,则对上一时刻对应的衰减参数按照预设的衰减因子进行衰减计算,得到第一衰减参数。例如,Epfs=Epfs*SJR,其中,SJR为衰减因子。
在具体实现中,SJR越大衰减速度越慢,Epfs越大则相应的滤波越强,SJR可以根据实际滤波带宽设置,其设置的取值范围可以为:0<SJR<1,例如,可以设置SJR=0.8。
J_R可以根据传感器的测量频率以及测量精度等实际情况设置,例如,设置J_R取值为5。
若Cpfs<J_R,则保持Epfs不变,即Epfs=Epfs。
步骤301-1-5,若所述第一衰减参数大于所述测量差值,则将所述第一衰减参数设置为所述测量差值。
每次确定第一衰减参数以后,可以将第一衰减参数Epfs与上述测量差值ds2或ds4进行比较,如果Epfs大于ds2或ds4,说明当前的测量结果准确率很高,此时,为了加快收敛条件,可以使得Epfs=ds2或ds4。
步骤301-2,对所述第一衰减参数进行归一化变换,得到第二衰减参数;
最终确定第一衰减参数以后,可以对该第一衰减参数进行归一化变换,得到归一化后的第二衰减参数Kpfs,其中,归一化的过程是将数据Epfs由0到EP1变换到0到1区域。
在一种实施方式中,一种归一化变换的过程如下:
如果Epfs<阈值EP2,Kpfs=0;否则,
如果Epfs>=EP2,则Kpfs=1/(EP1-EP2)*Epfs–EP2/(EP1-EP2)。
在具体实现中,EP2可以根据传感器的测量频率以及测量精度等特性的实际情况设置,例如,EP2可以设置为0.1m。
步骤301-3,基于所述第二衰减参数确定滤波系数,其中,所述滤波系数随着所述第二衰减参数的减小而增大。
例如,针对声纳传感器获得的初始测量数据hs,确定第二衰减参数Kpfs以后,可以根据Kpfs计算滤波系数KS,可以设定为Kpfs越大则KS越小。
在一种实施方式中,可以采用非线性变换方法计算KS,例如,
KS=1.0-Kpfs*Kpfs。
在本发明实施例中,确定滤波系数以后,还可以对滤波系数进行限位处理,例如,针对KS,其中一种限位处理的方法如下:
如果KS>阈值K1,则KS=K1;
如果KS<阈值K2,则KS=K2。
其中,阈值K1、阈值K2可以根据实际低通滤波带宽要求进行设置,例如,可以设置为K1=0.5,K2=0.05。
步骤302,采用所述滤波系数,对所述测量数据进行滤波处理,得到目标测量数据。
在一种实施方式中,该滤波处理可以包括低通滤波处理,例如,针对hs,根据滤波系数进行低通滤波计算得到目标测量数据的公式如下:
hsf=hsf+KS*(hs-hsf)。
需要说明的是,除了低通滤波方式,还可以采用其他滤波方式进行滤波处理,例如,中值滤波、卡尔曼滤波等,本发明实施例对此不作限制。
在本发明实施例中,若指定传感器至少包括第一传感器以及第二传感器,根据上述的滤波流程,第一测量数据hs对应第一目标测量数据hsf,第二测量数据hr对应第二目标测量数据hrf。
则本发明实施例还可以包括如下步骤:对第一目标测量数据和/或第二目标测量数据进行修正。
例如,如果hsf同时大于hr和hs,则令hsf等于hr和hs两个数据中较大的那个;如果hsf同时小于hr和hs,则令hsf等于hr和hs两个数据中较小的那个。
同理,如果hrf同时大于hr和hs,则令hrf等于hr和hs两个数据中较大的那个;如果hrf同时小于hr和hs,则令hrf等于hr和hs两个数据中较小的那个。
在本发明实施例的一种优选实施例中,当第一测量数据以及第二测量数据都有效时,则本发明实施例还可以包括数据融合流程,参考图4所示的数据融合步骤流程图,可以包括如下步骤:
步骤401,基于所述飞行参数,确定所述第一测量数据对应的第一权重值,以及,所述第二测量数据对应的第二权重值;
在本发明实施例的一种优选实施例中,步骤401进一步可以包括如下子步骤:
步骤401-1,计算所述第一目标测量数据以及所述第二目标测量数据之间的差值,记为目标数据差值;
例如,目标数据差值drfsf=|hrf-hsf|。
步骤401-2,若所述目标数据差值小于预设的滤波差值阈值,则计算第一滤波系数与第二滤波系数的第一加和,并将所述第一权重值设置为所述第一滤波系数占所述第一加和的比例,将所述第二权重值设置为所述第二滤波系数占所述第一加和的比例;
在具体实现中,如果drfsf<预设的滤波差值阈值drsf,说明两个传感器的滤波结果相差很近,此时,可以基于KS(第一滤波系数,即第一个指定传感器的滤波系数)以及KR(第二滤波系数,即第二个指定传感器的滤波系数),采用非线性多项式计算第一权重值ksh以及第二权重值krh。
在一种实施方式中,ksh=KS*KS/(KS*KS+KR*KR);krh=KR*KR/(KS*KS+KR*KR)。
