CN109320277B - 一种SiCnw/C纳米复合材料的制备方法 - Google Patents

一种SiCnw/C纳米复合材料的制备方法 Download PDF

Info

Publication number
CN109320277B
CN109320277B CN201811373678.9A CN201811373678A CN109320277B CN 109320277 B CN109320277 B CN 109320277B CN 201811373678 A CN201811373678 A CN 201811373678A CN 109320277 B CN109320277 B CN 109320277B
Authority
CN
China
Prior art keywords
powder
sicnw
composite material
nano
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811373678.9A
Other languages
English (en)
Other versions
CN109320277A (zh
Inventor
陈洪美
廖斯恩
张静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN201811373678.9A priority Critical patent/CN109320277B/zh
Publication of CN109320277A publication Critical patent/CN109320277A/zh
Application granted granted Critical
Publication of CN109320277B publication Critical patent/CN109320277B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种SiCnw/C纳米复合材料的制备方法,包括如下步骤:将白砂糖粉末和氯化铵粉末按质量比1∶1加入水中,混合搅拌后干燥,得到结晶混合物;将干燥的结晶混合物与纳米二氧化硅粉末按质量比为2~10∶1进行混合研磨,得到混合粉末;将混合粉末装入纯度为99.99%的Al2O3坩埚中,在稀有气体保护下,置于管式电阻炉内进行高温烧结,冷却后得到SiCnw/C纳米复合材料。本发明制备方法制得的复合材料利用原位自生技术,在介孔碳基体上直接生成弥散分布的碳化硅纳米线(SiCnw)增强体,生产成本低、操作简单,可潜在运用于准塑性材料,绿光催化模板和热能储存材料。

