CN109315783A - 一种负载姜黄素的结构脂质基纳米乳液的制备方法 - Google Patents

一种负载姜黄素的结构脂质基纳米乳液的制备方法 Download PDF

Info

Publication number
CN109315783A
CN109315783A CN201811150209.0A CN201811150209A CN109315783A CN 109315783 A CN109315783 A CN 109315783A CN 201811150209 A CN201811150209 A CN 201811150209A CN 109315783 A CN109315783 A CN 109315783A
Authority
CN
China
Prior art keywords
nanoemulsions
structured lipid
curcumin
preparation
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811150209.0A
Other languages
English (en)
Inventor
鞠兴荣
吴进
王立峰
徐斐然
熊文飞
季圣阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Finance and Economics
Original Assignee
Nanjing University of Finance and Economics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Finance and Economics filed Critical Nanjing University of Finance and Economics
Priority to CN201811150209.0A priority Critical patent/CN109315783A/zh
Publication of CN109315783A publication Critical patent/CN109315783A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/10Foods or foodstuffs containing additives; Preparation or treatment thereof containing emulsifiers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供了一种负载姜黄素的结构脂质基纳米乳液的制备方法,首先,菜籽油与椰子油在RM‑IM脂肪酶的催化下制备中长碳链结构脂质;然后将脂溶性的姜黄素溶解于合成的结构脂质中作为油相,吐温80溶于超纯水中作为水相,混合油相与水相;最后,混合物用高速分散器进行预分散,得到的产物再通过超声探针于高压均质制备成均匀的纳米乳液。本发明所制备的纳米乳液提高了姜黄素的生物获得率,且具有稳定强、易消化等特点,可作为一种功能性食品食用。