在具体实现中,drsf可以根据传感器的测量精度和实际使用环境设置,例如,可以设置为drsf=0.3m。
步骤401-3,若所述目标数据差值大于或等于预设的滤波差值阈值,则计算上一时刻的融合测量数据与当前时刻的第一目标测量数据的第二差值,以及,计算上一时刻的融合测量数据与当前时刻的第二个目标测量数据的第三差值,并计算所述第二差值与所述第三差值的第二加和,将所述第一权重值设置为所述第二差值占所述第二加和的比例,将所述第二权重值设置为所述第三差值占所述第二加和的比例。
在具体实现中,如果drfsf>=预设的滤波差值阈值drsf,说明两个传感器的滤波结果相差比较大,此时,可以计算上一时刻的融合测量数据与当前时刻的第一个指定传感器的目标测量数据的第二差值ds3,以及,计算上一时刻的融合测量数据与当前时刻的第二个指定传感器的目标测量数据的第三差值dr3。
即,ds3=|Hout-hsf|,dr3=|Hout-hrf|。
随后,基于ds3以及dr3,可以采用非线性多项式计算第一权重值ksh以及第二权重值krh。
在一种实施方式中,ksh=ds3*ds3/(dr3*dr3+ds3*ds3);krh=dr3*dr3/(dr3*dr3+ds3*ds3)。
步骤402,采用所述第一权重值以及所述第二权重值,对所述第一测量数据以及所述第二测量数据进行融合处理,得到融合测量数据。
在本发明实施例的一种优选实施例中,步骤402可以包括如下子步骤:
步骤402-1,确定与当前时刻的飞行速度对应的修正因子;
在具体实现中,移动速度越大,修正因子越小。
例如,当移动速度大于或等于0.5m/s时,修正因子K_O=0.5;否则,当移动速度小于0.5m/s时,修正因子K_O=0.8。
步骤402-2,基于所述第一权重值以及所述第二权重值,对第一目标测量数据以及第二目标测量数据进行加权运算,得到校准测量数据;
具体的,校准测量数据=krh*hrf+ksh*hsf。
步骤402-3,基于所述修正因子,对所述校准测量数据以及上一时刻的融合测量数据进行融合计算,得到当前时刻的融合测量数据。
在一种实施方式中,融合测量数据Hout=K_O*Hout+(1.0f-K_O)*(krh*hrf+ksh*hsf)。
需要说明的是,上述融合公式还可以采用方差权重融合的方式,本发明实施例对此不作限定。
在本发明实施例的另一种实施例中,当hr有效,hs无效时,可以令krh=1.0f,ksh=0.0f,并采用如下公式进行融合计算:
Hout=K_O*Hout+(1.0f-K_O)*(krh*hrf+ksh*hsf)。
在这种情况下,还可以对声纳滤波进行修正,令KS等于一个较小的固定值(例如,设定KS=0.1),对声纳滤波器进行修正计算的公式如下:hsf=hsf+KS*(Hout-hsf)。
在本发明实施例的另一种实施例中,当hr无效,hs有效时,可以令ksh=1.0f,krh=0.0f,并采用如下公式进行融合计算:
Hout=K_O*Hout+(1.0f-K_O)*(krh*hrf+ksh*hsf)。
在这种情况下,还可以对雷达滤波进行修正,令KR等于一个较小的固定值(例如,设定KR=0.1),对雷达滤波器进行修正计算的公式如下:hrf=hrf+KR*(Hout-hrf)。
当hr无效,hs也无效时,则可以保持上一时刻的数据,并给出当前时刻的数据无效的判定结果,如果长时间两个传感器的数据同时无效则重新进行初始化流程。
在本发明实施例中,结合无人机在移动过程中高度及升降速度连续变化的特点,对无人机中两个或以上的指定传感器的测量数据进行有效性判断、滤波及融合,得到融合测量数据,可以有效滤除无人机环境下两个或以上指定传感器的测量数据的噪声和测量错误,滤波融合效果好,且相位延时小,响应灵敏,提高了无人机离地高度数据测量的准确性和稳定性。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明实施例并不受所描述的动作顺序的限制,因为依据本发明实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明实施例所必须的。
参照图5,示出了本发明的一种数据有效性检测的装置实施例的结构框图,应用于无人机中,可以包括如下模块:
测量数据获取模块501,用于当达到测量时机时,获取所述无人机中的指定传感器测量的测量数据;
飞行参数获取模块502,用于获取所述无人机的飞行参数;
有效判断模块503,用于基于所述飞行参数,判断所述测量数据是否有效。
在本发明实施例的一种优选实施例中,所述有效判断模块503可以包括如下子模块:
基础条件判断子模块,用于判断所述测量数据是否满足预设的基础条件;若否,则调用无效判定子模块;若是,则调用跳变量判断子模块;
无效判定子模块,用于判定所述测量数据无效;
跳变量判断子模块,用于基于所述飞行参数,获取所述测量数据的跳变量,并基于所述跳变量,判断所述测量数据是否有效。
在本发明实施例的一种优选实施例中,所述基础条件判断子模块可以包括如下单元:
设计量程判断单元,用于判断所述测量数据是否大于所述指定传感器的预设设计量程;若是,则判定所述测量数据不满足所述基础条件;若否,则调用连续数据判断单元;
连续数据判断单元,用于获取所述指定传感器前N个时刻测量的M个在先测量数据,若所述测量数据与所述M个在先测量数据均相同,则判定所述测量数据不满足所述基础条件;若所述测量数据与所述M个在先测量数据均不相同,则判定所述测量数据满足所述基础条件,其中,N大于1,M大于1。
在本发明实施例的一种优选实施例中,所述飞行参数包括无人机所在的海拔高度;所述跳变量判断子模块可以包括如下单元:
海拔变化量确定单元,用于确定所述无人机当前时刻的海拔高度与上一时刻的海拔高度之间的海拔变化量;
测量变化值确定单元,用于确定当前时刻的测量数据与上一时刻的在先测量数据之间的测量变化值;
跳变量确定单元,用于将所述测量变化值补偿所述海拔变化量,得到所述测量数据的跳变量。
在本发明实施例的一种优选实施例中,所述指定传感器具有有效计数器,所述跳变量判断子模块可以包括如下单元:
计数器自增单元,用于若所述跳变量小于或等于第一预设阈值,则在判定当前时刻的测量数据与上一时刻的在先测量数据不相同时,将所述有效计数器自增预设步长;
有效判定单元,用于当所述有效计数器中的计数大于预设计数阈值时,则判定所述测量数据有效。
在本发明实施例的一种优选实施例中,所述指定传感器至少包括第一传感器以及第二传感器,则所述测量数据包括所述第一传感器测量的第一测量数据以及所述第二传感器测量的第二测量数据;所述跳变量包括第一测量数据对应的第一跳变量以及所述第二测量数据对应的第二跳变量;
所述跳变量判断子模块可以包括如下单元:
无效判定单元,用于针对第一测量数据,在所述第一跳变量大于第一预设阈值时,若所述第二测量数据不满足所述基础条件,则判定所述第一测量数据无效;
有效性判断单元,用于若所述第二测量数据满足所述基础条件,则基于所述第一测量数据以及所述第二测量数据,判定所述第一测量数据是否有效。
在本发明实施例的一种优选实施例中,所述有效性判断单元可以包括如下子单元:
差值计算子单元,用于计算所述第一测量数据与所述第二测量数据的第一差值,以及所述第一差值对应的变化趋势;
有效判定子单元,用于若所述第一差值小于第二预设阈值且所述变化趋势小于第三预设阈值,则判定所述第一测量数据有效;
无效判定子单元,用于若所述第一差值大于或等于第二预设阈值,和/或,所述变化趋势大于或等于第三预设阈值,则判定所述第一测量数据无效。
在本发明实施例的一种优选实施例中,所述装置还可以包括如下模块:
改判模块,用于在所述第一测量数据因所述第一跳变量大于第一预设阈值的情况被判定为有效时,若上一时刻的在先第二测量数据因第二跳变量大于第一预设阈值的情况被判定无效,则将所述在先第二测量数据改判为有效。
在本发明实施例的一种优选实施例中,所述装置还可以包括如下模块:
计数器清零模块,用于若上一时刻的在先测量数据有效,但当前时刻的测量数据无效,则将所述有效计数器清零。
对对于图5的装置实施例而言,由于其与上述的方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
另外,本发明实施例还公开了一种飞行器,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述实施例所述方法的步骤。
另外,本发明实施例还公开了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述实施例所述方法的步骤。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本发明实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本发明实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明实施例是参照根据本发明实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本发明所提供的一种数据有效性检测的方法及装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (16)