Description

一种SiCnw/C纳米复合材料的制备方法
技术领域
本发明涉及一种采用原位自生法制备SiCnw/C纳米复合材料的方法,属于冶金技术领域。
背景技术
碳化硅(SiC)具有高硬度、高热导率和优良的耐磨性和抗腐蚀性能,被广泛用做刀具、轴承、轮机部件、热交换器等。并且SiC纳米材料与SiC块体材料相比,呈现出优异的高比表面积、化学和热稳定性和高的电子迁移率等性能。随着元器件的微元化,SiC纳米材料在一些纳米电子器件中起着不可替代的作用,如纳米光发射器、纳米场效应晶体管、纳米传感器等。研究表明,SiC/C多孔复合材料有良好的热电性、光致发光性和高的高温抗压强度。文献Thermoelectric properties of porous SiC/C composites介绍了SiC/C多孔材料的热电性能。Synthesis of a Periodic SiC/C Nanostructure,Physics of the SolidState中,作者在高温1770-1870K下碳热合成具有反蛋白石晶格的SiC/C纳米复合材料,该复合材料可作为传感器、催化剂和超级电容器的材料。
目前,制备SiCnw/C及类似的陶瓷增强相复合材料的方法有很多,如专利CN103435354A,通过添加Al2O3和La2O3作为烧结助剂,石墨纤维和碳化硅粉为原料,在1500~1850℃下烧结出Cf/SiC复合材料,但是该方法所用原料价格和温度均相对较高,因此所制备的成本也相对较高。
发明内容
发明目的:本发明所要解决的技术问题是提供一种SiCnw/C纳米复合材料的制备方法,该方法以白砂糖、氯化铵和纳米二氧化硅粉末为原料,采用碳热还原法一步合成多孔纳米SiCnw/C复合材料。
采用本发明方法制得的SiCnw/C纳米复合材料,在碳基体上原位生长有碳化硅纳米线,碳化硅纳米线为碳基体的增强体;碳基体呈多孔结构,碳基体上多个孔隙之间连接紧密,孔径为5~130nm,且孔洞分布均匀;碳化硅纳米线的长度为20~30μm,直径为20~60nm。
发明内容:为解决上述技术问题,本发明所采用的技术方案为:
一种SiCnw/C纳米复合材料的制备方法,具体包括如下步骤:
步骤1,将白砂糖粉末和氯化铵粉末按质量比1∶1加入水中,混合搅拌后干燥,得到结晶混合物;
步骤2,将干燥的结晶混合物与纳米二氧化硅粉末按质量比为2~10∶1进行混合研磨,得到混合粉末;
步骤3,将步骤2所得的混合粉末装入纯度为99.99%的Al2O3坩埚中,在稀有气体保护下,进行高温烧结,冷却后得到SiCnw/C纳米复合材料。
其中,步骤1中,白砂糖粉末的纯度为95~99%,粒度为0.5~2mm。
其中,步骤2中,纳米二氧化硅粉末(nano-SiO2)的纯度大于98%,粒度小于50nm。
其中,步骤2中,用玛瑙钵和玛瑙棒进行研磨,用滴管滴入1~3滴AR无水乙醇于粉体中,研磨到粉体中的液体看不到为止,然后再次往粉体中滴入1~3滴AR无水乙醇于,研磨到粉体中的液体看不到为止;重复该滴加操作3~5次。
其中,步骤3中,反应物料的升温速率为4~10℃·min-1,升温至1400℃~1500℃后保温1~3h,保温结束后随炉冷却。
其中,采用本发明方法制得的SiCnw/C纳米复合材料中,在碳基体上原位生长有碳化硅纳米线,碳化硅纳米线为碳基体的增强体;碳基体为多孔结构;其中,碳化硅纳米线的长度为20~30μm,直径为20~60nm。
相比于现有技术,本发明技术方案具有的有益效果为:
本发明制备方法制得的复合材料利用原位自生技术,在多孔碳基体上直接生成弥散分布的碳化硅纳米线(SiCnw)增强体,生产成本低,比单一的碳基材料具有更优越的耐磨性能和力学性能;本发明制备方法制得的SiCnw/C纳米复合材料具有进一步优化为准塑料材料和绿色光催化模板的潜能。
本发明制备方法的原位自生法采用的原料为白砂糖、二氧化硅,原料来源广泛、价格低,工艺简单且价格低廉,并适合大规模工业化生产;相比于直接加入碳化硅纳米线进行热压烧结生成复合材料,原位生成是基于化学发应,所以生成物的尺寸更加细小、增强体分布更加均匀,有利于复合材料综合性能的提升。
附图说明
图1是采用碳热还原法制备SiCnw/C纳米复合材料,当碳硅比m(结晶混合物(白砂糖+氯化铵):纳米二氧化硅粉末)分别为2∶1、5∶1和10∶1时制得的SiCnw/C纳米复合材料SC2、SC5和SC10的XRD衍射图;
图2是采用碳热还原法制备SiCnw/C纳米复合材料,当碳硅比m(结晶混合物(白砂糖+氯化铵):纳米二氧化硅粉末)分别为2∶1、5∶1和10∶1时制得的SiCnw/C纳米复合材料SC2、SC5和SC10的三维重构图;
图3是采用碳热还原法制备SiCnw/C纳米复合材料,当碳硅比m(结晶混合物(白砂糖+氯化铵):纳米二氧化硅粉末)分别为2∶1、5∶1和10∶1时制得的SiCnw/C纳米复合材料SC2、SC5和SC10的二维断层投影图;
图4是采用碳热还原法制备SiCnw/C纳米复合材料,当碳硅比m(结晶混合物(白砂糖+氯化铵)∶纳米二氧化硅粉末)分别为2∶1、5∶1和10∶1时制得的SiCnw/C纳米复合材料SC2、SC5和SC10的各相分布图;
图5是采用碳热还原法制备SiCnw/C纳米复合材料,当碳硅比m(结晶混合物(白砂糖+氯化铵)∶纳米二氧化硅粉末)分别为2∶1、5∶1和10∶1时,制备的SiCnw/C纳米复合材料SC2、SC5和SC10的纳米线形貌示意图;
