CN109317096B - 一种膨胀石墨/多孔六方氮化硼复合材料及其制备方法和作为苯气体吸附剂的应用 - Google Patents

一种膨胀石墨/多孔六方氮化硼复合材料及其制备方法和作为苯气体吸附剂的应用 Download PDF

Info

Publication number
CN109317096B
CN109317096B CN201811226490.1A CN201811226490A CN109317096B CN 109317096 B CN109317096 B CN 109317096B CN 201811226490 A CN201811226490 A CN 201811226490A CN 109317096 B CN109317096 B CN 109317096B
Authority
CN
China
Prior art keywords
expanded graphite
boron nitride
hexagonal boron
composite material
porous hexagonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811226490.1A
Other languages
English (en)
Other versions
CN109317096A (zh
Inventor
付猛
朱吉
程皓
陈志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201811226490.1A priority Critical patent/CN109317096B/zh
Publication of CN109317096A publication Critical patent/CN109317096A/zh
Application granted granted Critical
Publication of CN109317096B publication Critical patent/CN109317096B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0259Compounds of N, P, As, Sb, Bi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons

Abstract

本发明属于气体吸附材料领域,公开了一种膨胀石墨复合多孔六方氮化硼吸附剂及其制备方法和应用,包括以下步骤:a)依次将三聚氰胺,硼酸和膨胀石墨加入去离子水中,搅拌5min,混合物;b)将所得混合物倒入反应釜中,150℃‑300℃,反应6‑8h,得产物;d)将产物过滤、烘干,得到膨胀石墨和氮化硼前驱体的复合材料,e)将前驱体复合材料在N2氛围中升温至1000‑1200℃碳化1‑2h,得到膨胀石墨/多孔六方氮化硼复合吸附材料。本发明充分利用多孔六方氮化硼的高比表面积和丰富的孔结构,结合膨胀石墨高孔容的的特性,对苯气体具有良好的吸附性。

Description

一种膨胀石墨/多孔六方氮化硼复合材料及其制备方法和作 为苯气体吸附剂的应用
技术领域
本发明属于新型碳材料领域,具体涉及一种膨胀石墨/多孔六方氮化硼复合材料及其制备方法和作为苯气体吸附剂的应用。
背景技术
随着工业化的不断发展,苯气体的排放量逐年提高。苯气体是存在于许多工业应用中的污染物,即使在非常低的浓度下,它们对人体健康和环境的危害都非常大。
因此需要有效的针对苯气体的去除手段,如吸附,催化氧化,冷凝和膜分离。在多样性技术中,吸附被认为是去除苯的最具成本效益和环境友好的技术之一。目前,市面上使用的吸附材料存在吸附容量有限,且在低浓度下对苯气体吸附性能不佳等缺点。
膨胀石墨是近几十年来发展起来的新型碳质吸附材料,通常由天然鳞片石墨通过顺序插层、洗涤、干燥和膨化来制备,具有微米级的孔结构、较大的吸附容量,通透性良好,非常适合于流动介质的吸附,但其不适合应用于气相吸附研究,需要对其的孔结构进行修饰。
多孔六方氮化硼(p-BN)具有独特的物理和化学性质,包括高比表面积,低密度,高导热性,优异的化学稳定性和抗氧化性,这些特性使p-BN具有广泛的应用前景,尤其是与吸附相关的应用。此外,芳环分子体系中广泛存在一种π-π堆积的非共价相互作用,这种相互作用是范德华作用和静电作用相结合产生的,是分子自组装的主要动力。p-BN是具有芳环的六边型结构,能够和苯的芳环发生面面堆积和边面堆积的π-π相互作用,因此可以达到选择性吸附的目的。制得p-BN的BET比表面积为1018m2/g,平均孔径约为1.41nm,根据吸附理论,该孔径对挥发性有机污染物有极高的吸附能力。
发明内容
有鉴于此,本发明提供了膨胀石墨/多孔六方氮化硼复合吸附材料,该复合材料对苯气体等挥发性有机物有良好的吸附性能,且具有很强的热稳定性,化学稳定性,应用广泛。
本发明是通过以下技术方案实现的:
一种膨胀石墨复合多孔六方氮化硼的吸附剂的制备方法,包括如下步骤:
a.将鳞片石墨氧化、插层,在700℃-900℃温度下加热膨胀,膨化时间10-30s,制成膨胀石墨;
b.将膨胀石墨,三聚氰胺和硼酸按质量比1-5:1:1混合加入100mL去离子水初步搅拌5min,得混合物;
c.将所得混合物倒入反应釜中,在150℃-300℃条件下,反应6-8h;
d.反应后将产物过滤、烘干,得到膨胀石墨和氮化硼前驱体的复合材料;
e.将前驱体复合材料在N2氛围下高温碳化1-2h,得到膨胀石墨/多孔六方氮化硼复合吸附材料。
所述的高温碳化温度为1000℃-1200℃。选择在该温度下煅烧是由于温度较低时产物是菱方氮化硼和六方氮化硼的混合物,随着温度的提高,菱方氮化硼逐渐消失,直到1000℃以上产物为纯六方氮化硼。
本发明与现有技术相比较,具有如下显著的优点:
(1)本发明所制备的膨胀石墨/多孔六方氮化硼复合吸附材料,是利用多孔六方氮化硼具有芳环的六边型结构,能够和苯的芳环发生面面堆积和边面堆积的π-π相互作用,因此可以达到选择性吸附的目的。将高孔容的膨胀石墨的作为骨架支撑p-BN,使多孔六方氮化硼(p-BN)嵌于膨胀石墨孔壁,两者之间产生相互协同作用,可以极大提高对苯气体的吸附量和吸附能力,最终复合材料对苯的吸附量能达到945mg/g;
(2)本发明选用膨胀石墨为多孔六方氮化硼(p-BN)的骨架支撑,是因为制得的膨胀石墨在具有较大比表面积的同时其孔径是以中孔和大孔为主,而其他高孔容的物质(如活性炭,活性氧化铝,沸石等)孔径以微孔为主,与p-BN复合效果较差,不能满足p-BN骨架的要求,所以膨胀石墨和p-BN制备的复合吸附材料对苯气体选择吸附性好,吸附容量高,结构稳定,并制备方法简单,快速,重复性高,具有很好的应用前景。
附图说明
图1为实施例1-3分别制备的EG/p-BN吸附材料的吸脱附等温线图;
图2为实施例1-3制备的EG/p-BN吸附材料的孔径分布图;
图3为EG,p-BN,和实施例一制得的EG/p-BN的XRD衍射谱图;
图4为EG 30k倍下的SEM照片;
图5为EG/p-BN复合材料30k倍下的SEM照片。
具体实施方式
下面给出实施例以对本发明进行具体的描述,但不限于此。
实施例一
a.将鳞片石墨氧化、插层,在900℃温度下加热膨胀,膨化时间30s,制成膨胀石墨;
b.将膨胀石墨,三聚氰胺和硼酸按质量比2:1:1混合加入100mL去离子水初步搅拌5min,得混合物;
c.将所得混合物倒入反应釜中,在180℃条件下,反应6h;
d.反应后将产物过滤、烘干,得到膨胀石墨和氮化硼前驱体的复合材料;
e.将前驱体复合材料于N2氛围下升温至1050℃碳化1h,得到膨胀石墨/多孔六方氮化硼复合吸附材料。
本实例中制备的膨胀石墨/多孔六方氮化硼复合材料作为吸附剂用来吸附苯气体,采用氮气吸脱附测得BET比表面积为1145m2/g,平均孔径为2.15nm,采用静态保干器法测量对苯气体的吸附量,测得吸附量为945mg/g。
实施例二
本实施例与实施例一基本相同,特别之处在于“将膨胀石墨,三聚氰胺和硼酸按质量比1:1:1混合”。具体方案如下:
a.将鳞片石墨氧化、插层,在900℃温度下加热膨胀,膨化时间30s,制成膨胀石墨;
b.将膨胀石墨,三聚氰胺和硼酸按质量比1:1:1混合后加入100mL去离子水初步搅拌5min,得混合物;
c.将所得混合物倒入反应釜中,在180℃条件下,反应6h;
d.将产物过滤、烘干,得到膨胀石墨和氮化硼前驱体的复合材料;
e.将复合材料于N2氛围下升温至1050℃碳化1h,得到膨胀石墨/多孔六方氮化硼复合吸附材料。
本实例中制备的膨胀石墨/多孔六方氮化硼复合材料作为吸附剂用来吸附苯气体,采用氮气吸脱附测得BET比表面积为930m2/g,平均孔径为2.29nm,采用静态保干器法测量对苯气体的吸附量,测得吸附量为762mg/g。
实施例三
本实施例与实施例一基本相同,特别之处在于“将复合材料于N2氛围气氛下升温至750℃碳化1h”。具体方案如下:
a.将鳞片石墨氧化、插层,在900℃温度下加热膨胀,膨化时间30s,制成膨胀石墨;
b.将膨胀石墨,三聚氰胺和硼酸按2:1:1混合加入100mL去离子水初步搅拌5min,得混合物;
c.将所得混合物倒入反应釜中,在180℃条件下,反应6h;
d.将反应产物过滤、烘干,得到膨胀石墨和氮化硼前驱体的复合材料;
e.将复合材料于N2氛围下升温至750℃碳化1h,得到膨胀石墨/多孔六方氮化硼复合吸附材料。
本实例中制备的膨胀石墨/多孔六方氮化硼复合材料作为吸附剂用来吸附苯气体,采用氮气吸脱附测得BET比表面积为823m2/g,平均孔径为2.64nm,采用静态保干器法测量对苯气体的吸附量,测得吸附量为638mg/g。
对比例一
制备膨胀石墨:
将鳞片石墨氧化、插层,在900℃温度下加热膨胀,膨化时间30s,制成膨胀石墨。
将制备的膨胀石墨,采用静态保干器法测量对苯气体的吸附量,测得吸附量为112mg/g
对比例二
制备多孔六方氮化硼:
将三聚氰胺和硼酸按1:1混合加入100mL去离子水;
将混合物倒入反应釜中,180℃,反应6h;
将反应产物过滤、烘干,于N2氛围碳化1h,得到多孔六方氮化硼。
将制备的多孔六方氮化硼,采用静态保干器法测量对苯气体的吸附量,测得吸附量为430mg/g。
对比例三
将膨胀石墨和多孔六方氮化硼按1:1进行物理混合;采用静态保干器法测量对苯气体的吸附量,测得吸附量为354mg/g。
图1为实施例1-3制备的EG/p-BN吸附材料的吸脱附等温线图,具有I型等温线的特征,说明材料微孔分布范围较广,是具有较小外表面的微孔材料,吸附能很快达到饱和;图2为实施例1-3制备的EG/p-BN吸附材料的孔径分布图。可以看出,实施例一制备的EG/p-BN比表面积最大,达到了1145m2/g,各个实施例的孔径集中在2nm以下,说明各个实施例制备的吸附材料均具有良好的孔结构。
图3为EG,p-BN,和实施例一制得的EG/p-BN的XRD衍射谱图。在2θ=26.3°处的特征峰对应(002)平面(六方氮化硼的标准峰)。另一个衍射峰出现在2θ=42.4°,对应六方氮化硼的(100)和(101)面叠加的一个峰。EG/p-BN除了在与EG相同的位置上有明显的衍射峰,同时在26.3°处出现了(002)面的不规则峰,表明EG/p-BN复合材料中同时存在EG和p-BN。
图4为EG 30k倍下的SEM照片,图5为EG复合p-BN 30k倍下的SEM照片。由图可以看出复合后材料结构疏松,有大量的微孔,比表面积大幅提升。

Claims (2)

1.一种膨胀石墨/多孔六方氮化硼复合材料作为苯气体吸附剂的应用,其特征在于:所述复合材料是以膨胀石墨为基体,在膨胀石墨上复合多孔六方氮化硼(p-BN);
所述膨胀石墨/多孔六方氮化硼复合材料的制备方法为:
a.依次将三聚氰胺,硼酸和膨胀石墨加入去离子水中,搅拌,得混合物;所述的三聚氰胺、硼酸、膨胀石墨的质量比为1:1:1-5;
b.将所得混合物倒入反应釜中,在150℃-300℃条件下,反应6-8h;
c.反应后将产物过滤、烘干,得到膨胀石墨和氮化硼前驱体复合材料;
d.将前驱体复合材料在N2氛围下高温碳化1-2h,得到膨胀石墨/多孔六方氮化硼复合吸附材料。
2.根据权利要求1所述膨胀石墨/多孔六方氮化硼复合材料作为苯气体吸附剂的应用,其特征在于:步骤d中所述的高温碳化温度为1000℃-1200℃。
CN201811226490.1A 2018-12-04 2018-12-04 一种膨胀石墨/多孔六方氮化硼复合材料及其制备方法和作为苯气体吸附剂的应用 Active CN109317096B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811226490.1A CN109317096B (zh) 2018-12-04 2018-12-04 一种膨胀石墨/多孔六方氮化硼复合材料及其制备方法和作为苯气体吸附剂的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811226490.1A CN109317096B (zh) 2018-12-04 2018-12-04 一种膨胀石墨/多孔六方氮化硼复合材料及其制备方法和作为苯气体吸附剂的应用

Publications (2)

Publication Number Publication Date
CN109317096A CN109317096A (zh) 2019-02-12
CN109317096B true CN109317096B (zh) 2020-04-28

Family

ID=65261576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811226490.1A Active CN109317096B (zh) 2018-12-04 2018-12-04 一种膨胀石墨/多孔六方氮化硼复合材料及其制备方法和作为苯气体吸附剂的应用

Country Status (1)

Country Link
CN (1) CN109317096B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112316567B (zh) * 2020-10-19 2022-07-22 江苏大学 一种纳米纤维过滤薄膜及其制备方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101391894B (zh) * 2007-09-18 2011-08-17 晟茂(青岛)先进材料有限公司 一种高热导率增强石墨复合材料及其制备方法
KR101151909B1 (ko) * 2011-04-11 2012-05-31 이계영 내마모성 및 윤활성 코팅 조성물
CN103480329B (zh) * 2013-09-05 2016-03-23 深圳先进技术研究院 六方氮化硼/氧化石墨烯复合吸附材料及其制备方法
CN103910345B (zh) * 2014-03-24 2016-04-20 中国科学院深圳先进技术研究院 氮化硼复合材料的制备方法
CN107814363A (zh) * 2016-09-13 2018-03-20 罗杰斯公司 一种模板法制备膨胀六方氮化硼的方法

Also Published As

Publication number Publication date
CN109317096A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
Chang et al. Poplar catkin-derived self-templated synthesis of N-doped hierarchical porous carbon microtubes for effective CO2 capture
Shcherban Review on synthesis, structure, physical and chemical properties and functional characteristics of porous silicon carbide
Chen et al. CO2 capture using zeolite 13X prepared from bentonite
Ryoo et al. Ordered mesoporous carbons
US10328413B2 (en) Adsorbent for carbon dioxide and manufacturing method for the same
Wu et al. One-pot generation of mesoporous carbon supported nanocrystalline calcium oxides capable of efficient CO 2 capture over a wide range of temperatures
KR100420787B1 (ko) 탄소 분자체 및 그의 제조 방법
CN109775673B (zh) 多孔硼碳氮纳米片层和多孔氮化硼纳米片层及其制备方法和作为吸附材料的应用
CN111266089B (zh) 一种金属有机框架复合材料及其制备方法与应用
KR101608850B1 (ko) 중공형 다공성 탄소입자 및 이의 제조방법
CN110642238B (zh) 类石墨烯氮掺杂多孔碳材料及其制备方法和应用
Djeridi et al. High pressure methane adsorption on microporous carbon monoliths prepared by olives stones
Li et al. High surface area graphitized carbon with uniform mesopores synthesised by a colloidal imprinting method
US20110224070A1 (en) Microporous carbon material and methods of forming same
Tang et al. Polyethylenimine loaded nanoporous carbon with ultra-large pore volume for CO2 capture
JP2015218085A (ja) 活性化グラフェンモノリスおよびその製造方法
Fuertes et al. Template synthesis of mesoporous carbons from mesostructured silica by vapor deposition polymerisation
Wu et al. Facile synthesis of mesoporous α-MnO2 nanorod with three-dimensional frameworks and its enhanced catalytic activity for VOCs removal
Kong et al. Ordered mesoporous carbon with enhanced porosity to support organic amines: efficient nanocomposites for the selective capture of CO 2
Borhan et al. Development of activated carbon derived from banana peel for CO2 removal
Feng et al. Hierarchical porous carbons derived from corncob: study on adsorption mechanism for gas and wastewater
CN109317096B (zh) 一种膨胀石墨/多孔六方氮化硼复合材料及其制备方法和作为苯气体吸附剂的应用
Wang et al. Synthesis of morphology-controllable mesoporous Co3O4 and CeO2
Bai et al. Ultrafine hierarchically porous carbon fibers and their adsorption performance for ethanol and acetone
Xue et al. Encapsulated HKUST-1 nanocrystal with enhanced vapor stability and its CO2 adsorption at low partial pressure in unitary and binary systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190212

Assignee: Changzhou Zhuoyida Machinery Co.,Ltd.

Assignor: CHANGZHOU University

Contract record no.: X2023980053835

Denomination of invention: An expanded graphite/porous hexagonal boron nitride composite material and its preparation method, as well as its application as a benzene gas adsorbent

Granted publication date: 20200428

License type: Common License

Record date: 20231225