Description

一种负载姜黄素的结构脂质基纳米乳液的制备方法
技术领域
本发明涉及一种负载姜黄素的结构脂质基纳米乳液的制备方法,属于食品生物加工技术领域。
背景技术
姜黄素是从植物姜黄根茎中提取出的一种酚类物质,其具有抗炎、抗肿瘤、抗氧化、降血脂、提升机体的免疫能力、抗菌和防治老年痴呆等多种药理作用和良好的临床应用潜力。但姜黄素也有一定的缺点,不溶于水、吸收差、生物利用度低(不足10%)、不稳定、代谢快、易降解等,限制了其应用。
现有技术中,有研究者使用蛋白、碳水化合物等作为壁材,包裹姜黄素以提高其生物利用度,经过壁材的包裹,姜黄素的生物利用度有所提高,但生物利用度仍不足40%。
结构脂质是一种新型的生物合成型油脂,是将天然脂质经过改性,定向加入短碳链脂肪酸、中碳链脂肪酸和长碳链不饱和脂肪酸,因其特殊的脂肪酸组成以及脂肪酸在甘油三酯中特定的位置,使其具有特殊的生理功能和营养价值。本发明采用结构脂质作为壁材包埋姜黄素,以提高姜黄素的生物利用度。
发明内容
本发明的目的是解决现有技术的不足,提供一种负载姜黄素的结构脂质基纳米乳液的制备方法,本发明以经过酶法合成的结构脂质作为原料,对脂溶性的姜黄素进行包埋,并通过均质技术以提高姜黄素的生物获得率。
技术方案
一种负载姜黄素的结构脂质基纳米乳液的制备方法,包括以下步骤:
(1)结构脂质的制备:将摩尔比为(1-1.5):1的菜籽油与椰子油混合均匀,然后加入固定化脂肪酶RM-IM和水进行酯交换反应,固定化脂肪酶RM-IM的加入量占菜籽油与椰子油总重量的7-10%,反应结束后,将反应产物提纯,得到结构脂质;
(2)结构脂质基纳米载体的构建:往步骤(1)制得的结构脂质中加入姜黄素,姜黄素的用量为结构脂质重量的0.8-2%,混合均匀后作为油相;往超纯水中加入吐温80,作为水相;将油相和水相同时加热到45-65℃,然后将水相加入到油相中,油相与水相的质量比为1:(8-12),搅拌混合均匀,调pH4-7,得到油水混合物;
(3)制备纳米乳液:将步骤(2)的油水混合物通过分散器进行预分散,然后经过超声分散、高压均质,得到均匀稳定的纳米乳液。
进一步,步骤(1)中,菜籽油与椰子油的摩尔比为1:1。
进一步,步骤(1)中,固定化脂肪酶RM-IM的加入量占菜籽油与椰子油总重量的8%。
进一步,步骤(1)中,水的加入量占菜籽油与椰子油总重量的0.96%。
进一步,步骤(2)中,姜黄素的用量为结构脂质重量的1%。
进一步,步骤(2)中,吐温80用量占超纯水重量的1.5%-5%。
进一步,步骤(2)中,油相与水相的质量比为1:10。
进一步,步骤(3)中,预分散的条件是:10000rpm,1min。
进一步,步骤(3)中,所述超声分散采用的是超声细胞粉碎机,超声条件:320kw,2s开、2s关,持续5min。
进一步,步骤(3)中,所述高压均质采用的是纳米均质机,高压均质的条件是600Mpa,5次循环。
本发明的有益效果:
(1)本发明公开了一种负载姜黄素的结构脂质基纳米乳液的制备方法,制得的纳米乳液的粒径为151.7±1.7nm,分散系数为0.154±0.11,包埋率高达90.43%,生物获得率为46.51%,且经过30天,4℃储藏,乳液稳定性良好;
(2)本发明采用结构脂质作为壁材包埋姜黄素,提高了姜黄素的生物利用度,改善了姜黄素水溶性差、在肠胃道中不稳定、易分解的问题;
(3)本发明通过控制乳化剂的添加量和油相水相的比例,制备出了粒径合适,包埋率高,且稳定性良好的纳米乳液;
(4)本发明的纳米乳液具有很多潜在的功能,可以作为一种功能性食品和膳食补充剂。
附图说明
图1为实施例1制得的纳米乳液的透射电镜图;
图2为实施例1制得的纳米乳液的激光共聚焦图;
图3为实施例1-3制得的纳米乳液的粒径测量图;
图4为实施例1-3制得的纳米乳液的包埋率图;
图5为实施例1-3制得的纳米乳液的生物获得率图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。值得说明的是,为了便于比较,下述实施例中,制备纳米乳液时,超声分散采用的是新芝的JY 92-ⅡN超声细胞粉碎机,高压均质采用的是ATS的纳米均质机BASICⅡ,但并不限于此。
下述实施例中:
(1)包埋率是用的高速离心法进行测定:取500μL样品用稀释液稀释10倍,稀释液由25%乙醇,0.5%Tween80和超纯水组成,稀释完的样品进行离心,离心条件为4000rpm,4℃,10min,通过离心未包埋的姜黄素被洗脱到底部,取上清进行HPLC分析,包埋率可通过公式计算:
包埋率(%)=100×Ainner/Aadded
Ainner---上清液中姜黄素的含量,Aadded---姜黄素的总添加量。
测定姜黄素的含量是用的高效液相色谱法,具有快速、稳定、准确的特点,色谱条件为:C18柱(4.6mm×250mm,5μm),流速为1mL/min,流动相为乙腈-0.5%磷酸水溶液(58:42),DAD检测器,检测波长为425nm,进样量为20μL,柱温30℃。
(2)生物获得率是通过体外模拟消化进行评估的,虽然与体内消化有差异但也能在一定程度上反应乳液的消化情况。乳液的消化所经历的场所主要有胃和肠道,所以我们模拟了胃和肠道的消化过程,具体步骤为:将20mL样品与20mL模拟胃液混合,模拟胃液的组成为-2g/LNacl,7mL/LHcl,胃蛋白酶3.2g/L,胃液调节pH至1.2。混合物调节pH至2.0,置于恒温水浴震荡中反应2h,温度为37℃,震荡频率为100rpm。反应结束后取30mL反应物加入模拟肠液,包括1.5mL盐溶液(36.7mg/mL Cacl2,218.7mg/mL Nacl),3.5mL胆汁盐(187.5mg胆汁盐溶于PBS,pH=7.0),2.5mL酶悬浮液(60mg胰酶、60mg脂肪酶,溶于PBS,pH=7.0),混合物调节pH至7.0,反应2h,温度为37℃,震荡频率100rpm。反应结束后对原始消化物进行冰浴,待温度冷却后进行高速冷冻离心,离心条件:18000rpm,4℃,30min。经过离心后,产生一层胶状物,收集胶状物进行姜黄素含量HPLC分析。姜黄素的生物获得率可通过公式计算:
生物获得率(%)=100×As/Aadded
As---姜黄素溶解于胶体中的含量,Aadded---姜黄素的总添加量。
实施例1
一种负载姜黄素的结构脂质基纳米乳液的制备方法,包括以下步骤:
(1)结构脂质的制备:将菜籽油与椰子油按摩尔比1:1混合均匀,加入占菜籽油与椰子油总重量8%的固定化脂肪酶RM-IM和占菜籽油与椰子油总重量0.96%的水,置于40℃恒温水浴震荡器中震荡反应12h,震荡频率以能充分晃动酶与油的混合物为宜,反应完得到的是酯交换的初产物,对初产物进行分离提纯,使用分子蒸馏除去游离的脂肪酸和单甘酯,得到结构脂质;
(2)结构脂质基纳米载体的构建:往步骤(1)制得的结构脂质中加入结构脂质重量1%的姜黄素,混合均匀后作为油相;往超纯水中加入占超纯水重量3%的吐温80,作为水相;将油相和水相同时加热到50℃,然后按油水相比例1:10,将水相加入到油相中,并用磁力搅拌器搅拌15min充分混匀,转速为600rpm,调节pH至4.0,得到油水混合物;
(3)制备纳米乳液:将步骤(2)的油水混合物通过分散器进行预分散(IKA高速分散器),分散条件为10000rpm,1min,然后经过超声分散(320kw,5min,2s开、2s关)、高压均质(600Mpa,循环5次),得到均匀稳定的纳米乳液。该纳米乳液的透射电镜图见图1,可以观察出纳米乳液形状近似球型,且粒径为200nm左右;图2为实施例1制得的纳米乳液的激光共聚焦图,经过染色,可以观察到乳液液滴呈密集的球状分布,有聚集倾向的液滴较少。
对制备而成的乳液进行一系列的表征,包括粒径、分散系数、包埋率、生物获得率及储藏稳定性等测试,结果显示,纳米乳液粒径为145.2±1.69nm,分散系数为0.15±0.02,包埋率为93.53±7.71%,生物获得率为54.74±6.92%,经过30天,4℃储藏,乳液稳定性良好。
实施例2
一种负载姜黄素的结构脂质基纳米乳液的制备方法,包括以下步骤:
(1)结构脂质的制备:将菜籽油与椰子油按摩尔比1:1混合均匀,加入占菜籽油与椰子油总重量8%的固定化脂肪酶RM-IM和占菜籽油与椰子油总重量0.96%的水,置于40℃恒温水浴震荡器中震荡反应12h,震荡频率以能充分晃动酶与油的混合物为宜,反应完得到的是酯交换的初产物,对初产物进行分离提纯,使用分子蒸馏除去游离的脂肪酸和单甘酯,得到结构脂质;
(2)结构脂质基纳米载体的构建:往步骤(1)制得的结构脂质中加入结构脂质重量1%的姜黄素,混合均匀后作为油相;往超纯水中加入占超纯水重量3%的吐温80,作为水相;将油相和水相同时加热到50℃,然后按油水相比例1:10,将水相加入到油相中,并用磁力搅拌器搅拌15min充分混匀,转速为600rpm,调节pH至5.0,得到油水混合物;
(3)制备纳米乳液:将步骤(2)的油水混合物通过分散器进行预分散,分散条件为10000rpm,1min,然后经过超声探针(320kw,5min,2s开、2s关)、高压均质(600Mpa,循环5次),得到均匀稳定的纳米乳液。
对制备而成的乳液进行一系列的表征,包括粒径、分散系数、包埋率、生物获得率及储藏稳定性等测试,结果显示,纳米乳液粒径为139.1±2.23nm,分散系数为0.16±0.02,包埋率为86.32±0.63%,生物获得率为54.57±3.92%,经过30天,4℃储藏,乳液稳定性良好。
实施例3
一种负载姜黄素的结构脂质基纳米乳液的制备方法,包括以下步骤:
(1)结构脂质的制备:将菜籽油与椰子油按摩尔比1:1混合均匀,加入占菜籽油与椰子油总重量8%的固定化脂肪酶RM-IM和占菜籽油与椰子油总重量0.96%的水,置于40℃恒温水浴震荡器中震荡反应12h,震荡频率以能充分晃动酶与油的混合物为宜,反应完得到的是酯交换的初产物,对初产物进行分离提纯,使用分子蒸馏除去游离的脂肪酸和单甘酯,得到结构脂质;
(2)结构脂质基纳米载体的构建:往步骤(1)制得的结构脂质中加入结构脂质重量1%的姜黄素,混合均匀后作为油相;往超纯水中加入占超纯水重量3%的吐温80,作为水相;将油相和水相同时加热到50℃,然后按油水相比例1:10,将水相加入到油相中,并用磁力搅拌器搅拌15min充分混匀,转速为600rpm,调节pH至7.0,得到油水混合物;
(3)制备纳米乳液:将步骤(2)的油水混合物通过分散器进行预分散,分散条件为10000rpm,1min,然后经过超声探针(320kw,5min,2s开、2s关)、高压均质(600Mpa,循环5次),得到均匀稳定的纳米乳液。
对制备而成的乳液进行一系列的表征,包括粒径、分散系数、包埋率、生物获得率及储藏稳定性等测试,结果显示,纳米乳液粒径为173.9±1.90nm,分散系数为0.18±0.01,包埋率为72.72±0.59%,生物获得率为58.86±2.91%,经过30天,4℃储藏,乳液稳定性良好。
图3为实施例1-3制得的纳米乳液的粒径测量图,可以看出,实施例2(pH5)乳液的粒径最小但与实施例1(pH4)乳液差距不大,实施例3(pH7)乳液粒径最大;图4为实施例1-3制得的纳米乳液的包埋率图,可以看出,在pH逐渐上升的过程中包埋率逐渐降低,说明在低pH下包埋率较高;图5为实施例1-3制得的纳米乳液的生物获得率图,实施例1(pH4)和实施例2(pH5)的生物获得率相近,实施例3(pH7)生物获得率略高,可能是其包埋率低,吸附在表面的姜黄素较多,从而生物获得率略高的原因。

Claims (10)

1.一种负载姜黄素的结构脂质基纳米乳液的制备方法,其特征在于,包括以下步骤:
(1)结构脂质的制备:将摩尔比为(1-1.5):1的菜籽油与椰子油混合均匀,然后加入固定化脂肪酶RM-IM和水进行酯交换反应,固定化脂肪酶RM-IM的加入量占菜籽油与椰子油总重量的7-10%,反应结束后,将反应产物提纯,得到结构脂质;
(2)结构脂质基纳米载体的构建:往步骤(1)制得的结构脂质中加入姜黄素,姜黄素的用量为结构脂质重量的0.8-2%,混合均匀后作为油相;往超纯水中加入吐温80,作为水相;将油相和水相同时加热到45-65℃,然后将水相加入到油相中,油相与水相的质量比为1:(8-12),搅拌混合均匀,调pH4-7,得到油水混合物;
(3)制备纳米乳液:将步骤(2)的油水混合物通过分散器进行预分散,然后经过超声分散、高压均质,得到均匀稳定的纳米乳液。
2.如权利要求1所述的负载姜黄素的结构脂质基纳米乳液的制备方法,其特征在于,步骤(1)中,菜籽油与椰子油的摩尔比为1:1。
3.如权利要求1所述的负载姜黄素的结构脂质基纳米乳液的制备方法,其特征在于,步骤(1)中,固定化脂肪酶RM-IM的加入量占菜籽油与椰子油总重量的8%。
4.如权利要求1所述的负载姜黄素的结构脂质基纳米乳液的制备方法,其特征在于,步骤(1)中,水的加入量占菜籽油与椰子油总重量的0.96%。
5.如权利要求1所述的负载姜黄素的结构脂质基纳米乳液的制备方法,其特征在于,步骤(2)中,姜黄素的用量为结构脂质重量的1%。
6.如权利要求1所述的负载姜黄素的结构脂质基纳米乳液的制备方法,其特征在于,步骤(2)中,吐温80用量占超纯水重量的1.5%-5%。
7.如权利要求1所述的负载姜黄素的结构脂质基纳米乳液的制备方法,其特征在于,步骤(2)中,油相与水相的比例为1:10。
8.如权利要求1所述的负载姜黄素的结构脂质基纳米乳液的制备方法,其特征在于,步骤(3)中,预分散的条件是:10000rpm,1min。
9.如权利要求1所述的负载姜黄素的结构脂质基纳米乳液的制备方法,其特征在于,步骤(3)中,所述超声分散采用的是超声细胞粉碎机,超声条件:320kw,2s开、2s关,持续5min。
10.如权利要求1至9任一项所述的负载姜黄素的结构脂质基纳米乳液的制备方法,其特征在于,步骤(3)中,高压均质的条件是600Mpa,5次循环。
CN201811150209.0A 2018-09-29 2018-09-29 一种负载姜黄素的结构脂质基纳米乳液的制备方法 Pending CN109315783A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811150209.0A CN109315783A (zh) 2018-09-29 2018-09-29 一种负载姜黄素的结构脂质基纳米乳液的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811150209.0A CN109315783A (zh) 2018-09-29 2018-09-29 一种负载姜黄素的结构脂质基纳米乳液的制备方法

Publications (1)

Publication Number Publication Date
CN109315783A true CN109315783A (zh) 2019-02-12

Family

ID=65266546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811150209.0A Pending CN109315783A (zh) 2018-09-29 2018-09-29 一种负载姜黄素的结构脂质基纳米乳液的制备方法

Country Status (1)

Country Link
CN (1) CN109315783A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113907355A (zh) * 2021-10-19 2022-01-11 南昌大学 一种水相结晶型油包水乳液及其制备方法
CN117159445A (zh) * 2023-01-28 2023-12-05 济宁医学院 一种姜黄素纳米乳温敏水凝胶的制备方法及其应用
CN117502515A (zh) * 2024-01-02 2024-02-06 北京市农林科学院 疏水性酚类化合物纳米递送载体及其在功能性乳制品中的应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020107265A1 (en) * 1999-10-18 2002-08-08 Feng-Jing Chen Emulsion compositions for polyfunctional active ingredients
US20060045928A1 (en) * 2004-08-31 2006-03-02 Seiri Oshiro Composition containing herbal medicine component for promoting absorption and production method thereof
US20060062887A1 (en) * 2002-10-31 2006-03-23 Hirofumi Haruna Fat composition for spread
CN102781477A (zh) * 2010-03-29 2012-11-14 株式会社钟化 被覆用油脂组合物及使用其的粒子状组合物
CN103655214A (zh) * 2013-12-27 2014-03-26 苏州纳康生物科技有限公司 负载四氢姜黄素的纳米载体及其制备方法
CN103655519A (zh) * 2013-12-24 2014-03-26 哈尔滨医科大学 一种具有P-gp抑制作用的姜黄素固体脂质纳米粒及制备方法
US20150272887A1 (en) * 2013-11-26 2015-10-01 Humanetics Corporation Suspension compositions of physiologically active phenolic compounds & methods of making and using the same
CN106913521A (zh) * 2017-03-08 2017-07-04 重庆医科大学 一种姜黄素纳米晶自稳定皮克林乳剂及其制备方法
CN107028883A (zh) * 2017-04-20 2017-08-11 东北农业大学 运载姜黄素纳米乳的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020107265A1 (en) * 1999-10-18 2002-08-08 Feng-Jing Chen Emulsion compositions for polyfunctional active ingredients
US20060062887A1 (en) * 2002-10-31 2006-03-23 Hirofumi Haruna Fat composition for spread
US20060045928A1 (en) * 2004-08-31 2006-03-02 Seiri Oshiro Composition containing herbal medicine component for promoting absorption and production method thereof
CN102781477A (zh) * 2010-03-29 2012-11-14 株式会社钟化 被覆用油脂组合物及使用其的粒子状组合物
US20150272887A1 (en) * 2013-11-26 2015-10-01 Humanetics Corporation Suspension compositions of physiologically active phenolic compounds & methods of making and using the same
CN103655519A (zh) * 2013-12-24 2014-03-26 哈尔滨医科大学 一种具有P-gp抑制作用的姜黄素固体脂质纳米粒及制备方法
CN103655214A (zh) * 2013-12-27 2014-03-26 苏州纳康生物科技有限公司 负载四氢姜黄素的纳米载体及其制备方法
CN106913521A (zh) * 2017-03-08 2017-07-04 重庆医科大学 一种姜黄素纳米晶自稳定皮克林乳剂及其制备方法
CN107028883A (zh) * 2017-04-20 2017-08-11 东北农业大学 运载姜黄素纳米乳的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAN-LI ZHAO,等: "Enzymatic synthesis of medium- and long-chain triacylglycerols-enriched structured lipid from Cinnamomum camphora seed oil and camellia oil by Lipozyme RM IM", 《INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY》 *
姚艳玉等: "油相种类对姜黄素纳米乳液稳定性的影响", 《食品科技》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113907355A (zh) * 2021-10-19 2022-01-11 南昌大学 一种水相结晶型油包水乳液及其制备方法
CN117159445A (zh) * 2023-01-28 2023-12-05 济宁医学院 一种姜黄素纳米乳温敏水凝胶的制备方法及其应用
CN117502515A (zh) * 2024-01-02 2024-02-06 北京市农林科学院 疏水性酚类化合物纳米递送载体及其在功能性乳制品中的应用

Similar Documents

Publication Publication Date Title
CN109315783A (zh) 一种负载姜黄素的结构脂质基纳米乳液的制备方法
Li et al. The effect of pH on the stabilization and digestive characteristics of soybean lipophilic protein oil-in-water emulsions with hypromellose
CN112868816B (zh) 一种基于甘油二酯固体脂质纳米粒的油包水乳液凝胶的制备方法
CN107950684A (zh) 一种富含不饱和脂肪酸的油凝胶及其制备方法与应用
CN108618146B (zh) 由大豆蛋白-甜菊糖苷复合稳定的植物甾醇纳米乳液及其制备方法与应用
CN106578335A (zh) 一种高内相凝胶状小麦醇溶蛋白Pickering乳液及制备方法
CN112205475B (zh) 一种结构化乳液
Zheng et al. Physicochemical properties and in vitro digestibility of lotus seed starch-lecithin complexes prepared by dynamic high pressure homogenization
CN114831957B (zh) 利用美拉德反应产物制备的甘油二酯微胶囊及其制备方法
US20080311255A1 (en) Powder Compositions
Xia et al. Impact of composite gelators on physicochemical properties of oleogels and astaxanthin delivery of oleogel-based nanoemulsions
CN107028883A (zh) 运载姜黄素纳米乳的制备方法
CN110269103B (zh) 一种乳脂肪球及其制备方法
Shen et al. High internal phase Pickering emulsions stabilized by modified sturgeon myofibrillar protein for quercetin delivery
Li et al. Effects of the distribution site of crystallizable emulsifiers on the gastrointestinal digestion behavior of double emulsions
CN1476765A (zh) 酸性水中油型乳化组合物
CN112042937A (zh) 一种水溶性叶黄素乳液凝胶及其制备方法
CN107771035A (zh) 用于脂质消化的具有包含乳磷脂包被的植物脂肪的大脂质小球的营养物
CN108185110A (zh) 一种提高米糠蛋白功能性质的方法
KR102393620B1 (ko) 퀘세틴을 함유하는 나노에멀젼 조성물의 제조방법 및 이를 통해 제조된 퀘세틴을 함유하는 나노에멀젼 조성물
Sun et al. Regulating fat globule structure of infant formula based on MFGM to promote lipid uptake by improving lipolysis
Tang et al. Enhancing stability of 1, 3-dioleic acid-2-palmitate (OPO) through microencapsulation: A comparative study of single-and double-layer microcapsules
Guo et al. A notable impact of lipid matrices on cholesterol bioaccessibility from phytosterols-loaded nanostructured lipid carriers during in vitro intestinal digestion
CN110403919A (zh) 一种胭脂萝卜硫素纳米微胶囊的制备方法
Diao et al. The physicochemical properties, microstructure, and stability of diacylglycerol-loaded multilayer emulsion based on protein and polysaccharides

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190212

RJ01 Rejection of invention patent application after publication