图6是本发明采用碳热还原法制得的SiCnw/C纳米复合材料中多孔碳基体的SEM图。
具体实施方式
下面结合具体实施例来对本发明技术方案做进一步说明。
以下实施例以纯度为95~99%,粒度为0.5~2mm的市售白砂糖(C12H22O11)粉末以及纯度大于98%,粒度小于50nm的纳米二氧化硅粉末(nano-SiO2)为原料。本发明SiCnw/C纳米复合材料的制备方法,其发明原理为:分别以C12H22O11和Nano-SiO2粉为原位合成的碳源和硅源,在高温加压条件下通过碳热还原反应,制备出SiCnw(碳化硅纳米线)增强碳基的复合材料。
此发生的化学方程式为:
C12H22O11(l)+4SiO2(s)=4SiCnw(s)+11H2O(l)+8CO(g)。
本发明方法的具体步骤为:以白砂糖粉末(C12H22O11)为碳源,纳米二氧化硅粉末(nano-SiO2)为硅源,氯化铵粉末(NH4Cl)为发泡剂,利用碳热还原法在管式炉中进行烧结而制得。
在成分设计中,碳源过量能保证复合材料中SiO2的完全反应。本发明通过充分研磨来使粉体混合均匀,使各相均匀分布。用XRD、Micro-CT和SEM分析方法分别对SiCnw/C复合材料的物相组成、断层内部信息和显微形貌进行了表征。图2~6说明采用本发明方法能够合成SiCnw/C复合材料,且合成的材料具有着图中所示的形貌和结构。
以下是本发明给出的实施例。
实施例1
本发明SiCnw/C纳米复合材料的制备方法,具体包括如下步骤:
步骤1,分别称量2.5g纯度为95~99%,粒度为0.5~2mm的市售白砂糖(C12H22O11)粉末和2.5克分析纯NH4Cl粉末(作为发泡剂),将两者按质量比1∶1全部加入到100mL去离子水中进行溶解,并在温度为50℃的磁力搅拌器中搅拌2h,搅拌结束后,即待搅拌的物料充分溶解后,将混合溶液放进温度为100℃的热恒温鼓风干燥箱中干燥12h,完全烘干后,得到C12H22O11和NH4Cl的结晶混合物;
步骤2,将步骤1得到的结晶混合物和纯度大于98%,粒度小于50nm的nano-SiO2粉末按质量比2∶1加入到玛瑙钵体中,在玛瑙钵体中辅以AR无水乙醇进行研磨,得到混合粉末;具体为:用玛瑙钵和玛瑙棒进行研磨,用滴管滴入1~3滴AR无水乙醇于粉体中,研磨到粉体中的液体看不到为止,然后再次往粉体中滴入1~3滴AR无水乙醇于,研磨到粉体中的液体看不到为止;重复该滴加操作3~5次;
步骤3,将混合粉末装入纯度为99.99%的Al2O3坩埚中,并把坩锅放入管式电阻炉炉体的中间位置(具体为:通过长尺子量取进气管口离坩锅最近端的距离、排气管口离坩锅最近端的距离,通过移动使坩锅处于管式炉炉体最中间的位置);
步骤4,往管式电阻炉内以0.2~0.7mL/min的速率通入Ar作为保护气体,加入0.5MPa的压力(具体为:打开Ar气气瓶开关,慢慢紧减压阀,观察排气口是否有气体排出,检查压力表压力指数为0.5MPa),以8℃·min-1的升温速率,升温至1500℃,在1500℃下保温3h,随炉冷却后得到本发明的SiCnw/C纳米复合材料。
采用本发明方法制得的SiCnw/C复合材料中,SiCnw的直径集中在20~60nm之间,长度为20~30μm,不同碳硅比(白砂糖+氯化铵∶纳米二氧化硅粉末)下得到的碳化硅纳米线的数量、直径和长度均有所不同,碳化硅纳米线的数量随着m(白砂糖+氯化铵∶纳米二氧化硅粉)比例的增大而增多;本发明方法制备出的碳化硅纳米线出现孪晶结构。复合材料中,碳基体呈多孔结构,各孔隙间连接紧密,孔径在5~130nm之间,且孔洞分布均匀。
图1为纳米SiC/C复合材料的XRD图谱,对比标准图谱发现衍射峰对应的物相为3C-SiC,其峰形尖锐,表明样品中碳化硅的结晶情况良好,且SC5样品的晶型生长比SC2、SC10好。并且,如箭头所指的衍射峰表明样品中3C-SiC存在着堆垛层错。从碳的衍射峰来看,可以知道SC2、SC10出现了碳的非晶衍射峰,说明SC2和SC10的碳以无定型态存在;SC5在26.6°处出现石墨的(003)晶体峰,说明SC5样品的碳已经石墨化。另外,在衍射图谱中没看到由杂质引起的峰。
图2~4为SiCnw/C纳米复合材料的显微CT扫描时的三维重构模型图、XY平面切片投影图和各相分离图片。重构图中存在明显的灰度差异区域,表明存在不同密度的物质。低密度物体吸收的X射线较少,从而显示出明亮区域。随着碳含量的变化,所获得的复合材料的均匀性和各相含量存在明显的差异。但总体来看,所合成的样品中,两相分布比较均匀。另外,从图4可以看到,随着发泡剂含量增大,样品的孔隙率增加。
如图5所示,本发明方法制得的SiCnw/C纳米复合材料中,原位自生合成的SiCnw,为纳米线形貌,长度分布在20~30μm,直径为20~60nm。同时,图5也能看出,碳化硅纳米线的数量随着(白砂糖+氯化铵):纳米二氧化硅粉两者加入质量比例的增大而增多。
如图6所示,本发明方法制得的SiCnw/C纳米复合材料中,碳基体呈多孔结构,且介孔紧密排列。
本发明方法制得的这种碳化硅纳米线增强多孔碳基体的复合材料,可潜在运用于准塑料材料,绿光催化模板和热能储存材料。如果把这种复合材料制备成为功能材料,那么其介孔结构可以给提高材料的综合光学性能和电、磁性能;碳化硅纳米线可以显示出特殊的室温光致发光现象。