1.一种数据有效性检测的方法,应用于无人机中,其特征在于,所述方法包括:
当达到测量时机时,获取所述无人机中的指定传感器测量的测量数据;
获取所述无人机的飞行参数;
基于所述飞行参数,判断所述测量数据是否有效;
其中,所述基于所述飞行参数,判断所述测量数据是否有效的步骤包括:
判断所述测量数据是否满足预设的基础条件;
若否,则判定所述测量数据无效;
若是,则基于所述飞行参数,获取所述测量数据的跳变量,并基于所述跳变量,判断所述测量数据是否有效;
其中,所述判断所述测量数据是否满足预设的基础条件的步骤包括:
判断所述测量数据是否大于所述指定传感器的预设设计量程;
若是,则判定所述测量数据不满足所述基础条件;
若否,则获取所述指定传感器前N个时刻测量的M个在先测量数据,若所述测量数据与所述M个在先测量数据均相同,则判定所述测量数据不满足所述基础条件;若所述测量数据以及所述M个在先测量数据均不相同,则判定所述测量数据满足所述基础条件,其中,N大于1,M大于1。
2.根据权利要求1所述的方法,其特征在于,所述飞行参数包括无人机所在的海拔高度;所述基于所述飞行参数,获取所述测量数据的跳变量的步骤包括:
确定所述无人机当前时刻的海拔高度与上一时刻的海拔高度之间的海拔变化量;
确定当前时刻的测量数据与上一时刻的在先测量数据之间的测量变化值;
将所述测量变化值补偿所述海拔变化量,得到所述测量数据的跳变量。
3.根据权利要求1所述的方法,其特征在于,所述指定传感器具有有效计数器,所述基于所述跳变量,判断所述测量数据是否有效的步骤包括:
若所述跳变量小于或等于第一预设阈值,则在判定当前时刻的测量数据与上一时刻的在先测量数据不相同时,将所述有效计数器自增预设步长;
当所述有效计数器中的计数大于预设计数阈值时,则判定所述测量数据有效。
4.根据权利要求1或3所述的方法,其特征在于,所述指定传感器至少包括第一传感器以及第二传感器,则所述测量数据包括所述第一传感器测量的第一测量数据以及所述第二传感器测量的第二测量数据;所述跳变量包括第一测量数据对应的第一跳变量以及所述第二测量数据对应的第二跳变量;
所述基于所述跳变量,判断所述测量数据是否有效的步骤包括:
针对第一测量数据,在所述第一跳变量大于第一预设阈值时,若所述第二测量数据不满足所述基础条件,则判定所述第一测量数据无效;
若所述第二测量数据满足所述基础条件,则基于所述第一测量数据以及所述第二测量数据,判定所述第一测量数据是否有效。
5.根据权利要求4所述的方法,其特征在于,所述基于所述第一测量数据以及所述第二测量数据,判定所述第一测量数据是否有效的步骤包括:
计算所述第一测量数据与所述第二测量数据的第一差值,以及所述第一差值对应的变化趋势;
若所述第一差值小于第二预设阈值且所述变化趋势小于第三预设阈值,则判定所述第一测量数据有效;
若所述第一差值大于或等于第二预设阈值,和/或,所述变化趋势大于或等于第三预设阈值,则判定所述第一测量数据无效。
6.根据权利要求5所述的方法,其特征在于,还包括:
在所述第一测量数据因所述第一跳变量大于第一预设阈值的情况被判定为有效时,若上一时刻的在先第二测量数据因第二跳变量大于第一预设阈值的情况被判定无效,则将所述在先第二测量数据改判为有效。
7.根据权利要求3或5任一项所述的方法,其特征在于,所述方法还包括:
若上一时刻的在先测量数据有效,但当前时刻的测量数据无效,则将所述有效计数器清零。
8.一种数据有效性检测的装置,应用于无人机中,其特征在于,所述装置包括:
测量数据获取模块,用于当达到测量时机时,获取所述无人机中的指定传感器测量的测量数据;
飞行参数获取模块,用于获取所述无人机的飞行参数;
有效判断模块,用于基于所述飞行参数,判断所述测量数据是否有效;
其中,所述有效判断模块包括:
基础条件判断子模块,用于判断所述测量数据是否满足预设的基础条件;若否,则调用无效判定子模块;若是,则调用跳变量判断子模块;
无效判定子模块,用于判定所述测量数据无效;
跳变量判断子模块,用于基于所述飞行参数,获取所述测量数据的跳变量,并基于所述跳变量,判断所述测量数据是否有效;
其中,所述基础条件判断子模块包括:
设计量程判断单元,用于判断所述测量数据是否大于所述指定传感器的预设设计量程;若是,则判定所述测量数据不满足所述基础条件;若否,则调用连续数据判断单元;
连续数据判断单元,用于获取所述指定传感器前N个时刻测量的M个在先测量数据,若所述测量数据与所述M个在先测量数据均相同,则判定所述测量数据不满足所述基础条件;若所述测量数据以及所述M个在先测量数据均不相同,则判定所述测量数据满足所述基础条件,其中,N大于1,M大于1。
9.根据权利要求8所述的装置,其特征在于,所述飞行参数包括无人机所在的海拔高度;所述跳变量判断子模块包括:
海拔变化量确定单元,用于确定所述无人机当前时刻的海拔高度与上一时刻的海拔高度之间的海拔变化量;
测量变化值确定单元,用于确定当前时刻的测量数据与上一时刻的在先测量数据之间的测量变化值;
跳变量确定单元,用于将所述测量变化值补偿所述海拔变化量,得到所述测量数据的跳变量。
10.根据权利要求8所述的装置,其特征在于,所述指定传感器具有有效计数器,所述跳变量判断子模块包括:
计数器自增单元,用于若所述跳变量小于或等于第一预设阈值,则在判定当前时刻的测量数据与上一时刻的在先测量数据不相同时,将所述有效计数器自增预设步长;
有效判定单元,用于当所述有效计数器中的计数大于预设计数阈值时,则判定所述测量数据有效。
11.根据权利要求8或10所述的装置,其特征在于,所述指定传感器至少包括第一传感器以及第二传感器,则所述测量数据包括所述第一传感器测量的第一测量数据以及所述第二传感器测量的第二测量数据;所述跳变量包括第一测量数据对应的第一跳变量以及所述第二测量数据对应的第二跳变量;
所述跳变量判断子模块包括:
无效判定单元,用于针对第一测量数据,在所述第一跳变量大于第一预设阈值时,若所述第二测量数据不满足所述基础条件,则判定所述第一测量数据无效;
有效性判断单元,用于若所述第二测量数据满足所述基础条件,则基于所述第一测量数据以及所述第二测量数据,判定所述第一测量数据是否有效。
12.根据权利要求11所述的装置,其特征在于,所述有效性判断单元包括:
差值计算子单元,用于计算所述第一测量数据与所述第二测量数据的第一差值,以及所述第一差值对应的变化趋势;
有效判定子单元,用于若所述第一差值小于第二预设阈值且所述变化趋势小于第三预设阈值,则判定所述第一测量数据有效;
无效判定子单元,用于若所述第一差值大于或等于第二预设阈值,和/或,所述变化趋势大于或等于第三预设阈值,则判定所述第一测量数据无效。
13.根据权利要求12所述的装置,其特征在于,还包括:
改判模块,用于在所述第一测量数据因所述第一跳变量大于第一预设阈值的情况被判定为有效时,若上一时刻的在先第二测量数据因第二跳变量大于第一预设阈值的情况被判定无效,则将所述在先第二测量数据改判为有效。
14.根据权利要求10或12任一项所述的装置,其特征在于,所述装置还包括:
计数器清零模块,用于若上一时刻的在先测量数据有效,但当前时刻的测量数据无效,则将所述有效计数器清零。
15.一种飞行器,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现权利要求1至7任一项所述方法的步骤。
16.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1至7任一项所述方法的步骤。
CN201710648651.5A 2017-08-01 2017-08-01 数据有效性检测的方法及装置 Active CN109323714B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011335156.7A CN112504320B (zh) 2017-08-01 2017-08-01 数据有效性检测的方法及装置
CN201710648651.5A CN109323714B (zh) 2017-08-01 2017-08-01 数据有效性检测的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710648651.5A CN109323714B (zh) 2017-08-01 2017-08-01 数据有效性检测的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202011335156.7A Division CN112504320B (zh) 2017-08-01 2017-08-01 数据有效性检测的方法及装置

Publications (2)

Publication Number Publication Date
CN109323714A CN109323714A (zh) 2019-02-12
CN109323714B true CN109323714B (zh) 2021-05-14

Family

ID=65246067

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201710648651.5A Active CN109323714B (zh) 2017-08-01 2017-08-01 数据有效性检测的方法及装置
CN202011335156.7A Active CN112504320B (zh) 2017-08-01 2017-08-01 数据有效性检测的方法及装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202011335156.7A Active CN112504320B (zh) 2017-08-01 2017-08-01 数据有效性检测的方法及装置

Country Status (1)

Country Link
CN (2) CN109323714B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109323714B (zh) * 2017-08-01 2021-05-14 广州极飞科技股份有限公司 数据有效性检测的方法及装置
CN109990789A (zh) * 2019-03-27 2019-07-09 广东工业大学 一种飞行导航方法、装置及相关设备
KR20200118949A (ko) * 2019-04-09 2020-10-19 삼성전자주식회사 휴대용 공기질 측정 장치 및 그 공기질 관련 정보 표시 방법
CN110146055A (zh) * 2019-05-21 2019-08-20 深圳市道通智能航空技术有限公司 一种超声异常检测方法、装置及电子设备
CN110865261A (zh) * 2019-11-29 2020-03-06 国网四川省电力公司眉山供电公司 保护装置出口矩阵校验仪及校验方法
CN113703007A (zh) * 2020-05-21 2021-11-26 比亚迪股份有限公司 海拔数据监测及显示方法、装置、设备及存储介质
CN112764018A (zh) * 2021-04-08 2021-05-07 北京三快在线科技有限公司 一种测距方法、装置、存储介质及电子设备
CN114353854B (zh) * 2022-03-21 2022-05-24 蘑菇物联技术(深圳)有限公司 用于在线定位异常传感器的方法、设备和介质
CN115575988B (zh) * 2022-11-21 2023-06-02 联友智连科技有限公司 一种gps海拔值有效性判断方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060056482A1 (en) * 2004-02-05 2006-03-16 Airbus France Method and device for verifying a temperature value at a destination altitude of an aircraft
CN102023000A (zh) * 2010-09-30 2011-04-20 清华大学 无人直升机气压高度计和gps融合测高方法
CN103363992A (zh) * 2013-06-29 2013-10-23 天津大学 基于梯度下降的四旋翼无人机姿态航向参考系统解算方法
CN103950546A (zh) * 2014-04-21 2014-07-30 深圳市大疆创新科技有限公司 无人机及其飞行状态辅助提示方法
CN104535082A (zh) * 2014-12-05 2015-04-22 中国航天空气动力技术研究院 一种基于飞行试验和理论计算判断惯导元件性能的方法
CN105223575A (zh) * 2015-10-22 2016-01-06 广州极飞电子科技有限公司 无人机、无人机的测距滤波方法及基于该方法的测距方法
CN105302043A (zh) * 2015-11-17 2016-02-03 辽宁天行健航空科技有限公司 一种无人机的安全控制系统及控制方法
CN106774376A (zh) * 2017-01-25 2017-05-31 上海拓攻机器人有限公司 一种无人机仿地飞行控制方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170034470A1 (en) * 2015-08-02 2017-02-02 Cfkk, Llc Systems and methods and apparatuses for capturing concurrent multiple perspectives of a target by mobile devices
CN106524993B (zh) * 2016-10-11 2019-02-22 北京农业智能装备技术研究中心 一种动态野值点检测方法及装置
CN106595578B (zh) * 2017-01-25 2019-06-14 拓攻(南京)机器人有限公司 一种基于多传感器信息融合的无人机高度测量方法及系统
CN109323714B (zh) * 2017-08-01 2021-05-14 广州极飞科技股份有限公司 数据有效性检测的方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060056482A1 (en) * 2004-02-05 2006-03-16 Airbus France Method and device for verifying a temperature value at a destination altitude of an aircraft
CN102023000A (zh) * 2010-09-30 2011-04-20 清华大学 无人直升机气压高度计和gps融合测高方法
CN103363992A (zh) * 2013-06-29 2013-10-23 天津大学 基于梯度下降的四旋翼无人机姿态航向参考系统解算方法
CN103950546A (zh) * 2014-04-21 2014-07-30 深圳市大疆创新科技有限公司 无人机及其飞行状态辅助提示方法
CN104535082A (zh) * 2014-12-05 2015-04-22 中国航天空气动力技术研究院 一种基于飞行试验和理论计算判断惯导元件性能的方法
CN105223575A (zh) * 2015-10-22 2016-01-06 广州极飞电子科技有限公司 无人机、无人机的测距滤波方法及基于该方法的测距方法
CN105302043A (zh) * 2015-11-17 2016-02-03 辽宁天行健航空科技有限公司 一种无人机的安全控制系统及控制方法
CN106774376A (zh) * 2017-01-25 2017-05-31 上海拓攻机器人有限公司 一种无人机仿地飞行控制方法及系统

Also Published As

Publication number Publication date
CN112504320A (zh) 2021-03-16
CN109323714A (zh) 2019-02-12
CN112504320B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
CN109323714B (zh) 数据有效性检测的方法及装置
CN110020394B (zh) 数据处理的方法及装置
EP3081902B1 (en) Method and apparatus for correcting aircraft state in real time
US10712751B2 (en) Method and device for terrain simulation flying of unmanned aerial vehicle and unmanned aerial vehicle
RU2688564C2 (ru) Системы и способы обнаружения отказов при определении пространственного положения на основе воздушных сигналов и настроек управления воздушным судном
CN106705936B (zh) 一种无人机高度优化方法及装置
CN111912409B (zh) 可编程智能反射面辅助的多移动设备定位方法及装置
KR20170088388A (ko) 무인기 및 무인기의 거리 측정 필터링 장치, 방법 및 상기 방법에 기반한 거리 측정 방법
CN108573272B (zh) 车道拟合方法
CN111060132B (zh) 行车定位坐标的标定方法和装置
CN108919829A (zh) 无人机应对恶劣环境的自适应决策方法及相应的无人机
CN109324324B (zh) 数据处理的方法及装置
CA2954355A1 (en) Video-assisted landing guidance system and method
CN114943952A (zh) 多相机重叠视域下障碍物融合方法、系统、设备和介质
CN110832274A (zh) 地面坡度计算方法、装置、设备及存储介质
CN107491099A (zh) 一种基于视觉和陀螺仪的云台控制方法及装置
CN110807027A (zh) 野值处理方法、装置、设备及存储介质
CN112762893B (zh) 无人机状态确定方法、装置、介质、电子设备及无人机
CN112758109B (zh) 横向跟踪稳态偏差补偿方法及装置
Wang et al. Filling the gap between low frequency measurements with their estimates
KR102186087B1 (ko) 레이더 장치, 레이더 장치의 설치 상태 변화 감지 방법 및 교통 상황 예측 시스템
KR102136725B1 (ko) 다변측정 감지시스템의 중앙처리장치 및 이를 이용한 항공기 위치 산출방법
KR20190070459A (ko) 비콘 기반 측위장치의 신호 세기 보상 장치 및 방법
TWI518351B (zh) 室內定位方法和設備
US9170316B2 (en) Systems and methods for improving bearing availability and accuracy for a tracking filter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 510000 Block C, 115 Gaopu Road, Tianhe District, Guangzhou City, Guangdong Province

Applicant after: XAG Co., Ltd.

Address before: 510000, No. 1, Cheng Cheng Road, Gaotang Software Park, Guangzhou, Guangdong, Tianhe District, 3A01

Applicant before: Guangzhou Xaircraft Technology Co.,Ltd.

GR01 Patent grant
GR01 Patent grant