Claims (1)

1.一种SiCnw/C纳米复合材料的制备方法,其特征在于,具体包括如下步骤:
步骤1,分别称量2.5g纯度为95~99%,粒度为0.5~2mm的市售白砂糖粉末和2.5克分析纯NH4Cl粉末,将两者按质量比1:1全部加入到100mL去离子水中进行溶解,并在温度为50℃的磁力搅拌器中搅拌2h,待搅拌的物料充分溶解后,将混合溶液放进温度为100℃的热恒温鼓风干燥箱中干燥12h,完全烘干后,得到C12H22O11和NH4Cl的结晶混合物;
步骤2,将步骤1得到的结晶混合物和纯度大于98%,粒度小于50nm的nano-SiO2粉末按质量比2:1加入到玛瑙钵体中,在玛瑙钵体中辅以AR无水乙醇进行研磨,得到混合粉末;具体为:用玛瑙钵和玛瑙棒进行研磨,用滴管滴入1~3滴AR无水乙醇于粉体中,研磨到粉体中的液体看不到为止,然后再次往粉体中滴入1~3滴AR无水乙醇,研磨到粉体中的液体看不到为止;重复该滴加操作3~5次;
步骤3,将混合粉末装入纯度为99.99%的Al2O3坩埚中,并把坩锅放入管式电阻炉炉体的中间位置,具体为:通过长尺子量取进气管口离坩锅最近端的距离、排气管口离坩锅最近端的距离,通过移动使坩锅处于管式炉炉体最中间的位置;
步骤4,往管式电阻炉内以0.2~0.7mL/min的速率通入Ar作为保护气体,加入0.5MPa的压力,具体为:打开Ar气气瓶开关,慢慢紧减压阀,观察排气口是否有气体排出,检查压力表压力指数为0.5MPa;以8℃·min-1的升温速率,升温至1500℃,在1500℃下保温3h,随炉冷却后得到本发明的SiCnw/C纳米复合材料;
上述方法制得的SiCnw/C纳米复合材料,在碳基体上原位生长有碳化硅纳米线,碳化硅纳米线为碳基体的增强体;碳基体呈多孔结构,碳基体上多个孔隙之间连接紧密,孔径为5~130nm,且孔洞分布均匀;碳化硅纳米线的长度为20~30μm,直径为20~60nm。
CN201811373678.9A 2018-11-16 2018-11-16 一种SiCnw/C纳米复合材料的制备方法 Active CN109320277B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811373678.9A CN109320277B (zh) 2018-11-16 2018-11-16 一种SiCnw/C纳米复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811373678.9A CN109320277B (zh) 2018-11-16 2018-11-16 一种SiCnw/C纳米复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN109320277A CN109320277A (zh) 2019-02-12
CN109320277B true CN109320277B (zh) 2021-10-19

Family

ID=65258310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811373678.9A Active CN109320277B (zh) 2018-11-16 2018-11-16 一种SiCnw/C纳米复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN109320277B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138206B (zh) * 2020-01-11 2021-04-20 西安交通大学 一种非晶碳修饰SiC纳米线连续三维网络结构吸波泡沫及其制备方法
CN112457034A (zh) * 2020-11-10 2021-03-09 中钢南京环境工程技术研究院有限公司 一种具有类鼻毛-鼻孔结构的C/SiC复合材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003024892A1 (en) * 2001-09-21 2003-03-27 Stobbe Tech Holding A/S Porous ceramic structures and a preparing method
WO2012148034A1 (ko) * 2011-04-26 2012-11-01 주식회사 네오플랜트 열플라즈마를 이용한 나노 탄화규소 제조방법
CN103318891A (zh) * 2013-07-08 2013-09-25 武汉科技大学 一种在多孔生物炭模板上生成一维碳化硅纳米线的方法
CN106278267A (zh) * 2016-08-10 2017-01-04 大连理工大学 一种原位生长碳化硅纳米线增强多孔碳复合材料的制备方法
CN108046266A (zh) * 2017-12-22 2018-05-18 西北工业大学 碳化硅纳米线薄膜材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003024892A1 (en) * 2001-09-21 2003-03-27 Stobbe Tech Holding A/S Porous ceramic structures and a preparing method
WO2012148034A1 (ko) * 2011-04-26 2012-11-01 주식회사 네오플랜트 열플라즈마를 이용한 나노 탄화규소 제조방법
CN103318891A (zh) * 2013-07-08 2013-09-25 武汉科技大学 一种在多孔生物炭模板上生成一维碳化硅纳米线的方法
CN106278267A (zh) * 2016-08-10 2017-01-04 大连理工大学 一种原位生长碳化硅纳米线增强多孔碳复合材料的制备方法
CN108046266A (zh) * 2017-12-22 2018-05-18 西北工业大学 碳化硅纳米线薄膜材料的制备方法

Also Published As

Publication number Publication date
CN109320277A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
Meng et al. Preparation of β–SiC nanorods with and without amorphous SiO2 wrapping layers
Li et al. Mechanical properties and interfacial analysis of aluminum matrix composites reinforced by carbon nanotubes with diverse structures
Ding et al. Catalyst-assisted synthesis of α-Si3N4 in molten salt
Deng et al. Synthesis of γ-Al2O3 nanowires through a boehmite precursor route
CN109320277B (zh) 一种SiCnw/C纳米复合材料的制备方法
Li et al. Catalytic preparation of graphitic carbon spheres for Al2O3-SiC-C castables
CN103924172B (zh) 一种增强铝基复合材料的制备方法
CN103979507A (zh) 一种利用高气压和氟化物添加剂辅助制备球形氮化铝粉体的方法
Liu et al. Formation mechanisms of Si3N4 microstructures during silicon powder nitridation
Hu et al. Graphene-based SiC nanowires with nanosheets: synthesis, growth mechanism and photoluminescence properties
Liu et al. Improved thermal conductivity of ceramic-epoxy composites by constructing vertically aligned nanoflower-like AlN network
Ying et al. Simple synthesis of semi-graphitized ordered mesoporous carbons with tunable pore sizes
Men et al. Amorphous liquid phase induced synthesis of boron nitride nanospheres for improving sintering property of h-BN/ZrO2 composites
Zhang et al. Observation of SiC nanodots and nanowires in situ growth in SiOC ceramics
Guo et al. Preparation of SiC nanowires with fins by chemical vapor deposition
CN100560487C (zh) 一种低温制备立方碳化硅纳米线的方法
Zhang et al. Directly growing nanowire-assembled nanofibrous ceramic foams with multi-lamellar structure via freeze-casting process
Han et al. In-situ preparation of SiC reinforced Si3N4 ceramics aerogels by foam-gelcasting method
Wang et al. Synthesis and photoluminescence of Si3N4 nanowires from La/SiO2 composites and Si powders
Liu et al. Facile growth of oriented SiC nanowires arrays on carbon fiber cloth via CVD
Gao et al. Mass production of very thin single-crystal silicon nitride nanobelts
Yang The reaction conditions influence on hydrothermal synthesis of boehmite nanorods
Dou et al. Structure control and growth mechanism of beaded SiC nanowires with microwave absorption properties
Yang et al. Microstructure and properties of Si3N4 foam ceramics modified by in-situ self-grown nanowires
CN112794330A (zh) 一种碳化硼纳米线的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant