CN109310632A - 用于递送生物活性剂的可注射组合物 - Google Patents

用于递送生物活性剂的可注射组合物 Download PDF

Info

Publication number
CN109310632A
CN109310632A CN201780035920.9A CN201780035920A CN109310632A CN 109310632 A CN109310632 A CN 109310632A CN 201780035920 A CN201780035920 A CN 201780035920A CN 109310632 A CN109310632 A CN 109310632A
Authority
CN
China
Prior art keywords
composition
hydrogel
water
bioactivator
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780035920.9A
Other languages
English (en)
Inventor
M·艾尔考巴西
D·E·梅因沃林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Packaging Technology Private Ltd
Capsular Technologies Pty Ltd
Original Assignee
Packaging Technology Private Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2016901365A external-priority patent/AU2016901365A0/en
Application filed by Packaging Technology Private Ltd filed Critical Packaging Technology Private Ltd
Priority to CN202410305484.4A priority Critical patent/CN118203542A/zh
Publication of CN109310632A publication Critical patent/CN109310632A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • A61K38/09Luteinising hormone-releasing hormone [LHRH], i.e. Gonadotropin-releasing hormone [GnRH]; Related peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/27Growth hormone [GH], i.e. somatotropin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0003Invertebrate antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6093Synthetic polymers, e.g. polyethyleneglycol [PEG], Polymers or copolymers of (D) glutamate and (D) lysine

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Endocrinology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dispersion Chemistry (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Reproductive Health (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及一种用于快速和持续递送生物活性剂的可注射组合物,和可注射组合物在治疗或预防受试者的病症中的用途。可注射组合物包含油包水乳剂,其具有分散在油相中的水相。水相包含多个水凝胶颗粒和水性液体,并且生物活性剂包含在水凝胶颗粒和水性液体中。

Description

用于递送生物活性剂的可注射组合物
技术领域
本发明涉及一种用于递送生物活性剂的可注射组合物。特别地,本发明涉及一种用于快速且持续地递送生物活性剂的可注射组合物,其包含多个相。本发明还涉及可注射组合物在治疗或预防病症中的用途。
背景技术
生物活性剂可以被掺入到用于通过许多不同的途径施用的许多不同的剂型中。例如,这些剂型可以为片剂、胶囊剂、喷雾剂、软膏剂或贴剂,其用于通过如口服、经粘膜或经皮途径的途径递送活性剂。然而,由于各种原因,许多生物活性剂可能无法使用如口服、经粘膜或经皮途径的途径来有效地递送。这可能是由于生物活性剂易受酶或胃酸的降解,或者是由于分子尺寸和/或电荷的原因而不能被充分地吸收到体循环中。
因此,许多生物活性剂最适合通过注射施用。通过注射施用使得活性剂快速进入体循环,绕过消化系统,并首先通过肝脏代谢。然而,为了在体内实现或维持期望的作用,可能需要在一段时间内重复注射活性剂。例如,免疫接种可能需要施用多次疫苗接种、加强、和高剂量的疫苗,这可以导致工业和最终用户的成本增加。
持续释放组合物在生物医学应用中是令人感兴趣的,在该应用中需要在一段时间内维持活性剂的全身水平。对于注射的生物活性剂,持续释放组合物可以有助于降低注射频率,并增加活性剂的作用持续时间,或减少不良副作用。
已经描述了许多种可注射的持续释放组合物。例如,一种形式的可注射持续释放组合物利用小直径聚合物颗粒来递送包封的药物。这种聚合物颗粒通常由合成的可降解聚合物形成,如聚(乳酸)、聚(乙醇酸)或聚(乳酸-共-乙醇酸),其在生物环境中分解,导致包封的药物在长时间内释放。因此,药物释放可能依赖于聚合物的分解速率,这可能不总是给出期望的动力学曲线。
仍然需要开发一种可注射的组合物,其可以为生物活性剂提供期望的释放曲线。
在整个说明书和随后的权利要求书中,除非上下文另有要求,否则词语“包含(comprise)”以及如“包含(comprises)”和“包含(comprising)”的变体将被理解为暗示包含所述整数或步骤或整数或步骤的组,但是不排除任何其他整数或步骤或整数或步骤的组。
本说明书中包括的对文献、作用、材料、装置、物品等的讨论仅仅是用于提供本发明的背景的目的。没有暗示或表示任何或所有这些事项构成现有技术基础的一部分,或者是在本申请的每个权利要求的优先权日之前存在的与本发明相关的领域中的公知常识。
发明内容
本发明提供一种可注射组合物,其包含生物活性剂,所述生物活性剂被配制成向受试者体内提供生物活性剂的初始快速释放,以及随后的生物活性剂的持续递送。
在一个方面,本发明提供一种用于快速和持续递送生物活性剂的可注射组合物,其包含:
油包水乳剂,所述油包水乳剂具有分散在油相中的水相,所述水相包含多个水凝胶颗粒和水性液体;和
在水相的水凝胶颗粒和水性液体中的生物活性剂,
其中当施用时,可注射组合物在体内提供生物活性剂的快速和持续递送。
在一些实施方案中,本发明的可注射组合物可以进一步包含佐剂。佐剂可以存在于可注射组合物的油包水乳剂的油相或水相中。在一个实施方案中,佐剂存在于油相中。佐剂可以为形成乳剂的油相的辅助油。
油包水乳剂的水相的水凝胶颗粒包含生物相容性材料。在一个实施方案中,水凝胶颗粒包含交联多糖。
水凝胶颗粒中的交联多糖优选包含多糖和交联剂。在一个实施方案中,交联剂包含官能团,所述官能团参与与多糖的非共价键合相互作用。
在一组实施方案中,水凝胶颗粒中的交联多糖可以包含粘多糖(GAG)。
存在于水凝胶颗粒中的多糖可以选自壳聚糖、藻酸盐、透明质酸、纤维素、硫酸软骨素、硫酸皮肤素、硫酸角质素、肝素及其衍生物。水凝胶颗粒可以包含两种或更多种这样的多糖和/或其衍生物的混合物。
在一个实施方案中,水凝胶颗粒中的交联多糖包含多糖,所述多糖选自壳聚糖、藻酸盐、硫酸软骨素及其混合物。
水凝胶颗粒中的壳聚糖可以与磷酸盐化合物交联,优选三聚磷酸盐(TPP)如三聚磷酸钠。
水凝胶颗粒中的藻酸盐和硫酸软骨素可以各自与来源于碱土金属的二价阳离子交联。在一些特别的实施方案中,水凝胶颗粒中的藻酸盐和硫酸软骨素与钙(Ca2+)或镁(Mg2 +)阳离子交联。
存在于可注射组合物中的水凝胶颗粒的平均直径为约10nm至20μm,优选为约50nm至约5μm。
在一个实施方案中,水凝胶颗粒进一步包含水不溶性碱土金属磷酸盐。优选地,水不溶性碱土金属磷酸盐为羟基磷灰石。
在一些实施方案中,可注射组合物包含一种或多种涂布的水凝胶颗粒。
在一些实施方案中,可注射组合物的油包水乳剂包含表面活性剂。表面活性剂可以有助于促进稳定的乳剂组合物的形成。在一个优选方案中,可注射组合物包含非离子表面活性剂。
可注射组合物可用于递送生物活性剂,并且可以包含一系列生物活性剂。根据本发明,生物活性剂存在于油包水乳剂的水相中。特别地,生物活性剂在水相的水凝胶颗粒和水性液体中。
在一个实施方案中,生物活性剂选自激素、抗微生物剂、治疗性抗体、细胞因子、融合蛋白、病毒、细菌或细菌片段、疫苗和抗原。在一个特别的实施方案中,生物活性剂为选自疫苗抗原和激素中的一种或多种。可注射组合物包含至少一种,并且可以包含一种以上属于这些类别中的一种或多种的生物活性剂。
在一组实施方案中,生物活性剂为抗原。在特别的实施方案中,抗原可以为Bm86或TSOL18。
在另一组实施方案中,生物活性剂为激素。在特别的实施方案中,激素可以为生长激素或促黄体激素释放激素(LHRH)。
在本文所描述的实施方案的可注射组合物的一种形式中,水凝胶颗粒中的生物活性剂与颗粒缀合(conjugate)。
本发明还提供一种向受试者递送生物活性剂的方法,所述方法包括通过注射向受试者施用本文所描述的任一实施方案的可注射组合物的步骤。特别地,本发明的可注射组合物向受试者体内提供快速递送初始初级剂量的生物活性剂,然后长期持续递送活性剂。
本发明进一步提供一种治疗或预防受试者中的疾病或病症的方法,其包括通过注射向受试者施用本文所描述的任一实施方案的可注射组合物的步骤。
在一个实施方案中,可注射组合物可适用于治疗或预防微生物感染。
在另一个实施方案中,可注射组合物可适用于治疗或预防病毒感染。
在另一个方面,本发明提供一种用于制备用于快速和持续递送生物活性剂的本文所描述的实施方案的可注射组合物的方法,所述方法包括以下步骤:
提供包含第一水凝胶形成组分的第一水性组合物和包含第二水凝胶形成组分的第二水性组合物,所述第一水性组合物和所述第二水性组合物中的至少一种包含生物活性剂;
将第一水性组合物与包含油的亲脂性组合物组合以形成乳化组合物;和
在允许第一水凝胶形成组分与第二水凝胶形成组分反应以在原位形成多个水凝胶颗粒的条件下,将第二水性组合物与乳化组合物组合,从而提供包含油包水乳剂的可注射组合物,所述油包水乳剂包含分散在油相中的水相,所述水相包含多个水凝胶颗粒和水性液体,和
其中生物活性剂包含在油包水乳剂水相的水凝胶颗粒和水性液体中。
其他方面在下面的详细描述中出现。
附图说明
现在将参考以下非限制性附图来描述本发明的实施方案,其中:
图1是显示根据本发明的一个实施方案的包含抗原的可注射组合物的示意图。
图2是显示使用对比制剂和使用本发明的实施方案的可注射组合物的针对Bm86的抗体滴度(ELISA 1:1600稀释)的图,所述对比制剂表示通过由初始剂量(第0天)和4周后注射的加强剂量(2×50μg Bm86/剂量)组成的两次注射皮下施用的常规抗蜱(anti-tick)组合物,所述本发明的实施方案的可注射组合物作为单次注射皮下施用。
图3是显示从模型散装(model bulk)壳聚糖水凝胶中随时间释放的Bm86的量的图,其中释放表示为(A)在水相(包括脱水收缩液)中检测到的Bm86的量,和(B)组合物中初始Bm86负载的百分比。
图4是显示在8周的时间内,具有不同交联(TTP)密度的模型散装交联壳聚糖水凝胶样品的Bm86释放的图。对于24小时后的初始脱水收缩释放,柱标记为“S”,其中数字表示组合物形成后的周数,并且累积的8周期间释放的Bm86的总量以百分比显示。
图5显示在不同负载水平下来自模型散装交联的壳聚糖水凝胶的样品的细胞色素c、白蛋白、肌红蛋白和pST的脱水收缩释放的图,表示为脱水收缩液中的浓度(A-D)和初始负载的百分比(E),以及脱水收缩释放与负载蛋白质的等电点之间的关系(F)。
图6显示以下图像:(A)原位形成水凝胶颗粒之前的乳剂组合物,(B)具有原位水凝胶颗粒的本发明的实施方案的可注射组合物,和(C)在4℃储存5个月后的(B)的可注射组合物。
图7显示以下显微照片:(A)和(B)本发明的实施方案的可注射组合物,其包含水凝胶颗粒,(C)在4℃储存5个月后的本发明的实施方案的可注射组合物,显示组合物的稳定性,和(D)通过蒸发从组合物中去除水相后的水凝胶颗粒。
图8是显示在12小时后从具有不同的交联(Ca2+)密度和pST负载水平的模型散装藻酸盐-Ca2+水凝胶的样品中的猪生长激素(pST)的脱水收缩释放的图,其被表示为初始pST负载的百分比。
图9是显示在28天期间内,从由不同量的PEG致孔剂形成并具有不同pST负载水平的模型散装藻酸盐-Ca2+水凝胶样品中的猪生长激素(pST)的释放的图,其表示为(A)定量释放,和(B)作为总pST负载的百分比的释放。
图10是显示本发明的实施方案的可注射组合物的样品在施加的剪切应力下的粘度变化的图,所述样品包含具有不同交联密度和水相体积比的交联壳聚糖水凝胶颗粒。
图11显示组分图,其表示对应于图10中黑色箭头所示的应力的低粘度区域,其中(A)用壳聚糖、TPP和montanide油制备的一个实施方案的可注射组合物,和(B)用壳聚糖/羟基磷灰石和TPP/硫酸软骨素在montanide油中制备的另一个实施方案的可注射组合物。
图12是显示在400天期间通过包含Bm86的对比制剂和通过一个实施方案的可注射组合物实现的绵羊中的免疫应答的图,所述对比制剂表示通过由初始剂量(第0天)和4周后注射的加强剂量(2×50μg Bm86/剂量)组成的两次注射皮下施用的常规抗蜱组合物,所述可注射组合物作为单次注射皮下施用。
图13是显示在1周内从各种模型未涂布的和涂布的壳聚糖基水凝胶中的TSOL18的脱水收缩释放的图。
图14是显示在1天内从不同模型交联的和非交联的壳聚糖水凝胶中的TSOL18的脱水收缩释放的图,所述水凝胶涂布有交联的藻酸盐或硫酸软骨素涂层。
图15显示根据本发明的实施方案的含有TSOL18的可注射组合物的显微照片,其中组合物的1:10稀释(插图中)显示乳剂中的微水凝胶的颗粒。
图16显示(A)带有壳聚糖涂层的负载了猪生长激素(pST)的藻酸盐水凝胶颗粒的示意图,(B)涂层对(pST)释放的屏障作用的示意图,(C)根据本发明的一个实施方案的包含用壳聚糖涂布的藻酸盐水凝胶的可注射组合物的光学显微镜照片,和(D)在芝麻油中以1:10稀释的(C)中所示的样品,其选择性地显示部分形成的和破碎的壳聚糖壳。
图17是显示在水凝胶形成和脱水收缩过程完成后的猪生长激素(pST)、白蛋白和Bm86的初始分级(蛋白质分配)的图,其中在平衡时测量pST、Bm86和白蛋白与模型散装壳聚糖-HAp水凝胶的静电结合,所述水凝胶用0.08M TPP在1%ChS中交联形成。
具体实施方式
本发明基于以下发现,即,通过使用如本文所描述的可注射组合物,能够实现在体内快速和持续递送生物活性剂。
本发明的可注射组合物能够递送初始初级剂量的生物活性剂,然后在一段时间内更持续地递送活性剂,这减少了重复注射的需要。
在一个方面,本发明提供一种用于快速和持续递送生物活性剂的可注射组合物,其包含:
油包水乳剂,所述油包水乳剂具有分散在油相中的水相,所述水相包含多个水凝胶颗粒和水性液体;和
在水相的水凝胶颗粒和水性液体中的生物活性剂,
其中当施用时,可注射组合物在体内提供生物活性剂的快速和持续递送。
在本发明的情况下,“快速”递送涉及在将可注射组合物施用于受试者后立即或在此后不久的生物活性剂的递送。快速递送在注射本发明的组合物后立即或不久后提供初始剂量的生物活性剂,以引发初始治疗作用。
“持续”递送涉及在初始快速递送后的生物活性剂的递送。因此,持续递送在比快速递送长得多的时间段内进行。持续递送在较长的时间内提供一定剂量的生物活性剂,从而延长了活性剂所提供的治疗作用。在一些实施方案中,持续递送可以持续至少24小时的时间。在特别的实施方案中,持续递送可以持续至少几天或几周,或甚至几个月的时间。
据信,可注射组合物提供生物活性剂的快速和持续递送的能力受到包含多个相的组合物的辅助。因此,期望的生物活性剂的体内递送特性受到组合物中的不同相的影响。
在特别的实施方案中,本发明的可注射组合物包含至少三个相。在一些实施方案中,可注射组合物可以包含多于三个相,例如总共四个相、五个相、六个相或更多个相。本发明的可注射组合物可以被认为是多相组合物。
在一个实施方案中,本发明的可注射组合物是三相的。
本发明的可注射组合物包含油包水乳剂。技术人员将理解,油包水乳剂包含油相和分散在油相中的水相。油相形成乳剂的连续相,而水相则形成分散相。
油包水乳剂的水相包含水性液体。水相还包含多个水凝胶颗粒,其分散在水性液体中。因此,水性液体和水凝胶颗粒各自形成油包水乳剂的水相的一部分。
在一些实施方案中,本发明的可注射组合物包含至少三个相,它们可以为第一相、第二相和第三相。第一相可以由油包水乳剂的油相提供。至少另外两个相可以由油包水乳剂的水相提供。特别地,乳剂水相的水性液体和水凝胶颗粒可以分别提供可注射组合物的第二相和第三相。
油包水乳剂的油相包含至少一种生理学上可接受的油,并且可以包含这些油的混合物。生理学上可接受的油通常是疏水的,并且在20℃至40℃的温度时是液体。
一系列合适的生理学上可接受的油可以用于本发明的可注射组合物中。
在一些实施方案中,油相可以包含一种或多种油,所述油选自脂肪酸;脂肪酸酯;聚乙二醇的酯,例如单酯和二酯;烃油,例如天然烃油;和类固醇,例如胆固醇。
在一个实施方案中,油相可以包含一种或多种油,所述油选自脂肪酸;脂肪酸酯;聚乙二醇酯;和烃油。
合适的脂肪酸和脂肪酸酯可以是具有包含6至24个碳原子的脂肪族饱和或不饱和链的那些。不饱和的脂肪族链可以是单不饱和的或多不饱和的。一些特别的脂肪酸可以为长链C12-C24脂肪酸,例如C15-C22脂肪酸和中链C6-C12脂肪酸。在这些当中,包括多不饱和脂肪酸,如ω-3油,例如二十碳五烯酸(EPA)、二十二碳六烯酸(DHA)、α-亚油酸(ALA)。也考虑了这些化合物的组合。脂肪酸酯可以是甘油三酯,以及甘油与脂肪酸和较低分子量酸(例如琥珀酸)的组合的酯(特别是三酯)(脂肪酸甘油三酯是甘油酯的特定示例)。含有甘油三酯的油还可以含有甘油单酯和/或甘油二酯,例如作为甘油酯含量的一小部分(小于50mol%)。
在一些实施方案中,油相可以包含油的混合物,例如脂肪酸大甘油酯(fatty acidmacrogolglyceride),也被称为聚氧甘油酯(polyoxylglyceride),其为甘油的脂肪酸单酯、二酯和三酯与聚乙二醇的脂肪酸单酯和二酯的混合物;示例为油酰大甘油酯(oleoylmacrogolglyceride)和亚油酰聚氧甘油酯(linoeoyl macrogolglyceride)。
合适的烃油可以为矿物油或萜烯。
特别的萜烯可以为三萜类,例如角鲨烯。
特别的矿物油可以包含几种不同长度的烃链的混合物,包括短链(≤C14)和长链(>C14)烃长度。药用级矿物油的示例包括轻质液体石蜡和轻质矿物油。
替代的或额外的油(其可以与上面的油组合或代替上面的油被包含在油相中)包括植物油或蔬菜油,如花生油、红花油、葵花籽油、大豆油、棉籽油、大枫子(chaulmoogra)油、玉米油、荷荷巴油、pesic油、橄榄油、芝麻油、杏仁油、蓖麻油、菜籽油、亚麻籽油、角鲨烯和椰子油;鱼油,如鲨鱼油、橙色粗油、鲱鱼油和鱼肝油;动物油,如貂油、猪油和鸡脂肪油;和合成油,如油酸乙酯。
在一些实施方案中,油相可以包含具有辅助性质的生理学上可接受的油。因此,所述生理学上可接受的油为佐剂,并且可以被称为辅助油。
在其他实施方案中,油相可以包含非辅助的生理学上可接受的油(即惰性油(passive oil))。在这样的实施方案中,油不具有辅助性质。惰性油可以被视为是化学惰性的。然而,如果需要,惰性油中可以含有佐剂。这些佐剂优选是亲油的或油溶性的,并且可以溶解或悬浮在油中。
油相来源于用于制备本发明的可注射组合物的油。油相可以来源于含有油的组合的市售制剂,任选地含有其他组分。例如,可以使用包含生理学上可接受的油的市售乳剂制剂来制备可注射组合物的油相。这种市售乳剂制剂可以有利地含有一种或多种乳化剂,在这种情况下,乳化剂也可以存在于本发明的组合物中。油佐剂的市售制剂的示例包括来自Seppic的Montanide系列佐剂。一个特别的示例为Montanide ISA61,其包含轻质矿物油和乳化剂,所述乳化剂包含甘露醇和油酸。还可以使用其他市售制剂如(Novartis)和(GSK)(其含有MF59和AS03油佐剂)来形成油相。
可注射组合物的油包水乳剂还包含水相。根据本发明的要求,水相包含多个水凝胶颗粒和水性液体。
技术人员将理解,术语“水凝胶颗粒”是指水凝胶材料的离散胶体部分。水凝胶材料为凝胶状态的聚合物基质,其被水性液体溶胀或水合。
本文所描述的可注射组合物的水凝胶颗粒通常是低模量的柔软材料,其包含低固体含量和高水含量。在一些实施方案中,水凝胶颗粒的杨氏模量可以为约5至700kPa。水凝胶颗粒可以进一步具有至少60%的水含量。
在一些实施方案中,水凝胶颗粒可以为微水凝胶。在本文中使用术语“微水凝胶”作为对水凝胶的离散部分的引述,所述水凝胶具有至少一个纳米(nm)至微米(μm)范围的尺寸。这种微水凝胶可以是纳米或微米尺寸的液滴,其包含水合聚合物凝胶或由水合聚合物凝胶组成。
水凝胶颗粒分散在水性液体中,并且可以被水性液体包围。
通常,水性液体包含水。
如果需要,预期其他化合物或组分可以存在于水性液体中。例如,在一些实施方案中,水性液体可以包含佐剂,其可以溶解或悬浮在液体中。当使用时,这些佐剂通常是亲水性佐剂。
水相的水凝胶颗粒是生物相容的,并且由生物相容性材料形成。生物相容性是本领域技术人员已知的概念。生物相容性物质是引发可接受的免疫反应的物质。因此,如本文所使用,术语“生物相容的”是指物质或组分是生物学上相容的,使得其基本上不会在体内引起不利的免疫、毒性或有害反应,或者与特定的细胞类型或组织不利地整合。
水凝胶颗粒可以为水凝胶材料的胶体部分,其直径为约10nm至20μm,优选约50nm至约5μm。根据这些实施方案的水凝胶颗粒在本文中可以被称为微水凝胶。可以通过油相的选择和用于制备可注射组合物的任何表面活性剂或乳化剂的选择来控制水凝胶颗粒的直径。可以使用一系列光学技术来确定水凝胶颗粒的直径,如动态光散射、光学显微镜和共焦激光扫描显微镜。
水凝胶颗粒优选包含交联聚合物,或由交联聚合物组成。除了是生物相容的以外,交联聚合物也是亲水的,并且易于水溶剂化。
一系列交联聚合物可以适用于水凝胶颗粒。水凝胶中的聚合物可以是化学交联的或物理交联的。
当第一组分与第二组分反应或相互作用以形成经由分子间键结合在一起的三维大分子网络结构时,可以产生适用于水凝胶颗粒的交联聚合物。大分子网络可以被认为是聚合物基质。
第一组分可以为聚合物组分,而第二组分可以为交联组分。交联组分可以由交联剂提供。交联剂可以为小分子或大分子,如另一种聚合物。
可以经由物理、共价或非共价键进行聚合物组分与交联组分间的交联。
适用于水凝胶颗粒的交联聚合物可以包含天然或合成来源的聚合物和交联剂,或由这些聚合物和交联剂形成。
在一组实施方案中,可以用中性聚合物形成乳剂中的水凝胶颗粒,所述聚合物经由物理、共价或非共价键交联。中性聚合物可以是不具有可电离官能团的聚合物。因此,用中性聚合物形成的水凝胶颗粒在生理pH下可以不带净电荷。
在一组实施方案中,可以用带电聚合物形成水凝胶颗粒,所述带电聚合物经由非共价键交联。带电聚合物可以为聚合电解质。带电聚合物可以选自阳离子聚合物、阴离子聚合物、两性离子聚合物或其组合。
用带电聚合物形成的水凝胶颗粒可以包含可电离的基团,使得水凝胶颗粒在生理pH下带有净电荷。带电水凝胶颗粒可以通过静电相互作用以及释放的动力学来影响生物活性剂的摄取和释放。因此,用带电聚合物形成的水凝胶颗粒可以影响生物活性剂的初始释放以及其长期持续释放。
在一个实施方案中,水凝胶颗粒包含交联的生物聚合物。生物聚合物可以是从天然来源获得的或来源于天然来源的聚合物分子。
在一个实施方案中,水凝胶颗粒包含交联的多糖。当至少一种多糖与至少一种交联剂组合时,形成交联的多糖。
在一个实施方案中,交联多糖可以包含粘多糖(GAG)。粘多糖是基于重复的二糖单元的无支链多糖。二糖单元可以由氨基糖(N-乙酰葡糖胺或N-乙酰半乳糖胺)和糖醛糖(uronic sugar)(葡糖醛酸或艾杜糖醛酸)或半乳糖组成。GAG也可以通过含硫基团被酯化。粘多糖的一些示例为硫酸软骨素、硫酸皮肤素、硫酸角质素和肝素。在一个优选方案中,水凝胶颗粒包含交联的粘多糖。
包含交联多糖的水凝胶颗粒可以包含多糖,所述多糖选自壳聚糖、藻酸盐、透明质酸、纤维素、硫酸软骨素、硫酸皮肤素、硫酸角质素和肝素,以及其盐和其衍生物。多糖(如壳聚糖、藻酸盐、透明质酸、硫酸软骨素和纤维素)可以具有辅助性质,并且可以有助于在体内调节生物活性剂从可注射组合物中的释放。
水凝胶颗粒中的交联多糖可以是带电荷的(即带有净正电荷或负电荷)或不带电荷的。
在一个优选方案中,交联多糖包含多糖,所述多糖选自硫酸软骨素、藻酸盐和壳聚糖,其盐或其衍生物。
壳聚糖的衍生物可以是壳聚糖-葡聚糖硫酸盐、N-三甲基壳聚糖、N-羧甲基壳聚糖,以及寡壳聚糖的脂和糖缀合衍生物。
将多糖与交联剂组合以形成三维交联的大分子。应理解,多糖和交联剂必须能够彼此相互作用以形成交联聚合物。因此,多糖和交联剂可以各自包含化学部分,其携带能够交联的官能团。
合适的交联剂可以包含化学部分或由化学部分组成,所述化学部分能够经由共价或非共价键合机制与存在于多糖上的官能团相互作用。在一些实施方案中,化学部分可以携带官能团,所述官能团能够经由共价或非共价键合机制与多糖上存在的官能团相互作用。
在一种形式中,合适的交联剂可能能够参与与多糖的非共价键合相互作用。交联剂可以包含可参与这种非共价键合相互作用的官能团。
多糖可以包含可电离官能团(如氨基、羧酸或磺酸酯基团),其能够形成阳离子或阴离子官能团,并且交联剂可以包含互补的可电离官能团,其能够通过非共价相互作用与多糖的一个或多个官能团键合。因此,所得的交联多糖可以经由静电或离子键交联。
如果一些可电离官能团保持游离且不与互补交联剂结合,则多糖中的可离子化官能团可以向交联多糖提供净电荷。这些游离的可离子化的官能团可以经由非共价相互作用(如静电相互作用),与包含在水凝胶颗粒中的带相反电荷的生物活性剂相互作用。这可以有助于将活性剂保留在水凝胶颗粒中,从而在需要持续释放的时间段内影响生物活性剂的递送曲线。
在一个实施方案中,水凝胶颗粒包含交联的壳聚糖。
壳聚糖是由随机分布的β-(1-4)-连接的D-葡糖胺(脱乙酰单元)和N-乙酰基-D-葡糖胺(乙酰化单元)组成的直链多氨基糖。脱乙酰度(DA%)可以通过NMR光谱测定,市售壳聚糖中的DA%为60-100%。
壳聚糖是生物相容的,酶促可生物降解的(例如通过溶菌酶水解),并且是无毒的(其降解产物是相对非免疫原性的且非致癌的)。
壳聚糖中的氨基具有约6.5的pKa值。因此,壳聚糖带正电荷(即氨基被质子化),并且可溶于酸性至中性溶液,其电荷密度取决于pH和DA%值。换言之,壳聚糖可以在生理条件下充当带正电荷的聚电解质,因此其具有与交联剂相交联的适当的官能度。
适用于水凝胶颗粒的壳聚糖可以具有一定范围的分子量。在一个实施方案中,壳聚糖是分子量(Mw)为40-250kDa的低分子量壳聚糖。在一些实施方案中,Mw优选为50-200kDa,甚至更优选为100-180kDa。
壳聚糖可以通过一系列交联剂或化合物交联。合适的交联剂或化合物可以包含阴离子官能团。阴离子基团能够与壳聚糖中的带正电荷的氨基相互作用,以产生经由非共价静电键结合在一起的交联壳聚糖。
在一种形式中,水凝胶颗粒可以包含与磷酸盐化合物交联的壳聚糖。磷酸盐化合物可以选自适当官能化的那些,以促进壳聚糖链之间的分子间交联。可以适当地选择磷酸盐化合物,以促进快速(自发)交联,从而在与壳聚糖组合时形成水凝胶。合适的交联磷酸盐化合物包括三聚磷酸盐及其盐。通常已知的三聚磷酸盐包括三聚磷酸钠和三聚磷酸钾。具有式Na5P3O10的三聚磷酸钠(STPP,有时被称为STP或三磷酸钠或TPP)为钠的多磷酸盐。其为三磷酸的钠盐。在一个优选方案中,交联剂为TPP。
在一些实施方案中,可以通过包含亲电子官能团的化合物来使壳聚糖交联。技术人员将理解,亲电子基团可以与壳聚糖中的亲核氨基反应,导致在多氨基糖与交联剂之间形成共价碳-碳键。合适的交联剂可以包含选自酮、醛和环氧官能团的亲电子基团。在一个优选方案中,交联化合物可以选自戊二醛和表氯醇。
可用于水凝胶颗粒的交联壳聚糖可以包含合适摩尔比例的壳聚糖和交联剂。在一些实施方案中,可能需要通过调节壳聚糖与交联剂的摩尔比例来改变交联的水平。交联密度的变化可以用于改变水凝胶颗粒的物理性质和/或调节生物活性剂从水凝胶颗粒中的释放。
在一些实施方案中,壳聚糖与交联剂的摩尔比例为约12:1至约50:1,优选约25:1至约2040:1,更优选约37:1至约1030:1。
在一些实施方案中,交联的壳聚糖可以优选包含相对低的交联比例(即低摩尔浓度的交联剂),因为这可以导致壳聚糖中的离子化基团保持带电,并因此可用于参与与水凝胶颗粒中含有的生物活性剂的非共价相互作用。
在其他实施方案中,交联的壳聚糖可以优选包含相对高的交联比例(即相对于多糖的过量的交联剂)。在一些实施方案中,高的交联密度可以有利地有助于快速聚合物网络和水凝胶形成,以及有助于改善水凝胶颗粒的机械性质和/或有助于产生更均匀的形态。
在一个实施方案中,水凝胶颗粒包含交联的藻酸盐。
藻酸盐是天然存在的多糖,其从海藻中分离,并且由包含共价连接的嵌段的嵌段共聚物组成,所述嵌段包含(1-4)-连接的β-D-甘露糖醛酸(M)和α-L-古洛糖醛酸(G)残基。M和G的比例和分布可以决定藻酸盐的物理和化学性质。
藻酸盐具有生物相容性和低毒性,并且可以在温和条件下进行交联和凝胶化。在中性pH(约pH 7)下,藻酸盐可以是阴离子的,并带有净负电荷。
适用于水凝胶颗粒的藻酸盐可以具有一定范围的分子量。在一些实施方案中,藻酸盐可以具有约40至270kDa的分子量。在一个实施方案中,藻酸盐可以具有中等分子量,其在25℃在水中的浓度为2%时产生>2000cP的粘度。
可以通过将藻酸盐与带正电荷的分子或化合物(如阳离子)组合,来诱导藻酸盐的交联。碱土金属化合物可以提供二价阳离子源,因此这些化合物可以用作交联剂以使藻酸盐交联。可用作交联剂的碱土金属化合物可以为钙或镁化合物。在一个实施方案中,藻酸盐可以与阳离子(如钙(Ca2+)或镁(Mg2+)阳离子)进行静电交联。
在一个优选方案中,水凝胶颗粒包含与钙阳离子交联的藻酸盐。钙阳离子可以参与与藻酸盐链中的古洛糖醛酸残基的选择性离子键合,以经由非共价键合相互作用诱导凝胶形成和交联。
钙阳离子可以由一系列作为交联剂的钙化合物来提供。合适的钙化合物可以选自氯化钙(CaCl2)、硫酸钙(CaSO4)和碳酸钙(CaCO3)。在一个优选方案中,钙化合物为氯化钙。
可用于水凝胶颗粒的交联藻酸盐可以包含合适摩尔比例的藻酸盐和阳离子(如钙阳离子)。在一些实施方案中,可能需要通过调节藻酸盐与阳离子的比例来改变交联的水平。
例如,已经发现,可以通过将芝麻油与在水中的2%藻酸盐和在水中的5.6%CaCl2以体积比2:1:0.2至2:1:1和2:0.5:0.2至2:0.5:1(基于油:藻酸盐溶液:CaCl2溶液)组合,来制备在油包水乳剂中包含水凝胶颗粒的稳定的可注射组合物。
藻酸盐与阳离子的交联也中和了藻酸盐在中性pH下携带的负电荷。这种负电荷的中和使得包含藻酸盐的水凝胶颗粒有效地含有带负电荷的生物活性剂,否则这可能难以实现,因为带负电荷的生物活性剂与阴离子藻酸盐聚合物之间可能存在不利的静电相互作用。
阳离子浓度的变化可用于改变含有水凝胶颗粒的藻酸盐的交联密度,并且这可用于改变水凝胶颗粒的物理性质和/或调节生物活性剂从水凝胶颗粒中的释放。例如,当阳离子的浓度不足以中和藻酸盐中的所有带负电荷的基团时,藻酸盐因此可以具有残留的阴离子基团。因此,包含藻酸盐的水凝胶颗粒可以在生理pH下带有净负电荷。在一些实施方案中,这种残余净负电荷可以有利地有助于调节生物活性剂从水凝胶颗粒中的摄取和释放。例如,对于带正电荷的生物活性剂,由水凝胶颗粒携带的净负电荷可以有助于抑制活性剂的快速释放,从而可以实现在较长的一段时间内的更持续的药剂释放。
在一些实施方案中,水凝胶颗粒可以包含粘多糖(GAG)或由粘多糖(GAG)组成。粘多糖(GAG)是含有重复的二糖单元的长的无支链多糖。重复的二糖单元含有两种修饰的糖(N-乙酰半乳糖胺或N-乙酰葡糖胺)中之一,和通常糖醛酸(葡糖醛酸或艾杜糖醛酸)。GAG也可以通过含硫基团被酯化。
在一组实施方案中,水凝胶颗粒可以包含至少一种粘多糖(GAG)或由至少一种粘多糖(GAG)组成,所述粘多糖选自软骨素、透明质酸盐、角质素、皮肤素、肝素及其衍生物,如硫酸软骨素、透明质酸钠、硫酸角质素、硫酸皮肤素和硫酸肝素。
在一个实施方案中,粘多糖(GAG)为硫酸软骨素。硫酸软骨素为硫酸化的粘多糖,由交替的糖(N-乙酰基-半乳糖胺和葡糖醛酸)的无支链多糖链组成。硫酸盐与糖共价连接。如果将一些葡糖醛酸残基差向异构化为L-艾杜糖醛酸,则所得的二糖被称为硫酸皮肤素。由于该分子在生理pH(约pH 7)下具有多个负电荷,因此硫酸软骨素的盐中存在阳离子。硫酸软骨素的市售制剂通常为钠盐。
硫酸软骨素是细胞外基质的主要组分,并且其对维持组织的结构完整性很重要。作为聚集蛋白聚糖的一部分,其也是软骨的一个重要结构组分,并且通过紧密堆积和高度带电的硫酸软骨素硫酸盐基团提供了大部分抗压缩性。
软骨素链可以具有超过100个单独的糖,每个糖可以在不同的位置以不同的数量被硫酸化。每个单糖可以保持非硫酸化,被硫酸化一次或被硫酸化两次。最常见地,N-乙酰基-半乳糖胺的4位和6位的羟基被硫酸化,一些链的2位的葡糖醛酸被硫酸化。硫酸化是由特定的硫转移酶介导的。这些不同位置的硫酸化赋予软骨素粘多糖链特定的生物活性。
存在如下一些旧的分类术语:硫酸软骨素A-硫酸化位点为N-乙酰半乳糖胺糖的4位碳(也被称为软骨素-4-硫酸盐);硫酸软骨素B-硫酸皮肤素的旧称,不再被归类为硫酸软骨素的一种形式;硫酸软骨素C-硫酸化位点为N-乙酰基-半乳糖胺糖的6位碳(也被称为软骨素-6-硫酸盐);硫酸软骨素D-硫酸化位点为葡糖醛酸的2位碳和N-乙酰半乳糖胺糖中的6位碳(也被称为软骨素-2,6-硫酸盐);和硫酸软骨素E-硫酸化位点为N-乙酰半乳糖胺糖的4位和6位碳(也被称为软骨素-4,6-硫酸盐)。所有这些衍生物都涵盖在本文中,作为考虑用于本发明的“硫酸软骨素”。
可用于包含在水凝胶颗粒中的硫酸软骨素可以具有约5,000Da至约150,000Da,约10,000Da至约50,000Da,或约10,000Da至约40,000Da的平均分子量。然而,可以使用其他分子量。
当水凝胶颗粒包含粘多糖(GAG)(如硫酸软骨素)或由粘多糖(GAG)组成时,水凝胶颗粒可以在生理pH下携带净电荷,并且该电荷可以有利地帮助调节包含在颗粒中的生物活性剂的释放。特别地,硫酸软骨素可以与带正电荷的生物活性剂相互作用,以提供更高的捕获并在水凝胶颗粒中保留活性剂。带负电荷的硫酸软骨素与带正电荷的生物活性剂之间的静电相互作用也可以有助于限制活性剂的过早释放,或改善活性剂从水凝胶颗粒中释放的长期释放曲线。
此外,硫酸软骨素可以具有免疫调节作用,并且还可以经由非共价键合相互作用与多糖(如壳聚糖)相互作用,以促进多糖的交联。
在一些实施方案中,水凝胶颗粒可以包含交联的粘多糖或由交联的粘多糖组成。
硫酸化的粘多糖(如硫酸软骨素)可以与合适的交联剂交联。在一个实施方案中,交联剂可以为阳离子,如来源于碱土金属化合物的二价阳离子。在一个实施方案中,硫酸软骨素可以与阳离子如钙(Ca2+)或镁(Mg2+)交联。
在一个实施方案中,水凝胶颗粒包含与钙阳离子交联的硫酸软骨素。钙阳离子可以由一系列作为交联剂的钙化合物来提供。合适的钙化合物可以选自氯化钙(CaCl2)、硫酸钙(CaSO4)和碳酸钙(CaCO3)。在一个优选方案中,钙化合物为氯化钙。
可用于水凝胶颗粒的交联的硫酸软骨素可以包含合适摩尔比例的硫酸软骨素和阳离子(如钙阳离子)。在一些实施方案中,硫酸软骨素与阳离子的摩尔比例可以为4:1至1:10。
与上面讨论的藻酸盐类似,阳离子浓度的变化可以用于改变水凝胶颗粒中含有的交联粘多糖的的交联密度和电荷。例如,当GAG为硫酸化GAG(例如硫酸软骨素)时,阳离子浓度可能不足以中和GAG中的所有带负电荷的基团,因此由于残留的阴离子基团,GAG可能在生理pH下带有净负电荷。根据上面讨论的机制,这种残余的净负电荷可以有利地有助于调节带正电荷的生物活性剂从水凝胶颗粒中的摄取、保留和释放。
在一些实施方案中,本发明的可注射组合物的水凝胶颗粒可以包含多糖的混合物,如两种不同粘多糖的混合物,或粘多糖与至少一种其他多糖的混合物。至少一种多糖是交联的。在一些实施方案中,如本文所描述,交联的多糖可以为交联的壳聚糖、交联的藻酸盐或交联的硫酸软骨素。
在一个形式中,水凝胶颗粒包含带相反电荷的多糖的混合物。例如,水凝胶颗粒可以包含壳聚糖和硫酸软骨素的混合物。在此类实施方案中,硫酸软骨素上的带负电荷的硫酸根基团可以经由静电相互作用与壳聚糖中存在的带正电荷的氨基相互作用,从而形成交联的大分子。交联的大分子可以被认为是杂合的交联多糖,其由壳聚糖和硫酸软骨素的混合物组成。因此,由至少两种静电连接的多糖组成的交联大分子形成水凝胶颗粒的交联聚合物基质。考虑了带相反电荷的多糖的其他混合物,如壳聚糖和藻酸盐的混合物。
在一些实施方案中,能够与另一种带相反电荷的多糖相互作用的带电荷的多糖在本文中可以被称为交联剂。
在一些其他实施方案中,当水凝胶颗粒包含粘多糖(GAG)时,GAG可能不形成水凝胶聚合物的交联网络结构的一部分。在这样的实施方案中,GAG可以作为水凝胶颗粒中的添加剂组分存在。作为添加剂,粘多糖可以起到帮助改变水凝胶颗粒的物理或机械性质的作用。
特别地,粘多糖(GAG)能够使水凝胶颗粒变得更柔韧,具有更大的类塑性特性。当水凝胶颗粒还包含如下面所描述的水不溶性碱土金属磷酸盐时,这可能是有益的,因为在颗粒中包含粘多糖(GAG)可以调节颗粒的机械性质,从而改善结构稳定性和体内表现。水凝胶颗粒性质的变化可能是由于粘多糖发挥防止碱土金属磷酸盐结晶和生长的作用,从而降低颗粒的刚性。
在一组实施方案中,包含粘多糖的水凝胶颗粒可以包含高达2%(w/v)的量的硫酸软骨素。在一些实施方案中,水凝胶颗粒可以包含高达1%(w/v)的量的硫酸软骨素。
当水凝胶颗粒包含由静电连接的硫酸软骨素和壳聚糖组成的交联的大分子时,硫酸软骨素和壳聚糖的量的可以优选为1:2重量比。可以通过以下步骤制备含有这种水凝胶颗粒的可注射制剂:将含有2%(w/v)壳聚糖的水溶液与油乳化,在连续剪切下向其中加入含有1%(w/v)硫酸软骨素的第二水性溶液,以得到在油包水乳剂中的硫酸软骨素:壳聚糖重量比例为1:2的微水凝胶颗粒。
如果需要,水凝胶颗粒可以包含一种或多种另外的组分。另外的组分可以用于改变存在于本发明的可注射组合物中的水凝胶颗粒的化学和/或物理性质。
在一种形式中,水凝胶颗粒可以进一步包含生物相容的水不溶性碱土金属磷酸盐和/或生物相容的蛋白多糖。
水凝胶颗粒中可以包含水不溶性碱土金属磷酸盐,以改变水凝胶颗粒的物理或机械性质。例如,水不溶性碱土金属磷酸盐可用于增加颗粒的刚性。
在一些实施方案中,水凝胶颗粒可以包含钙和镁的水不溶性磷酸盐。还考虑掺杂的磷酸钙,如Mg2+、Zn2+、Na+、CO3 2-和SiO4 4-掺杂的磷酸钙。
在一个实施方案中,水不溶性碱土金属磷酸盐为磷灰石。
磷灰石为一组磷酸盐矿物,其包括氟磷灰石,Ca5(PO4)F3;氯磷灰石,Ca5(PO4)3Cl;溴磷灰石,Ca5(PO4)3Br和羟基磷灰石,Ca5(PO4)3(OH)(通常也写成Ca10(PO4)6(OH,F,Cl,Br)2,以表示晶体晶胞包含两个分子)。羟基磷灰石在六方晶系中结晶。其比重为3.1-3.2,莫氏硬度等级的硬度为5。可以在牙齿(牙釉质)和骨骼中发现羟基磷灰石。骨骼的约70%由羟基磷灰石组成。
在一个优选的实施方案中,水凝胶颗粒可以进一步包含羟基磷灰石。
在一组实施方案中,水凝胶颗粒可以包含高达0.1%(1mg/ml)的量的羟基磷灰石。
在一组实施方案中,水凝胶颗粒可以包含羟基磷灰石和壳聚糖,羟基磷灰石与壳聚糖的重量比例为3:20,更优选羟基磷灰石:壳聚糖的重量比例为1:20。在制备本发明的可注射组合物中,可以使用含有浓度为1mg/mL的羟基磷灰石的2%壳聚糖水溶液来实现后一比例。
羟基磷灰石还能够通过与交联聚合物的一种或多种组分的电荷相互作用,来改变用于形成水凝胶颗粒的交联聚合物的交联反应。例如,在弱酸性pH下来自羟基磷灰石的过量的PO4 3-离子可以改变壳聚糖与交联剂相互作用的能力。
蛋白聚糖为一组特定的化合物,其具有至少一个与蛋白质连接的粘多糖链。此类化合物在生理pH(约pH 7)下可以包含多个负电荷。水凝胶颗粒可以包含至少一种蛋白聚糖。也考虑两种或更多种蛋白聚糖的混合物。蛋白聚糖的一个示例为聚集蛋白聚糖。
在一组实施方案中,水凝胶颗粒可以是多孔的。在此类实施方案中,可注射组合物中的一种或多种水凝胶颗粒包含至少一个孔,并且可以包含多个孔。在一种形式中,每种水凝胶颗粒包含多个孔。水凝胶颗粒中的孔可以有助于改变颗粒中的生物活性剂的释放。在一些实施方案中,包含孔的水凝胶颗粒可以以更快的速率释放其中存在的生物活性剂。
本发明的可注射组合物中的水凝胶颗粒可以为未涂布的水凝胶颗粒或涂布的水凝胶颗粒。可注射组合物可以包含未涂布的和涂布的水凝胶颗粒的混合物。
在一组实施方案中,可注射组合物包含一种或多种涂布的水凝胶颗粒。因此,如本文所描述的水凝胶颗粒可以是涂布的。因此,本发明的可注射组合物可以在水相中包含至少一种涂布的水凝胶颗粒。在一些实施方案中,本发明的可注射组合物可以在水相中包含多种涂布的水凝胶颗粒。
涂布的水凝胶颗粒可以包含形成核心(core)的内部水凝胶组分,和覆盖至少一部分核心的外部组分材料。外部组分可以被视为内部核心的涂层。
涂布的水凝胶颗粒的涂层可以为独特的材料层,其覆盖至少一部分水凝胶核心。在一些实施方案中,涂层可以为包封并含有水凝胶核心的壳。
当存在时,涂层通常形成水凝胶颗粒本身的一部分,并连接于颗粒的内部核心。涂层与核心的连接可以经由物理或化学手段进行。
可以使用各种光学、影像或光谱技术来确定涂层的存在。例如,可以用显微镜目视观察涂层。
据信,由于组分材料与组分混合物的相分离而形成涂层,所述组分混合物用于根据本文所描述的方法形成本发明的可注射组合物。分离的组分材料优选位于表面以形成涂层,而混合物的其余组分可以形成水凝胶颗粒的核心。
举例来说,当交联剂从核心微水凝胶扩散到核心的表面,并在环境中与溶液中的多糖反应以在核心的周围形成交联凝胶层时,可以形成具有多糖涂层的涂布水凝胶颗粒。
在另一个示例中,当两个带相反电荷的聚合物彼此静电相互作用以形成互穿网络(interpenetrated network,IPN)时,可以形成涂布的水凝胶颗粒,其中一种聚合物位于水凝胶的核心中,另一种聚合物位于微水凝胶环境中的溶液中。
在一组实施方案中,可以将涂层通过化学手段连接于微水凝胶颗粒核心。示例性的化学手段可以为化学键,其可以在涂层和水凝胶颗粒核心之间形成。在一些实施方案中,将至少一部分涂层经由共价键或非共价键与水凝胶核心中的至少一部分聚合物材料组分相结合。非共价键可以为静电键或氢键。
在另一组实施方案中,可以将涂层通过物理手段连接到微水凝胶颗粒核心上。在一些实施方案中,将至少一部分涂层在分子尺度上与水凝胶颗粒核心中的至少一部分聚合物材料组分物理交织。在一些实施方案中,将一部分涂层与水凝胶核心的一部分聚合物材料物理缠结。涂层和水凝胶颗粒核心之间的缠结区域可以类似于互穿聚合物网络。
涂层可以有利地帮助控制生物活性剂从水凝胶颗粒进入油包水乳剂的水相的水性液体部分,从而进入周围环境以在体内释放。在一些实施方案中,涂层可以有助于降低生物活性剂从水凝胶颗粒中的释放速率,从而有助于延缓活性剂的过早释放,或有助于促进活性剂在一段时间内的持续释放。
可以通过多种机制,包括通过具有可调节孔隙率的涂层本身,或通过带有净电荷的涂层,来实现对生物活性剂通过的控制。
涂布的水凝胶颗粒的涂层可以进一步为交联的或非交联的。交联度(如果有的话)可以提供另一种机制来控制生物活性剂从水凝胶颗粒中的通过。
涂布的水凝胶颗粒的涂层可以包含生物相容性材料或由生物相容性材料组成。
在一些实施方案中,涂层可以包含生物相容性聚合物材料。这种聚合物材料可以为生物相容的、亲水的并且适合于水溶剂化。一系列生物相容性聚合物可适用于涂层。
在一个实施方案中,涂层可以包含多糖。多糖可以选自本文所描述的任何一种多糖。在一种形式中,涂层包含多糖,所述多糖选自壳聚糖、藻酸盐、透明质酸、硫酸软骨素、纤维素、硫酸皮肤素、硫酸角质素和硫酸肝素,以及其盐和其衍生物。本文描述了这些多糖,其盐和衍生物。
在一些实施方案中,优选涂层中的多糖不同于水凝胶颗粒核心中的多糖。例如,当水凝胶颗粒核心包含交联壳聚糖时,涂层可以包含藻酸盐或粘多糖,如硫酸软骨素。类似地,当水凝胶颗粒核心包含交联藻酸盐或交联硫酸软骨素时,水凝胶颗粒核心上的涂层可以包含壳聚糖。还考虑了其他多糖的组合。
在生理pH(大约pH 7)下,多糖可以带有净电荷,其取决于多糖的组成,可以是正电荷或负电荷。因此,包含这种多糖的涂层在生理pH下可以是带电荷的。带电荷的涂层可以影响生物活性剂从水凝胶颗粒中的释放速率,特别是当活性剂也带电荷时。例如,具有净负电荷的涂层可以与带正电荷的生物活性剂发生静电相互作用,并且以这种方式可以帮助调节活性剂从水凝胶颗粒进入水相的水性液体中(即脱水收缩)。
在一些实施方案中,涂层可以包含在生理pH下带正电荷的多糖。带正电荷的多糖可以向涂层提供正电荷。示例性的带正电荷的多糖为壳聚糖。
当壳聚糖存在于涂层中时,水凝胶颗粒的核心可以并且优选地将包含非壳聚糖的不同的多糖。在一个优选方案中,水凝胶颗粒核心包含带负电荷的多糖(如藻酸盐)或粘多糖(如硫酸软骨素)。带负电荷的多糖可以有助于带正电荷的涂层连接到水凝胶颗粒的核心组分上。
在一个实施方案中,涂层包含在生理pH下带负电荷的多糖。带负电荷的多糖可以给予涂层负电荷。示例性的带负电荷的多糖可以选自藻酸盐和硫酸化的粘多糖(硫酸化的GAG)。硫酸化的GAG可以为硫酸软骨素、硫酸角质素、硫酸皮肤素和硫酸肝素。当涂层包含带负电荷的多糖时,在一些实施方案中,水凝胶颗粒的核心优选包含带正电荷的多糖。在一个优选方案中,水凝胶颗粒核心包含壳聚糖。带正电荷的多糖可以有助于带负电荷的涂层连接到水凝胶颗粒的核心上。
涂布的水凝胶颗粒的涂层可以为交联的或非交联的。交联的涂层可以包含交联的多糖,而非交联的涂层可以包含未交联的多糖。
可以经由如本文所描述的物理或化学手段,将非交联的和交联的涂层连接到水凝胶颗粒核心上。
适用于交联涂层的交联多糖可以包含与合适的交联剂交联的如本文所描述的多糖。技术人员将能够为所选的多糖选择合适的交联剂。示例性的多糖包括壳聚糖、藻酸盐和硫酸化的GAG(如硫酸软骨素),并且本文描述了用于这些多糖的合适的交联剂。
在一些实施方案中,当涂层包含带电荷的多糖(带正电荷或带负电荷)时,水凝胶颗粒核心可以包含带电荷的化合物,所述化合物能够与涂层中带电荷的多糖相互作用,以便于涂层与核心的连接。可以选择带电荷的化合物以与涂层中带电荷的多糖互补。例如,当带负电荷的多糖在涂层中时,可以将带正电荷的化合物掺入水凝胶颗粒核心中,反之亦然。
在一个实施方案中,涂层包含壳聚糖。在这种实施方案中,水凝胶颗粒可以包含磷酸盐化合物。磷酸盐化合物可以与壳聚糖中存在的氨基相互作用,以通过非共价静电键将壳聚糖连接到水凝胶上。磷酸盐化合物可以为三聚磷酸盐及其盐,如三聚磷酸钠(TPP)和三聚磷酸钾。在一个优选方案中,磷酸盐化合物为TPP。
在一个实施方案中,涂层包含藻酸盐或硫酸化的粘多糖,如硫酸软骨素。在这种实施方案中,水凝胶颗粒核心可以包含阳离子,优选二价阳离子。示例性的阳离子可以为钙(Ca2+)或镁(Mg2+)阳离子。水凝胶颗粒核心中的阳离子可以与多糖中存在的阴离子基团(如羧酸或硫酸根基团)相互作用,以将多糖连接到核心上。
当带电荷的化合物用于促进涂层连接到水凝胶颗粒核心时,水凝胶颗粒核心中的聚合物(例如多糖)不必是带电荷的。例如,水凝胶核心可以包含不带电荷的多糖或由不带电荷的多糖组成。在这些情况下,经由包含在核心中的带电荷的化合物实现涂层与水凝胶颗粒核心的锚定。
此外,当水凝胶颗粒包含带电荷的化合物(如磷酸盐化合物或二价阳离子)时,带电荷的化合物可以从水凝胶颗粒的核心扩散到涂层中。根据涂层中的多糖,带电荷的化合物可以作为多糖的交联剂,并且以这种方式帮助促进涂层中交联多糖的形成。交联涂层可以具有比非交联涂层更大的厚度,从而可以提供另一种途径来调节生物活性剂在一段时间内从涂布的水凝胶颗粒中的持续释放。
用于涂布的水凝胶颗粒中的涂层的交联多糖可以包含合适摩尔比例的多糖和交联剂。在一些实施方案中,可以通过调节多糖与交联剂的摩尔比例来改变交联的水平。交联密度的变化可以用于改变涂层的物理性质,如涂层的孔隙率或净电荷。反过来,这可以有助于调节生物活性剂从水凝胶颗粒向可注射组合物的水相的水性液体部分的释放。
在一些实施方案中,涂层中的交联多糖可以优选包含相对低的交联比例(即低摩尔浓度的交联剂),因为这可以导致多糖中的离子化基团在生理pH下保持带电,从而可用于参与与水凝胶颗粒中含有的生物活性剂的非共价相互作用。生物活性剂与涂层之间的非共价相互作用也可以有助于调节生物活性剂在一段时间内的从水凝胶颗粒中的释放曲线。
在一些实施方案中,包含交联多糖的涂层中交联剂与多糖的摩尔比例为约1:1至约50:1,优选约2:1至约30:1,更优选约5:1至约20:1。
在一些实施方案中,涂布的水凝胶颗粒的涂层可以包含两亲性化合物。涂层中的两亲性化合物可以有助于稳定油包水乳剂,或可以有助于调节生物活性剂从本发明的可注射组合物中的释放。在一个实施方案中,两亲性化合物为卵磷脂。
在一些实施方案中,涂布的水凝胶颗粒的涂层是多孔的。可以通过在制造本发明的可注射组合物期间掺入致孔剂,或在交联涂层的情况下通过改变交联密度,来形成多孔涂层。
不同尺寸的致孔剂可以用于生产不同孔隙率的涂层。示例性的致孔剂为聚(乙二醇)(PEG)。不同分子量的PEG化合物可以在涂层中产生不同尺寸的通道(孔)。示例性的聚(乙二醇)可以具有约200至100,000Da的分子量。
本发明的可注射组合物包含至少一种生物活性剂,其需要施用至受试者。
如本文所使用,术语“生物活性剂”涵盖合成或天然来源的任何分子,其能够在体内引发期望的生理作用。例如,生物活性剂可以为用于治疗或预防疾病或病症的药物化合物或疫苗,尤其是需要递送即刻(immediate)剂量,然后在一段时间内向受试者长期递送的那些。
根据本发明,可注射组合物包含在油包水乳剂的水相中的生物活性剂。更特别地,生物活性剂包含在水相的水性液体和水凝胶颗粒中。因此,可以认为可注射组合物的两个相包含生物活性剂。据信,如下面所进一步描述,生物活性剂在水性液体和水凝胶颗粒中的存在有助于可注射组合物提供活性剂的快速和持续递送的能力。
当可注射组合物包含涂布的水凝胶颗粒时,生物活性剂可以位于水凝胶颗粒的核心或涂层中。在一些实施方案中,生物活性剂可以位于涂布的水凝胶颗粒的核心和涂层中。
本发明的可注射组合物可以包含一系列生物活性剂。
在一些实施方案中,亲水性生物活性剂可以是优选的。
生物活性剂可以选自非限制性类别的活性剂,包括激素、抗微生物剂、治疗性抗体、细胞因子、融合蛋白、抗原、病毒、细菌、细菌片段、疫苗和激素。本发明的可注射组合物可以包含一种或多种选自一种或多种这些类别中的生物活性剂。
生物活性剂可以在生理pH下携带净电荷,其可以通过活性剂的等电点(pI)来表示。可替代地,生物活性剂可以没有净电荷(即中性的)。
当可注射组合物包含两种或更多种生物活性剂时,生物活性剂可以属于同一类别的活性剂或不同类别的活性剂。在每种情况下,也可以独立地选择每种生物活性剂。
激素可以为肽激素(如胰岛素和生长激素),或类固醇激素(如皮质类固醇、雌激素、孕激素和雄激素)。
“肽激素”为肽或蛋白质,其对受试者的内分泌系统具有作用。
可以包含在本发明的可注射组合物中并由其递送的肽激素的具体示例为生长激素。生长激素刺激人和非人动物的生长、细胞繁殖和细胞再生,并且在生长和发育中是重要的。
治疗性抗体可以是英夫利昔单抗、阿达木单抗、尼格沙单抗、阿仑单抗、达珠单抗或巴利昔单抗。
融合蛋白可以为依那西普。
“抗原”为一种化合物,当其被引入人或非人动物中时,将导致形成对抗抗原的抗体和细胞介导的免疫。
抗原是市售可得的,或者可以使用已知程序和技术制备。代表性的抗原可以包括但不限于天然、重组或合成的产物,所述产物来源于病毒、细菌、真菌、寄生虫和其他感染因子(包括朊病毒)。抗原的示例还包括人抗原,其可用于预防性或治疗性疫苗,例如涉及自身免疫疾病或与之相关的疫苗,特别是自身抗原、激素、肿瘤抗原和过敏原。微生物(例如病毒或细菌)产物可以是生物体产生的或可以例如通过酶促切割诱导产生的组分,或者可以是通过本领域普通技术人员熟知的重组DNA技术产生的生物组分。
可以包含在本发明的可注射组合物中并由其递送的抗原的一些具体示例为TSOL18抗原、Bm86抗原、捻转血矛线虫(H.contortus)抗原、旧世界螺旋蛆蝇(Old WorldScrewworm fly)(蛆症金蝇(Chrysomya bezziana))的抗原和蓝舌病毒(bluetonguevirus)的抗原。
“疫苗”是一种制剂,其用于刺激免疫系统以产生针对一种或多种特异性试剂的抗体。疫苗可以预防、治疗或抑制病症、疾病或症状的进展,所述病症、疾病或症状由感染性或传染性试剂或任何其他试剂直接或间接引起或加剧。
可以包含在本发明的可注射组合物中并由其递送的一种具体疫苗为促黄体激素释放激素(LHRH)疫苗。所述疫苗可以用于抑制动物的繁殖,并形成免疫阉割或免疫避孕的基础。
在一种形式中,可注射组合物包含一种或多种选自疫苗抗原和激素的生物活性剂。
在一些实施方案中,本发明的可注射组合物包含佐剂。如本文所使用的术语“佐剂”是指增强受试者对生物活性剂的生理反应的化合物或物质。例如,对于抗原,佐剂可以通过增加抗体从而延长免疫应答的寿命,来增强受试者对抗原的免疫应答。
因此,与单独施用生物活性剂或不施用佐剂相比,佐剂可以有助于促进受试者对生物活性剂的更有效的生理应答。
在一些实施方案中,佐剂可以用于改变生物活性剂在体内的释放。与单独施用生物活性剂或不施用佐剂相比,经调节的释放可以使用更少量或更少剂量的生物活性剂,来提供更持久的或更高水平的递送。
佐剂可以存在于可注射组合物的油包水乳剂中,并且可以在乳剂的油相或水相中。在可注射组合物的一些实施方案中,乳剂的油相和水相可以各自包含佐剂。
在可注射组合物的一个实施方案中,油包水乳剂的水相包含至少一种佐剂。在这种实施方案中,佐剂优选是亲水的,并且可以是水溶性的。
当存在于水相中时,佐剂可以在水性液体中和/或在水相的水凝胶颗粒中。例如,佐剂可以溶解在水相的水性液体中。另外或可替代地,佐剂可以包含在水凝胶颗粒中,或者将其作为水相的水凝胶颗粒的化学组成或结构的一部分掺入水凝胶颗粒中。例如,壳聚糖可以具有辅助性质,因此可以通过在水相中使用包含交联壳聚糖的水凝胶颗粒,来将佐剂引入可注射组合物中。
可以被掺入油包水乳剂的水相中的亲水性佐剂可以选自明矾、耻垢分枝杆菌(Mycobacterium smegmatis)的水溶性提取物、合成的N-乙酰基-胞壁酰基-1-丙氨酰-d-异谷氨酰胺、单酰基脂肽和Toll样受体的配体。可以将这些佐剂掺入水性液体中和/或水相的水凝胶颗粒内。
在可注射组合物的其他实施方案中,油包水乳剂的油相包含至少一种佐剂。在这些实施方案中,佐剂优选是亲脂性的,并且至少是油相容的,并且可以是油溶性的。
在一些实施方案中,油本身可以为佐剂,因此油相包含辅助油。可以期望使用辅助油,因为其避免了需要在本发明的可注射组合物中掺入单独的辅助化合物。本文描述了辅助油的示例。
在替代的实施方案中,油相可以包含溶解或混悬在非辅助(惰性)油中的亲脂性佐剂。
各种佐剂是本领域技术人员已知的。可用于本发明的可注射组合物的佐剂可以是无机佐剂或有机佐剂。
技术人员将理解,特定佐剂的选择可以取决于待递送至受试者的生物活性剂,待由活性剂治疗的疾病或病症,和活性剂所期望的释放曲线。
特定佐剂的一些示例包括不完全弗氏佐剂(IFA)、佐剂65(Adjuvant 65)(含有花生油、甘露醇单油酸酯和单硬脂酸铝)、油乳剂、Ribi佐剂、普朗尼克多元醇(pluronicpolyol)、聚胺、Avridine、Quil A、皂角苷、MPL、QS-21、矿物凝胶和铝盐(如氢氧化铝和磷酸铝)。其他示例包括水包油乳剂(如SAF-1、SAF-0、MF59、Seppic ISA720)和其他颗粒佐剂(如ISCOM和ISCOM基质)。
本发明的可注射组合物可以任选地包含一种或多种另外的组分。另外的组分可以为例如用于调节水相的pH或离子强度的盐或离子、表面活性剂、乳化剂等。当存在时,另外的组分可以包含在本文所描述的油包水乳剂的油相和/或水相中,包括在水相的水凝胶颗粒和/或水性液体中。本领域技术人员将理解,可以将另外的组分溶解或混悬在油相或水相中,这取决于特定组分的亲脂性或亲水性。
在一组实施方案中,本发明的可注射组合物可以包含至少一种表面活性剂。表面活性剂可以有助于减少或防止水相和油相的完全相分离,从而有助于产生更稳定的油包水乳剂。
表面活性剂可以以可注射组合物的重量计高达5%的量存在。在一些实施方案中,表面活性剂可以以可注射组合物的重量计高达1%的量存在。
在本发明的可注射组合物中使用的表面活性剂可以具有低亲水-亲油平衡(HLB)值。例如,表面活性剂可以具有6或更低的HLB。此外,具有高HLB比例的表面活性剂可以与低HLB表面活性剂组合使用,以得到低HLB表面活性剂混合物,以优化油包水乳剂的稳定性。
各种药学上可接受的表面活性剂是本领域技术人员已知的。药学上可接受的表面活性剂可以为阴离子的、阳离子的、两性离子的或非离子的。
在一组实施方案中,本发明的可注射组合物进一步包含非离子表面活性剂。可以使用一系列非离子表面活性剂。示例性的非离子表面活性剂可以选自山梨聚糖酯、聚山梨醇酯和泊洛沙姆。
优选的表面活性剂可以选自吐温80(聚山梨醇酯80)、乙二醇和甘油酯、聚氧乙烯/丙二醇(如PEG-35蓖麻油)、山梨聚糖衍生物(如聚山梨醇酯-20、40、60、65、80和85、山梨聚糖单油酸酯、山梨聚糖单月桂酸酯、山梨聚糖单棕榈酸酯)、倍半油酸酯、三油酸酯、三硬脂酸酯、糖和多糖基表面活性剂。
可以使用适合于形成乳剂组合物(特别是油包水乳剂)的设备和技术,来制备本发明的可注射组合物。
在一个方面,本发明提供一种用于制备用于快速和持续递送生物活性剂的可注射组合物的方法,所述方法包括以下步骤:
提供包含第一水凝胶形成组分的第一水性组合物和包含第二水凝胶形成组分的第二水性组合物,所述第一水性组合物和所述第二水性组合物中的至少一种包含生物活性剂;
将第一水性组合物与包含油的亲脂性组合物组合以形成乳化组合物;和
在允许第一水凝胶形成组分与第二水凝胶形成组分反应以在原位形成多个水凝胶颗粒的条件下,将第二水性组合物与乳化组合物组合,从而提供包含油包水乳剂的可注射组合物,所述油包水乳剂包含分散在油相中的水相,所述水相包含多个水凝胶颗粒和水性液体,和
其中生物活性剂包含在油包水乳剂的水相的水凝胶颗粒和水性液体中。
在形成可注射组合物时,第一水凝胶形成组分是选自聚合物和交联剂中的一种,而第二水凝胶形成组分是选自聚合物和交联剂中的另一种。即,当第一水凝胶形成组分选自聚合物时,则第二水凝胶形成组分为交联剂,反之亦然。本文已经描述了适用于形成水凝胶颗粒的聚合物和交联剂。
可以在剪切下将水性组合物和亲脂性组合物组合,以形成水凝胶颗粒和油包水乳剂。
在一个实施方案中,可以通过首先将在水性溶剂中包含多糖的第一水性组合物与包含生理学上可接受的油和表面活性剂的亲脂性组合物组合,并在剪切下将第一水性组合物在亲脂性组合物中乳化,来制备本发明的可注射组合物。然后,将在水性溶剂中包含交联剂的第二水性组合物与初始乳化的混合物在连续搅拌或剪切下组合。交联剂与多糖反应,并自发地使多糖交联,以得到原位形成的交联水凝胶的胶体部分。因此,所得的组合物为含有多个水凝胶颗粒的油包水乳剂。将所形成的水凝胶颗粒分散在水性溶剂中,所述水性溶剂形成乳剂水相的水性液体部分。多糖的交联和含有交联多糖的水凝胶颗粒的形成无需额外的固化机制或装置(例如通过UV、IR、加热)即可发生。交联和水凝胶颗粒形成可以快速地发生。
有利地,已经发现所得的可注射组合物是稳定的,其中油包水乳剂和乳剂中水凝胶颗粒的分散体在数周内保持稳定。通常,稳定的乳剂在所期望的一段时间内不会表现出组合物组分的相分离、聚集或沉淀。在一组实施方案中,本发明的可注射组合物可以在环境室温稳定超过6个月。
含有交联剂和多糖的水性组合物与亲脂性组合物混合的顺序可以颠倒。即,第一水性组合物可以包含交联剂(例如TPP),并且可以首先将包含油的亲脂性组合物与含有交联剂的水性组合物乳化。然后,可以将包含多糖(例如壳聚糖)的第二水性组合物加入到该初始乳化的组合物中,以制备本发明的可注射组合物。
在一些实施方案中,当水凝胶颗粒包含多糖的混合物时,可以通过首先将在水性溶剂中包含第一多糖的第一水性组合物与包含生理学上可接受的油的亲脂性组合物组合,并在剪切下将第一水性组合物在亲脂性组合物中乳化,来制备可注射组合物。然后,将在水性溶剂中包含第二多糖的第二水性组合物与初始乳化的混合物在连续搅拌或剪切下组合。优选地,第二多糖与第一多糖具有相反的电荷。然后,第一和第二多糖经由分子间静电相互作用交联,得到原位形成的交联水凝胶的胶体部分。
在一些实施方案中,用于制备可注射组合物的水性组合物可以包含具有类似静电荷的水凝胶形成组分的混合物。例如,水性组合物可以包含带负电荷的多糖(如藻酸盐和硫酸软骨素)的混合物。如果需要,这种水性组合物还可以包含具有相同电荷的离子交联剂,如TPP。可以将含有该水性组合物的初始乳剂与含有相反电荷的水凝胶形成组分(例如带正电荷的多糖如壳聚糖)的另一水性组合物组合。如果需要,壳聚糖成分可以包含其他带正电荷的聚合物和/或交联剂物质。然后,在乳剂中组合含有相反电荷的组分的这些不同水性组合物可以允许形成包含微水凝胶颗粒的可注射组合物,所述微水凝胶颗粒具有静电交联的不同多糖的组合。
在可注射组合物的制备期间,在生物活性剂的存在下通过交联水凝胶形成聚合物来形成水凝胶颗粒可以涉及两个过程:交联水凝胶网络的形成,和通过增加交联密度来驱动的网络的压缩,其持续直至达到聚合物链的渗透力和弹性力之间的平衡。通过在交联期间水凝胶体积减少而排出的水性液体相(被称为脱水收缩液)含有未被水凝胶聚合物链物理结合或包封的游离生物活性物质,即,超过交联链的结合能力的那些。尤其地,由于在网络形成期间由压缩引起的组分的熵构象变化,交联聚合物链的结合能力可能低于交联之前的链的结合能力。在(i)与水凝胶聚合物链结合的生物活性物质与(ii)在水性液体(其中水性液体在乳剂水相的水凝胶网络外部,并且在膨胀的水凝胶自身内)中的游离物质之间建立的物理平衡的特征在于系统各自的结合系数。
在可注射组合物包含涂布的水凝胶颗粒的实施方案中,用于制备可注射组合物的第一水性组合物和第二水性组合物可以各自任选地进一步包含涂层形成组分。在一个实施方案中,第二水性组合物包含涂层形成组分。在另一个实施方案中,第一水性组合物和第二水性组合物均包含涂层形成组分。
当将第一水性组合物与亲脂性组合物乳化,并随后将所得的乳剂与第二水性组合物组合时,第一和第二水凝胶形成组分发生反应,以在组合物中原位形成水凝胶颗粒。同时,也存在于乳化的反应混合物中的涂层形成组分形成涂层,所述涂层至少部分地覆盖一个或多个水凝胶颗粒的表面。因此,也在水凝胶颗粒的表面上原位形成涂层。
作为示例,可以通过首先将包含第一水凝胶形成组分的第一水性组合物与包含生理学上可接受的油和表面活性剂的亲脂性组合物组合,并在剪切下将第一水性组合物和亲脂性组合物乳化,来制备本发明的可注射组合物。然后,将在水性溶剂中包含第二水凝胶形成组分和涂层形成组分的第二水性组合物与初始乳化的混合物在连续搅拌或剪切下组合。第一水凝胶形成组分与第二水凝胶形成组分反应,得到原位形成的水凝胶的胶体部分,同时涂层形成组分在胶体水凝胶上形成涂层。涂层位于水凝胶颗粒的表面。涂层的一部分可以与下面的水凝胶颗粒核心物理交织,以将涂层连接到水凝胶核心上。可替代地,可以将涂层连接(例如化学连接)到下面的水凝胶核心。因此,所得的组合物为油包水乳剂,其含有分散在乳剂水相的水性液体部分中的一个或多个涂布的水凝胶颗粒。
如本文所描述,在一些实施方案中,可以在水凝胶颗粒上形成交联涂层。在这样的实施方案中,可以将涂层形成组分掺入用于形成本发明的可注射组合物的每种水性组合物中。涂层形成组分一起反应以形成交联涂层。
作为示例,可以通过首先将包含第一水凝胶形成组分和第一涂层形成组分的第一水性组合物与包含生理学上可接受的油和表面活性剂的亲脂性组合物组合,来制备本发明的可注射组合物。然后,将混合物在剪切下乳化。然后,将在水性溶剂中包含第二水凝胶形成组分和第二涂层形成组分的第二水性组合物与初始乳化的混合物在连续搅拌或剪切下组合。第一水凝胶形成组分与第二水凝胶形成组分反应,以原位形成水凝胶的胶体部分。同时,第一涂层形成组分与第二涂层形成组分反应,以在胶体水凝胶上原位形成交联涂层。
在期望形成交联涂层的情况下,优选第一水性组合物和第二水性组合物的每一种中的组分不会相互反应。确切地说,优选这些组合物中的组分之间的反应仅在第一和第二水性组合物组合在一起并与亲脂性组合物乳化后进行。
在上面描述的方法中,选自第一水性组合物、第二水性组合物和亲脂性组合物中的一种或多种组合物可以包含佐剂。因此,在用于制备本发明的可注射组合物的至少一种前面提及的组合物中可以包含佐剂。
在一个实施方案中,亲脂性组合物包含佐剂。这些实施方案将得到在油包水乳剂的油相中包含佐剂的本发明的可注射组合物。
在一个实施方案中,亲脂性组合物包含生理学上可接受的辅助油。本文描述了辅助油的示例。
在一个实施方案中,亲脂性组合物包含生理学上可接受的惰性油,和溶解或分散在惰性油中的至少一种亲脂性辅助化合物或物质。
在一些实施方案中,可以通过至少一种辅助化合物或物质提供佐剂,所述辅助化合物或物质被溶解或分散在用于制备可注射组合物的第一水性组合物和/或第二水性组合物中。这种辅助物质通常是亲水的。本文描述了亲水性辅助化合物的示例。
作为参考本文所描述的实施方案之一的说明,可以将包含壳聚糖的第一水性组合物与包含辅助油(例如Montanide ISA61)的亲脂性组合物在搅拌或剪切下组合。然后,将包含三聚磷酸钠(TPP)的第二水性组合物加入到所得的乳化组合物中,以使壳聚糖交联。在连续剪切下,向初始组合物中滴加TPP。然后,形成均匀的油包水乳剂制剂,其包含在乳剂的水相中由交联的壳聚糖组成的水凝胶的胶体部分。
作为本文所描述的另一个实施方案的说明,当需要涂布的水凝胶颗粒时,可以将包含藻酸盐和三聚磷酸钠(TPP)的第一水性组合物与包含辅助油(例如Montanide ISA61)的亲脂性组合物在搅拌或剪切下组合。然后,在连续剪切下,将包含壳聚糖和氯化钙(CaCl2)的第二水性组合物加入到所得的乳化组合物中。钙阳离子与藻酸盐相互作用,以使藻酸盐交联并形成藻酸盐-Ca2+水凝胶的胶体部分。同时,壳聚糖与TPP交联,以在胶体水凝胶上产生交联壳聚糖涂层。所得的组合物为油包水乳剂制剂,其在分散的水相中包含涂布的水凝胶的胶体部分。涂布的水凝胶由交联藻酸盐核心和交联壳聚糖涂层组成。
当制备本发明的可注射组合物时,生物活性剂可以包含在本文所描述的第一水性组合物和/或第二水性组合物中。在一个优选方案中,第一水性组合物包含生物活性剂。可以优选在第一水性组合物中包含生物活性剂,因为这可以促进活性剂在乳剂中更有效地分布,并因此促进其在最终的可注射组合物中的分布。
可以将第一水性组合物、亲脂性组合物和第二水性组合物以任何合适的体积比例组合。在一个具体实施方案中,第一水性组合物包含交联剂和生物活性剂,亲脂性组合物包含辅助油,第二水性溶液包含多糖,并且第一水性组合物:亲油性组合物:第二水性组合物之间的体积比例为0.5:1.2:1.8。
在可注射组合物的制备期间,一部分生物活性剂被包封在原位形成的水凝胶颗粒中。另一部分生物活性剂没有被包封在水凝胶颗粒中,而是保留在水性溶剂中,所述水性溶剂之后形成油包水乳剂的水相的水性液体。
由于包含生物活性剂的水凝胶颗粒是离体制备的,因此可以改善产物再现性。
如果期望在可注射组合物中存在其他组分,则可以将这些组分掺入到用于制备可注射组合物的第一水性组合物、第二水性组合物和/或亲脂性组合物中的一种或多种中。例如,在一个实施方案中,可以将水不溶性碱土金属磷酸盐(如羟基磷灰石)掺入到包含多糖的水性组合物中,同时可以将生物相容性蛋白多糖掺入到包含交联剂的水性组合物中。
如果需要多孔水凝胶颗粒,则用于制备可注射组合物的第一水性组合物、第二水性组合物和/或亲脂性组合物中的一种或多种可以进一步包含致孔剂。
在一些实施方案中,选自第一水性组合物和第二水性组合物中的至少一种包含致孔剂。
致孔剂为可用于在材料中形成开口或孔的物质。由于致孔剂用于在水凝胶颗粒中形成孔,因此致孔剂可以优选为亲水性物质。
可以在致孔剂的存在下进行聚合物和交联剂之间形成水凝胶颗粒的反应。致孔剂不参与水凝胶形成反应,因此在致孔剂周围形成水凝胶材料。因此,致孔剂充当水凝胶颗粒中的孔的模板。在形成水凝胶颗粒之后,致孔剂可以从颗粒中过滤并被去除,从而在水凝胶颗粒中留下孔。
可以使用一系列致孔剂来形成多孔水凝胶颗粒。合适的致孔剂的示例为聚(乙二醇)(PEG)。技术人员将理解,PEG为一种与水性溶剂相容的亲水性聚合物。
聚(乙二醇)可用作致孔剂,并且可以具有约200至100,000Da的分子量。在一个实施方案中,聚(乙二醇)具有约35,000Da的分子量。
可以以合适的量使用用于形成多孔水凝胶颗粒的致孔剂。致孔剂的量可以取决于所选择的致孔剂的类型和所期望的水凝胶颗粒的孔隙度。在一组实施方案中,致孔剂可以以高达2wt%的量存在于选自第一水性组合物和第二水性组合物中的至少一种中。
此外,可以在方法中使用表面活性剂,并且当使用时,可以将合适的表面活性剂掺入用于制备可注射组合物的第一水性组合物、第二水性组合物和/或亲脂性组合物中的一种或多种中。在一个实施方案中,用于形成可注射组合物的油包水乳剂的油相的亲脂性组合物包含表面活性剂。
本发明的可注射组合物可以以一步法制备,其提供了简单且有效的制备方法。可以使用常规的制备装备和设备来制备组合物,其有助于降低生产成本。
可以根据本文所描述的方法制备的本文所描述的实施方案的可注射组合物能够被施用于受试者,以递送生物活性剂。其适合以单次注射施用。有利地,可注射组合物可以如制备的那样使用,而无需进行额外的分离、纯化或配制步骤。例如,本发明避免了在将它们施用至受试者之前分离水凝胶颗粒并在合适的药学上可接受的载体(carrier)或载体(vehicle)中重新配制分离的水凝胶颗粒的需要。然而,技术人员将理解,可以进行涉及可注射组合物的过程(如灭菌),以确保其符合相关的安全或法规要求。
本文所描述的实施方案的可注射组合物的粘度适合于通过注射施用至受试者。已经发现,当施加剪切应力时,如当组合物通过针的内腔注射时,可注射组合物可以表现出剪切稀化行为。在施加剪切应力下发生的剪切稀化可以降低组合物的粘度。
由可注射组合物的生物活性剂的释放曲线包括短期(即快速)和长期(即持续)部分。在一些实施方案中,可以通过可注射组合物的组分来控制或调节生物活性剂的释放曲线,所述组分通过本文所描述的不同机制影响活性剂的通过。
短期释放曲线使得生物活性剂的初级剂量被快速递送。据信,初级剂量由部分生物活性剂提供,该部分生物活性剂不包含在水凝胶颗粒中,而是存在于油包水乳剂的水相的水性液体中。由于生物活性剂没有被结合或包封在固体水凝胶颗粒中(即,其游离于水凝胶颗粒之外),水性液体中的活性剂能够在体内被快速递送至受试者。
据信,当含有活性剂的水性液体的液滴与分散的水相分离,并转运通过油包水乳剂的连续油相时,可以递送生物活性剂的初级剂量。在其转运通过油相期间,水性液滴可以被油膜包封。然后,含有生物活性剂的油包封的水性液滴被递送到周围的生理环境中,其中包含在液滴中的活性剂可以作为初始初级剂量释放。
这种生物活性剂的初级剂量的快速递送在将可注射组合物施用至受试者后立即发生,或在此后不久(即,在施用的数分钟内)发生。
在一些实施方案中,可以通过生物活性剂与可注射组合物中的水凝胶颗粒的相互作用来调节生物活性剂的释放。例如,如果生物活性剂和水凝胶聚合物基质各自在生理pH下带有净电荷,则生物活性剂和水凝胶聚合物基质之间的静电相互作用可以影响活性剂的释放动力学。类似地,带电荷的涂层也可以与带电荷的生物活性剂产生静电相互作用,从而影响活性剂的释放。
在本文所描述的实施方案的可注射组合物的一种形式中,水凝胶颗粒中的生物活性剂可以与颗粒缀合。缀合可以经由共价或非共价相互作用。生物活性剂可以与水凝胶颗粒的交联聚合物基质和/或覆盖水凝胶颗粒的涂层缀合。在一个实施方案中,生物活性剂经由非共价相互作用(如静电相互作用)缀合。当生物活性剂在生理pH下带电荷,并且水凝胶颗粒的聚合物基质和/或水凝胶颗粒上的涂层带有相反的电荷时,可以发生这种情况。
在一些实施方案中,生物活性剂的短期释放曲线是线性的,并且可以是零阶(zeroorder)的。
也可以通过可注射组合物中的佐剂来调节生物活性剂向生理环境的递送。在油包水乳剂的油相包含佐剂(如辅助油)的实施方案中,包围水性液滴的油膜也将包含佐剂。在这样的实施方案中,油膜中的佐剂将有助于调节生物活性剂从水性液滴向受试者的生理环境中的释放。
在初级剂量的递送后,可以经由释放包含在可注射组合物的水凝胶颗粒中的那部分活性剂,来实现生物活性剂的更长时间(即持续)的递送。因此,水凝胶颗粒可以作为包含在其中的生物活性物质的贮库。随着时间的推移从颗粒中释放一定量的活性剂使得本发明的可注射组合物能够在持续的一段时间内向受试者递送生物活性剂,从而提供应答的寿命。
为了提供持续递送,包含在水凝胶颗粒内的生物活性剂从水凝胶颗粒进入水相的水性液体中。当在水性液体中时,然后可以经由上面描述的相同的用于递送活性剂的初级剂量的油膜包封的水性液滴机制,将生物活性剂递送至受试者的生理环境。
可以通过为活性剂建立的浓度梯度,或通过水凝胶颗粒与水性液体之间的渗透压差异,来辅助生物活性剂穿过水凝胶颗粒进入水性液体,所述渗透压差异可以促进活性剂从水凝胶颗粒移动到水性液体中。
特别地,生物活性剂向生理环境的快速且持续的递送可以受到为活性剂建立的动态平衡的影响。在这方面,据信本发明的可注射组合物可以提供分配系统,所述分配系统促进水凝胶颗粒中结合或包含的活性剂与油包水乳剂的分散水相的水性液体中的游离活性剂之间的平衡的建立。由结合平衡导致的分配提供游离脱水收缩活性剂的初始快速释放,得到引发剂量,其在佐剂的存在下可以触发先天免疫应答(即,巨噬细胞,树突细胞)。物理结合到水凝胶的网络链上的生物活性物质通过重新建立结合平衡的另一种“游离”状态物质的重新建立,或者通过微水凝胶被抗原呈递细胞(APC)通过吞噬作用(如果水凝胶大于~1μm)、微胞饮(micropinocytosis)(如果水凝胶小于1μm)或内吞作用(如果水凝胶是纳米级~50-60nm)的过程的摄取,来提供活性剂的更长期的滴给(trickle feed)(即,持续释放)。含有抗原的微水凝胶可以进一步触发适应性免疫系统,诱导T细胞分化为T辅助细胞和T杀伤细胞,从而产生特异性抗体(即,适应性免疫)。
在一些实施方案中,其中静电相互作用在设计的分配中占主导地位,所述分配由结合到水凝胶的生物聚合物链上的活性剂与游离于油包水乳剂的分散水相中的活性剂的平衡组成,可以调节生物聚合物的组成,以调整在快速(水性的)和持续(结合的)递送阶段中可递送的生物活性剂的比例。
在一些实施方案中,生物活性剂的生物利用度曲线可以涉及调节活性剂向体内环境的呈递。例如,可以经由水凝胶颗粒在巨噬细胞和树突细胞中的内化,然后裂解水凝胶以将活性剂释放到抗原呈递细胞(APC)的细胞质中,来调节活性剂的呈递。
可以实现有效的生物活性剂的短期和长期释放,而无需应用外部刺激来触发活性剂从可注射组合物中释放。
技术人员还将理解,在肌内或皮下注射后,水凝胶颗粒的形态可以改变。由周围生物组织施加的压力可以导致油包水乳剂中的水凝胶颗粒在注射部位的堆积,其中仅有少量乳剂液体围绕并填充水凝胶颗粒之间的空间。这导致在将组合物注射到受试者时含有生物活性剂的水性和油性液体的滤出,所述水性和油性液体作为初级剂量递送。
水凝胶颗粒在注射后也可以随着时间的推移而收缩,导致排出颗粒中含有的水性液体,从而导致生物活性剂从颗粒中排出并进入周围的水性环境。水凝胶颗粒中含有的剩下的生物活性剂可以以较慢的速率从颗粒中排出,从而有助于提供活性剂的持续递送。
还可以通过存在于可注射组合物的一个或多个水凝胶颗粒上的涂层来调节生物活性剂从水凝胶颗粒到水性液体的通过。取决于其组成和与生物活性剂的可能的相互作用,涂层可以阻碍活性剂从水凝胶颗粒进入水性液体中的运动,从而有助于促进活性剂在延长的时间内从可注射组合物中的持续释放。
在一些实施方案中,用于制备水凝胶颗粒的材料可以进一步有助于生物活性剂的持续递送,因为这样的材料可以具有辅助性质,从而作为佐剂帮助调节活性剂从水凝胶颗粒到水性液体的通过。例如,壳聚糖可以具有辅助性质,并且包含交联壳聚糖的水凝胶颗粒能够影响生物活性剂的释放并增强免疫应答。
生物活性剂的释放的调节可以涉及活性剂递送至生理环境的速率的增加或降低。
如本文所使用,短语“持续释放”是指药剂向受试者释放的速率比如果将药剂直接施用于受试者时发生的速率慢。
在一个示例中,本发明的可注射组合物包含Bm86作为活性剂,并且能够在体内在至少6个月的时间内提供对Bm86的免疫应答。
在一个实施方案中,可注射组合物的具体组分可以以下列wt%范围存在:多糖(0.05-3%):交联剂(0.05-3%):水不溶性碱土金属磷酸盐(0.0-3%,受粒度分布影响的):粘多糖(GAG,约0.0-3%)。
本文所描述的实施方案的可注射组合物可以在油包水乳剂中具有低比例的固体。
本发明的可注射组合物的一个优点是其能够向受试者施用更少的注射。例如,对于在当前常规方案下通常需要每日注射的情况,本发明可以使得通过每周注射实现基本相同的生理作用和益处。
此外,可以简化需要初始注射随后进行一次或多次后续注射或加强注射的方案,因为由本发明的可注射组合物提供的延长的生物利用度意味着可以通过单次注射实现有效的生理学益处,从而不需要施用后续注射或加强注射。例如,已经发现本发明的可注射组合物能够在单次注射后在受试者中诱导有效的保护性免疫(即,抗体水平),而无需随后进行单次或多次注射。此外,在数周内维持了有效的免疫水平。在一些实施方案中,可以在几个月的时间内维持有效的免疫水平,并且在一个实施方案中,免疫可以维持超过一年。
因此,减少注射次数的能力可以为接受注射的受试者提供增加的便利性,以及为制造商和消费者节省成本。
在使用中,可注射组合物可以包含在注射器室中,并通过针的内腔来注射以施用至受试者。例如,可以经由23号针头(gauge 23needle)施用可注射组合物。
本发明的可注射组合物的另一个优点是可以调整组成,以使组合物的水相中含有不同比例的水凝胶颗粒和水性液体。以这种方式,本发明可以分别控制水凝胶颗粒和水性液体中含有的生物活性剂的比例。这反过来可以影响用于快速(短期)和持续(长期)递送的活性剂的量。
还可以通过适当选择用于形成水凝胶颗粒的材料,以及通过在水凝胶颗粒上形成涂层,来实现对生物活性剂的释放的进一步控制。如上面所讨论,水凝胶颗粒中的聚合物和水凝胶颗粒上的涂层各自具有与所选择的生物活性剂相互作用的潜力,因此可以调节该生物活性剂从水凝胶颗粒释放到可注射组合物的水相的水性液体组分中。
在又一个方面,本发明提供一种向受试者递送生物活性剂的方法,其包括通过注射向受试者施用如本文所描述的可注射组合物的步骤。
注射可以为皮下、肌肉内或腹膜内注射。优选地,经由皮下注射施用。
本发明的可注射组合物具有用于施用生物活性剂(如药物或疫苗)的应用。
可以将本发明的可注射组合物施用于受试者,以治疗或预防疾病或病症。如本文所使用,术语“治疗”和“预防”是指预防受试者的疾病或病症的任何处理。“治疗”和“预防”包括:(a)控制或抑制疾病或病症,即阻止其发展或进展;或者(b)缓解或改善疾病或病症的症状,即引起疾病或病症症状的消退。在部分或完全治愈疾病或病症方面,该作用可以是预防性的或治疗性的。
如本文所使用的“疾病”是用于指对健康的任何偏离的一般术语,其中受试者患有所述疾病,并且可以使用提供活性剂的延长释放的微水凝胶-贮库来治疗或预防所述疾病。“病症”是指受试者部分身体的异常运行,并且可以使用提供活性剂的延长释放的微水凝胶-贮库来治疗或预防所述病症。
在使用中,本发明的可注射组合物提供生物活性剂在受试者体内的快速和持续释放。因此,在施用至受试者后,可注射组合物迅速向受试者提供初始初级剂量的生物活性剂,然后在较长时间内更持续地(即,滴流(trickle))给予活性剂。
在另一个方面,本发明提供一种治疗或预防受试者的疾病或病症的方法,其包括通过注射向受试者施用本文所描述的一个或多个实施方案的可注射组合物的步骤。
在一些实施方案中,疾病或病症为微生物感染,并且本发明的可注射组合物可以用于治疗或预防微生物感染。微生物可以包括细菌、真菌和病毒。
在一些实施方案中,疾病或病症为病毒感染,并且本发明的可注射组合物可以用于治疗或预防病毒感染。
在一些实施方案中,疾病或病症为寄生虫感染,并且本发明的可注射组合物可以用于治疗、控制或预防感染。例如,可注射组合物可以用于控制蜱感染。
在其他实施方案中,可注射组合物可以用于抑制在进展或发育中被阻止的正常状况(例如生殖状况)。
待治疗或预防疾病或病症的受试者可以是人或对人具有经济价值和/或社会价值的动物,例如,除人以外的食肉动物(如猫和狗)、猪(swine)(猪(pig)、猪(hog)和野猪)、反刍动物(如牛(cattle)、牛(oxen)、绵羊、长颈鹿、鹿、山羊、野牛和骆驼)、马,和鸟(包括那些饲养在动物园里的濒临灭绝的那些鸟类),和禽类,更特别是家养的禽类,例如家禽,如火鸡、鸡、鸭、鹅、珍珠鸡等,因为它们对人类也具有经济价值。术语不表示特定年龄。因此,旨在涵盖成年的和新生的受试者。
在特别的实施方案中,受试者为家畜动物,如牛、绵羊或猪。在这种实施方案中,可注射组合物可以被认为是兽医用组合物,并且组合物中包含的生物活性剂被选择用于治疗或预防家畜动物的疾病或病症。
本发明还提供如本文所描述的一个或多个实施方案的可注射组合物在制备用于治疗或预防受试者的疾病或病症的药物中的用途。
在本文所描述的方法或用途的一些实施方案中,生物活性剂为抗原。特别地,抗原可以为Bm86或TSOL18。
在本文所描述的方法或用途的其他实施方案中,生物活性剂为激素。特别地,激素可以为生长激素或促黄体激素释放激素(LHRH)。
如在本说明书中所使用,单数形式“一(a)”、“一个(an)”和“该(the)”包括复数的方面,除非上下文另有明确说明。因此,例如,对“病毒”的引述包括单个病毒颗粒以及两个或更多个病毒颗粒,“基因”包括单个基因或两个或更多个基因。对“本发明”的引述包括本发明的一个或多个方面。
除非另外定义,否则本文所使用的所有技术和科学术语均具有与本发明所属领域的普通技术人员所通常理解的含义相同的含义。尽管与本文所描述的那些类似或等同的任何材料和方法可以用于实施或测试本发明,但现在描述优选的材料和方法。
现在将参考以下实施例描述本发明。然而,应理解,这些实施例是以阐明本发明的方式提供的,并且它们决不限制本发明的范围。
实施例
材料和方法
从Sigma-Aldrich获得低分子量壳聚糖,其为在1%乙酸中的1wt%溶液,Mw为164kDa,脱乙酰度为75-85%,且粘度为0.026Pa.s。从Sigma-Aldrich获得羟基磷灰石(HAp)(I型,在0.001M磷酸盐缓冲液中的混悬液,pH 6.8;约25%固体)。使用高剪切混合器(MICCRA和DS-8/P定子转子-Stator;钉头8mm)以20000rpm持续5min将该混悬液分散在壳聚糖溶液中,以产生1mg HAp/mL。从Sigma-Aldrich获得五元碱性三聚磷酸钠(Sodiumtripolyphosphate pentabasic,TPP)(工业级,85%)和硫酸软骨素A钠盐(ChS)(来自牛气管冻干粉,BioReagent)。佐剂Montanide ISA61 VG来自Seppic SA(Paris La Defense,法国)。芝麻油、吐温80和中等粘度的海藻酸钠(褐藻)来自Sigma-Aldrich。如以下文献所报道制备并表征抗牛蜱Bm86抗原(Bm86)、抗绦虫TSOL18抗原(TSOL18)和猪生长激素(pST):(1)Bm86:Willadsen,P.等人,The Journal of Immunology,1989.143(4):p.1346-1351;(2)TSOL18:Gauci,C.和M.W.Lightowlers,Molecular and Biochemical Parasitology,2003.127(2):p.193-198;(3)pST:Ouyang,J.等人,Protein Expression andPurification,2003.32(1):p.28-34。
具有Bm86抗原的可注射疫苗组合物
制备了三种不同的组分溶液,每种溶液都具有一系列浓度:
[A]部分:溶解于2%壳聚糖或2%壳聚糖与1mg羟基磷灰石(HAp)/mL的水溶液中的Bm86(0μg、50μg、100μg或200μg)
[B]部分:三聚磷酸盐(TPP)溶液(0.04M、0.08M、0.16M或0.32M)或含有1%硫酸软骨素(ChS)的TPP溶液(0.04M、0.08M、0.16M或0.32M)
[C]部分:Montanide ISA61 VG
为了制备疫苗组合物,首先使用MICCRA高剪切乳化器以20,000rpm速率持续2-3min将期望量的溶液[A]用一定量的溶液[C]乳化。然后,在与之前相同的速率的恒定剪切下(2-3min)滴加期望量的溶液[B],以形成可注射的组合物。通过使用23号针头在注射器中抽取来检查乳剂的稠度,以评估组合物的可注射性。
实施例1至6-交联剂(TPP)溶液体积的作用
在这些实施例中,将1mL含有HAp的[A]在2mL[C]中乳化,然后,在连续剪切下滴加不同体积的含有ChS的0.08M TPP的[B]。[B]的体积为0.5mL、1mL、1.5mL、2mL、2.5mL和3mL。在10-15min的静止后,使用注射器和23号针头测试乳剂的稠度。通过将乳剂以14000g离心5min并观察水凝胶颗粒、水相和油相,来确认水凝胶颗粒的形成。结果显示在表1中。在不稳定的组合物中,乳剂瓦解,或者随着时间的推移倒置成水包油乳剂。
表1-用作为溶液[B]的1%ChS中的0.08M TPP制备的组合物
实施例7至24-交联剂(TPP)浓度的作用
在这些实施例中,将1mL含有HAp的[A]在2mL[C]中乳化,然后,在连续剪切下滴加不同体积的含有ChS的0.04M、0.16M或0.32M TPP的[B]。然后逐渐加入不同体积的[B](0.5mL、1mL、1.5mL、2mL、2.5mL或3mL),并在10-15min的静止后,使用注射器和23号针头测试乳剂的稠度。如上确认水凝胶颗粒形成。结果显示在表2、3和4中。
表2-用作为溶液[B]的1%ChS中的0.04M TPP制备的组合物
实施例 [A]体积(ml) [B]体积(ml) [C]体积(ml) 评价
7 1 0.5 2 稳定的乳剂
8 1 1 2 稳定的乳剂
9 1 1.5 2 稳定的乳剂
10 1 2 2 稳定的乳剂
11 1 2.5 2 不稳定
12 1 3 2 不稳定
表3-用作为溶液[B]的1%ChS中的0.16M TPP制备的组合物
实施例 [A]体积(ml) [B]体积(ml) [C]体积(ml) 评价
13 1 0.5 2 稳定的乳剂
14 1 1 2 稳定的乳剂
15 1 1.5 2 稳定的乳剂
16 1 2 2 稳定的乳剂
17 1 2.5 2 不稳定
18 1 3 2 不稳定
表4-用作为溶液[B]的1%ChS中的0.32M TPP制备的组合物
实施例25至32-聚合物(壳聚糖)溶液体积的作用
在这些实施例中,将2mL含有HAp的[A]在2mL[C]中乳化,然后,在连续剪切下将含有ChS的[B](0.16M或0.32M TPP)滴加到乳剂中。使用不同体积的[B](0.5mL、1mL、1.5mL和2mL),并测试乳剂的可注射性和稠度。结果显示在表5和6中。
表5-用作为溶液[B]的1%ChS中的0.16M TPP制备的组合物
实施例 [A]体积(ml) [B]体积(ml) [C]体积(ml) 评价
25 2 0.5 2 稳定的乳剂
26 2 1 2 稳定的乳剂
27 2 1.5 2 不稳定
28 2 2 2 不稳定
表6-用作为溶液[B]的1%ChS中的0.32M TPP制备的组合物
实施例 [A]体积(ml) [B]体积(ml) [C]体积(ml) 评价
29 2 0.5 2 稳定的乳剂
30 2 1 2 稳定的乳剂
31 2 1.5 2 不稳定
32 2 2 2 不稳定
实施例33至44-乳化顺序
使用以下组分溶液制备含有Bm86的疫苗组合物:
[A2]部分:具有1mg羟基磷灰石(HAp)/mL的2%壳聚糖的水溶液
[B2]部分:溶解于含有1%硫酸软骨素(ChS)的TPP水溶液(0.16M或0.32M)中的Bm86(0μg、50μg、100μg或200μg)
[C]部分:Montanide ISA61 VG
首先将一定量的组分溶液[B2]在油[C]中乳化,然后加入壳聚糖组分溶液[A2],以制备油包水乳剂中的最终微水凝胶。在这些实施例中,将Bm86掺入到ChS-TPP组分溶液[B2]中。
在这些实施例中,将1mL[B2](含有0.16或0.32M TPP)用2mL[C]乳化,然后在连续剪切下滴加不同体积的[A2](0.5mL、1mL、1.5mL、2mL、2.5mL或3mL)。结果显示在表7和8中。发现形成慕斯状的组合物无法使用23G×33mm注射器针头注射。
表7-用作为溶液[B2]的1%ChS中的0.16M TPP制备的组合物
实施例 [A2]体积(ml) [B2]体积(ml) [C]体积(ml) 评价
33 0.5 1 2 稳定的乳剂
34 1 1 2 稳定的乳剂
35 1.5 1 2 稳定的乳剂
36 2 1 2 稳定的乳剂
37 2.5 1 2 不稳定-慕斯状
38 3 1 2 不稳定-慕斯状
表8-用作为溶液[B2]的1%ChS中的0.32M TPP制备的组合物
实施例 [A2]体积(ml) [B2]体积(ml) [C]体积(ml) 评价
39 0.5 1 2 稳定的乳剂
40 1 1 2 稳定的乳剂
41 1.5 1 2 稳定的乳剂
42 2 1 2 稳定的乳剂
43 2.5 1 2 不稳定-慕斯状
44 3 1 2 不稳定-慕斯状
实施例45-具有Bm86抗原的可注射疫苗组合物
由以下组分溶液制备含有Bm86抗原的可注射疫苗组合物:
[C]部分:Montanide ISA61 VG
[D]部分:溶解于含有1%硫酸软骨素(ChS)的0.32M TPP的水溶液中的所需剂量的Bm86(例如400μg Bm86/mL)
[E]部分:含有1mg羟基磷灰石(HAp)/mL的2%壳聚糖溶液
使用高剪切(20,000rpm,2min)将一定量(1mL)的溶液[D]在2.4mL MontanideISA61 VG油[C]中乳化。在相同的剪切速率下,向该乳液中滴加3.6mL溶液[E],以制备含有交联壳聚糖水凝胶微粒的稳定的可注射油包水乳剂。
实施例46-具有生长激素的可注射组合物
制备三种不同的组分溶液:
[F]部分:含有作为肽激素活性剂的猪生长激素(pST)(300、1000或3000μg/mL)的藻酸盐水溶液(1或2%藻酸盐)
[G]部分:作为交联剂的氯化钙水溶液(2.8%或5.6%)
[H]部分:芝麻油中的吐温80(1mL中50mg)
使用高剪切(20,000rpm,2min)将一定量(1mL)的溶液[F]在2mL[H]中乳化。在相同的剪切速率下,向该乳剂中滴加0.5mL溶液[G]。用具有50mg吐温80/mL芝麻油浓度的亲脂性组合物制备含有交联藻酸盐水凝胶颗粒的稳定且可注射的油包水乳剂。
实施例47-具有生长激素的可注射组合物
在该实施例中,如在实施例46中的[F]和[H]那样制备海藻酸钠水性组合物和亲脂性芝麻油组合物,并如下制备壳聚糖水性组合物作为带负电荷的藻酸盐的交联剂:
[I]部分:1%乙酸中的2%壳聚糖水溶液
使用高剪切(20,000rpm,2min)将一定量(1mL)的溶液[F]在2mL[H]中乳化。在相同的剪切速率下,向该乳剂中滴加1mL溶液[I],以产生稳定且可注射的油包水乳剂,其包含与壳聚糖交联的藻酸盐形成的水凝胶颗粒。
实施例48-含有生长激素的模型散装水凝胶组合物
制备三种不同的组分溶液,每种溶液都具有一系列浓度:
[J]部分:含有作为肽激素活性剂的猪生长激素(pST)(500、1000或3000μg/mL)的藻酸盐水溶液(0.5、1或2%藻酸盐)
[K]部分:作为交联剂的氯化钙水溶液(0.3、0.7、1.4或2.8%)
使用1mL溶液[K]使一定量(1mL)的溶液[J]交联,以得到装载pST的散装水凝胶。图8中给出了pST从模型散装水凝胶中的初始脱水收缩(12小时)释放。
实施例49-含有生长激素的模型散装水凝胶组合物
制备不同的组分溶液:
[L]部分:含有作为肽激素活性剂的猪生长激素(pST)(500、1000或3000μg/mL)和PEG(35kDa)致孔剂(0、0.5、1或2wt%PEG)的藻酸盐水溶液(1%藻酸盐)
[K]部分:作为交联剂的氯化钙水溶液(0.3、0.7、1.4或2.8%)
使用1mL溶液[K]使一定量(1mL)的溶液[L]交联,以得到装载pST的散装水凝胶。在去除脱水收缩初始液体后,通过每48小时用PBS溶液更新水凝胶周围液体并测量PBS中的pST,来监测pST从模型散装水凝胶中的长期释放(4周)。释放曲线示于图9。
动物试验
在昆士兰大学动物伦理委员会批准的研究中,使用杜泊绵羊(Dorper sheep)作为模型来评价油系统中的Bm86-水凝胶的免疫学性能。绵羊为雌性,5-7个月大,在试验开始时体重12-16kg。绵羊试验由两组组成,每组四只动物。第一组为阳性对照,通过两次注射皮下接种代表常规抗蜱制剂的对比制剂,其作为初始初级剂量给予,然后在4周后给予加强剂量。每个剂量含有50μg Bm86水溶液在1.2mL Montanide ISA61 VG辅助油中的乳剂。将第二组用根据实施例45的方法制备的可注射Bm86疫苗组合物接种。简言之,通过将200ug Bm86和50mg ChS溶解在0.5mL 0.32M TPP中并在1.2mL Montanide ISA60 VG中乳化来制备乳剂制剂中的微凝胶的一个剂量,然后将1.8mL(2%壳聚糖-1mg HAp/mL)在该初始初级乳剂中乳化,以得到200ug Bm86,3.5mL每剂量。通过皮下注射施用单剂量的Bm86组合物。以IgG测量抗Bm86滴度,并且每两周通过ELISA分析测定抗Bm86滴度。试验结果显示在图2和12中(在图12中,在1/25600稀释度时相对于阴性对照组的Ab单位)。
试验结果表明:
·本发明的Bm86疫苗组合物在单次疫苗注射中产生保护性免疫(抗体(Ab)水平),不需要随后进行单次或多次加强注射。
·对于所选择的疫苗抗原(Bm86),在试验第150天的抗体滴度水平高于对比制剂,所述对比制剂使用2次注射施用。
·在长达150天的试验中,疫苗组合物建立了对比制剂未达到的抗蜱免疫力的期间。在单次注射后,抗体应答在保护水平持续长达一年。
·如实施例45中所描述的疫苗组合物的免疫应答高于对比制剂,所述对比制剂仅在第28天后产生保护水平。
·在超过400天的试验期间,抗体滴度水平仍然显著高于对比制剂,证明在单次注射疫苗组合物后具有更长期的免疫应答。
体外释放结果
生物活性剂从模型散装壳聚糖水凝胶中的释放(引发剂量)
通过在将聚合物和交联剂溶液混合以及水凝胶形成之后立即监测水相中Bm86的浓度,来测试实现Bm86从壳聚糖水凝胶中的初始释放的能力。
图3显示评估Bm86在144小时的期间内从模型散装壳聚糖水凝胶中的体外释放的研究的结果。通过混合2%壳聚糖-HAp(1mg/mL)溶液和0.08M TPP-ChS(1%)溶液,来组成具有不同的Bm86初始负载浓度的散装水凝胶。如图3(A)所示,对于在溶液中含有50、100和200μg/mL Bm86浓度的不同样品,从水凝胶颗粒中释放到周围的水性液体中的Bm86的浓度保持恒定,得到约55-60%的Bm86向水性液体相中的相对初始释放,其可以作为初级剂量(图3(B))。
交联对长期释放速率的作用
Bm86与水凝胶的结合系数主要取决于蛋白质之间由于其等电点(pI)的静电相互作用和水凝胶中的聚合物链静电电荷。这导致在脱水收缩液中游离的Bm86与在初始形成阶段与水凝胶结合的Bm86的平衡。其为动态平衡,因此当去除游离的Bm86并更新介质时,结合的Bm86倾向于从水凝胶中释放,以经由转运过程建立新的平衡。在此,我们通过每周用PBS更新水凝胶水性环境,研究Bm86从不同交联密度和Bm86负载浓度的壳聚糖模型水凝胶中的长期释放。这是对体内环境的模拟,在所述体内环境中细胞间液是持续更新的。
在8周期间内测量Bm86从散装壳聚糖水凝胶中的释放速率,所述散装壳聚糖水凝胶由不同聚合物交联密度(0.04M、0.08M或0.16M TPP浓度)制备。在这些实施例中,通过混合等体积的溶液来形成模型散装水凝胶,所述溶液含有(a)2%壳聚糖,和1mg HAp/mL和不同浓度的Bm86,和(b)1%ChS和不同浓度的交联剂TPP(0.04M、0.08M或0.16M)。在初始样品中检测到的Bm86的量(脱水收缩释放)提供初始量的Bm86,其作为初级剂量由组合物快速释放。然后,每周用新鲜溶液替换释放介质(即,PBS)。每周收集的后续样品提供渐进的释放曲线。结果显示在图4中。如图4所示,水凝胶的交联密度可以影响在初级剂量中释放的Bm86的浓度,以及长期持续释放。此外,在累积的8周期间释放的Bm86的总量(以百分比显示)表明,在持续释放期释放了显著比例的Bm86。在使用[TPP]=0.16M的更高交联密度时,在8周期间结束时,大部分Bm86抗原仍然包埋在水凝胶中。
蛋白质等电点对负载和初始脱水收缩释放的作用
使用一系列模型蛋白质研究蛋白质等电点对初始快速释放(脱水收缩)期期间的释放速率的作用。在这些实施例中,通过混合等体积的溶液来形成模型散装水凝胶,所述溶液含有(a)2%壳聚糖与1mg HAp/mL和不同浓度的不同蛋白质,和(b)1%ChS和0.8M TPP。图5给出了蛋白质细胞色素C、肌红蛋白、白蛋白和激素pST从散装水凝胶中的释放速率,所述散装水凝胶由不同模型蛋白质负载水平的与0.08M TPP交联的壳聚糖形成,并表示为脱水收缩液中的浓度(A-D)和初始负载的百分比(E),和脱水收缩释放与负载的蛋白质的等电点之间的关系(F)。
此外,图17显示蛋白质在水凝胶结合状态与脱水收缩液游离状态之间的分配。使用Bm86、pST和白蛋白以阐明在水凝胶中在脱水收缩平衡时的该过程,所述水凝胶通过将2%壳聚糖-1mg HAp/mL成分与1%硫酸软骨素交联成分中的0.08MTPP混合而形成。将蛋白质掺入含有壳聚糖的成分中。这显示:
·该平衡主要为蛋白质等电点(pI)的函数,即,蛋白质与水凝胶的结合主要是由于静电相互作用。
·此处研究的浓度范围内的蛋白质分配提供恒定的系数值,这意味着此处使用的蛋白质浓度远低于水凝胶的结合能力。
油包水乳剂中的水凝胶微粒
图6(A)显示用辅助油中的三聚磷酸盐水溶液形成的初始油包水乳剂。在加入含壳聚糖的溶液后,在油包水乳剂中的水滴内形成交联的水凝胶微粒(图6(B))。含有水凝胶的油包水乳剂在4℃持续5个月保持稳定,没有明显的相分离(图6(C))。
通过光学显微镜分析含有水凝胶微粒的组合物,所述水凝胶微粒由壳聚糖(2%)、HAp(1mg/mL)、TPP(0.32M)和ChS(1%)在用Montanide ISA61作为油相的油包水乳剂中形成。结果显示在图7中。如图7(A)和图7(B)所示,油包水乳剂中的水凝胶颗粒包含在水性液滴中。在该样品中,确定水性液滴的直径为约1至4μm。图7(C)显示在4℃储存5个月后的乳剂。然后,通过溶剂蒸发从乳剂中去除水相,以得到仅分散在连续油相中的约1至2μm的水凝胶颗粒(图7(D))。
生物活性剂从模型散装藻酸盐水凝胶中的释放(引发剂量)
在28天期间内测量猪生长激素(pST)从根据实施例48制备的散装藻酸盐水凝胶的样品中的释放速率。不同的水凝胶样品具有不同的藻酸盐浓度(0.5%至2%)、不同的交联密度(0.3、0.7、1.4或2.8%CaCl2浓度)和不同的pST初始负载(500至30000μg/ml)。在最初的12小时期间在初始样品中检测到的pST的量(脱水收缩释放)提供pST的量,其作为初级剂量由组合物快速释放。图8显示作为初始pST负载的百分比给出的所得的脱水收缩释放。如在图8中可见,作为pST负载的百分比的脱水收缩释放随着负载水平和交联度的增加而增加,并且随着藻酸盐浓度的增加而降低。这提供在1-28%的pST负载之间脱水收缩释放的变化,表示制剂中初级注射剂量的控制。
生物活性剂从模型散装藻酸盐水凝胶中的长期释放
还在4周内观察pST从藻酸盐水凝胶样品中的长期释放。根据实施例49制备藻酸盐水凝胶样品。在这些试验中,在去除脱水收缩液后,每48小时更新一次释放介质,即PBS。收集的后续样品提供渐进的释放曲线。结果显示在图9中。图9A显示基于重量的pST释放,同时图9B显示作为初始pST负载的百分比的释放。在最初的2周期间观察到线性的释放速率,然后在之后的2周内变平稳。
用作为添加的致孔剂的PEG(35kDa)(浓度为0、0.5、1或2wt%比例)制备的多孔散装藻酸盐水凝胶显示出改变的长期释放速率。作为初始负载的百分比,2周后释放总计29至44%的pST。
模型可注射组合物的粘度
为了研究组合物粘度和可注射性,制备不含生物活性剂的模型可注射组合物。用三种不同的组分溶液制备模型可注射组合物,其中每种组分溶液:
[A1]部分:2%壳聚糖或含有1mg羟基磷灰石(HAp)/mL的2%壳聚糖
[B1]部分:三聚磷酸盐(TPP)溶液(0.32M)或含有1%硫酸软骨素(ChS)的TPP溶液(0.32M)
[C1]部分:Montanide ISA61 VG
在这些实施例中,将2mL[A1](含有或不含HAp)在2mL[C1]中乳化,然后在连续剪切下滴加不同体积的[B1](含有或不含ChS),以在乳剂制剂中产生微凝胶,所述乳剂制剂具有以下体积比的成分[A1]:[B1]:[C1]:2:2:0、2:2:0.5、2:2:1、2:2:2、2:2:3、2:2:4和2:2:5。使用应力流变学评价模型可注射组合物的乳剂流动行为和稳定性。
图10提供模型可注射组合物的应力扫描测量值,其中组成组分的体积比例为2:2:0至2:2:5。如图10所示,对于用较高浓度的交联剂TPP形成的可注射组合物,由于剪切稀化行为,粘度可以随着剪切应力的增加而降低。
图11(A)提供模型可注射组合物的流动粘度的变化,所述可注射组合物使用含有2%壳聚糖的[A1]和含有0.32M TPP的[B1]形成,其中使用粘度η*(Pa.s)作为对照参数,改变[A1]、[B1]和[C1]的体积比例,以调查模型可注射组合物的整体稳定性及其流动行为。粘度随组成的变化在三种不同的剪切应力(0.2Pa、2Pa和45Pa)下呈现为三元图。
还对模型可注射组合物进行流动粘度测量,所述可注射组合物使用含有2%壳聚糖和1mg/ml Hap的[A1]和含有0.32M TPP和1%ChS的[B1]形成,其中改变[A1]、[B1]和[C1]组分的体积比例。图11(B)中所示的结果提供不同的模型可注射组合物在0.2Pa、2Pa和45Pa的剪切应力下的相应的流动行为、粘度η*(Pa.s)。
在模型散装壳聚糖基水凝胶中的TSOL18抗原
TSOL18为具有正电荷(pI 9.65)的抗绦虫抗原,其含有112个氨基酸,分子量为12.8kDa。在实施例50至55中,制备含有TSOL18的模型散装水凝胶颗粒。水凝胶在其核心中包含TPP-交联的壳聚糖。在一些实施例中,水凝胶中还包含其他组分,如藻酸盐、硫酸软骨素和羟基磷灰石,产生复合的水凝胶材料。
实施例50-含有TSOL18的模型散装壳聚糖-TPP水凝胶
制备以下组分溶液:
[M]部分:在1%AcOH中的2%壳聚糖
[N]部分:三聚磷酸盐(TPP)溶液(0.08M)
在该实施例中,将TSOL18以0.5mg/mL的浓度掺入组分溶液[M]中。然后,将一定量的含有TSOL18的[M]与等体积的[N]组合,以形成负载TSOL18的散装壳聚糖水凝胶。
实施例51-含有TSOL18的模型散装壳聚糖-TPP水凝胶
在该实施例中使用实施例50的组分溶液[M]和[N]。但是,TSOL18以0.5mg/mL的浓度掺入组分溶液[N]中。将一定量的[M]与等体积的含有TSOL18的[N]组合,以形成负载TSOL18的散装壳聚糖水凝胶。
实施例52-模型散装(壳聚糖-HAp-TSOL18)水凝胶和硫酸软骨素涂层
制备以下组分溶液:
[O]部分:在1%AcOH中的含有1mg羟基磷灰石(HAp)/mL的2%壳聚糖
[P]部分:含有1%硫酸软骨素(ChS)的三聚磷酸盐(TPP)溶液(0.08M)。
在该实施例中,将TSOL18以0.5mg/mL的浓度掺入组分溶液[O]中。然后,将一定量的含有TSOL18的[O]与等体积的[P]组合,以形成具有硫酸软骨素(ChS)涂层的负载TSOL18的散装壳聚糖水凝胶核心。涂层是非交联的。
实施例53-具有硫酸软骨素-TSOL18涂层的模型散装(壳聚糖-HAp)水凝胶
在该实施例中使用实施例52的组分溶液[O]和[P]。但是,TSOL18以0.5mg/mL的浓度掺入组分溶液[P]中。将一定量的[O]与等体积的含有TSOL18的[P]组合,以形成具有非交联硫酸软骨素(ChS)涂层的散装壳聚糖水凝胶。在该实施例中,将TSOL18掺入壳聚糖水凝胶核心周围的ChS涂层中。
实施例54-具有藻酸盐涂层的模型散装(壳聚糖-HAp-TSOL)水凝胶
制备以下组分溶液:
[O]部分:在1%AcOH中的含有1mg羟基磷灰石(HAp)/mL的2%壳聚糖
[Q]部分:含有1%藻酸盐的三聚磷酸盐(TPP)溶液(0.08M)。
在该实施例中,将TSOL18以0.5mg/mL的浓度掺入组分溶液[O]中。然后,将一定量的含有TSOL18的[O]与等体积的[Q]组合,以形成涂布的负载TSOL18的散装壳聚糖水凝胶。在此处,在负载有TSOL18的壳聚糖水凝胶周围形成藻酸盐涂层。
实施例55-具有藻酸盐-TSOL18涂层的模型散装(壳聚糖-HAp)水凝胶
在该实施例中使用实施例54的组分溶液[O]和[Q]。但是,TSOL18以0.5mg/mL的浓度掺入组分溶液[Q]中。将一定量的[O]与等体积的含有TSOL18的[Q]组合,以形成具有藻酸盐涂层的散装壳聚糖水凝胶。在该实施例中,将TSOL18掺入壳聚糖水凝胶核心周围的藻酸盐涂层中。
TSOL18从模型散装水凝胶中的释放
图13显示TSOL18从实施例50至55中制备的散装水凝胶样品中的初始脱水收缩释放(监测1周)。在图13中可以看出以下结果:
·实施例50:脱水收缩液在4小时后含有54%的TSOL18,并且在24小时后保持相同。在1周后TSOL18的释放增加至78%。
·实施例51:脱水收缩液在4小时后含有75%的TSOL18,然后在24小时时降低至72%。在1周后TSOL18的释放进一步降低至57%。
·实施例52:脱水收缩液在4小时后含有44%的TSOL18,并且在24小时后保持相同。在1周后TSOL18的释放增加至50%,显示硫酸软骨素涂层在调节TSOL18的释放中的作用。
·实施例53:脱水收缩液在4小时后含有52%的TSOL18,其在24小时时保持相同。在1周后TSOL18的释放降低至45%,表明TSOL18与涂层中的硫酸软骨素结合牢固。
·实施例54:图13提供TSOL18从散装水凝胶中的初始脱水收缩释放(监测1周)。如图13所示,脱水收缩液在4小时后含有34%的TSOL18,在24小时后增加至49%。1周后TSOL18的释放达到66%的平衡。
·实施例55:脱水收缩液在4小时后经测量含有69%的TSOL18,然后在24小时后降低至66%,并在1周后进一步降低至53%。这表明TSOL18和藻酸盐之间的初始相互作用增强TSOL18在壳聚糖水凝胶周围的涂层中的掺入。
在有壳聚糖涂层的水凝胶中含有TSOL18抗原的可注射组合物
根据实施例56至59制备含有TSOL18的含有壳聚糖涂布的水凝胶的可注射组合物。通过将ChS、藻酸盐、ChS-TPP或藻酸盐-TPP组分溶液注入壳聚糖-CaCl2组分溶液中来制备涂布的水凝胶,以形成具有壳聚糖涂层作为外层的含有TSOL18的涂布的水凝胶颗粒。考虑到由于带大量正电荷的TSOL18与水凝胶核心中带负电荷的ChS或藻酸盐产生静电相互作用,涂布的水凝胶可以提供更大的TSOL18捕获和更低的脱水收缩(即,水相中更低的游离抗原)。
具有TSOL18和壳聚糖涂层的模型散装水凝胶
制备以下组分溶液,并将其用于以下实施例56至59中:
[AC]部分 在1%AcOH中的1%壳聚糖中的1%CaCl2
[BT]部分 具有TSOL18(0.5mg/mL)的2%ChS
[CT]部分 具有TSOL18(0.5mg/mL)的2%ChS-0.01M TPP
[DT]部分 具有TSOL18(0.5mg/mL)的2%藻酸盐
[ET]部分 具有TSOL18(0.5mg/mL)的2%藻酸盐-0.01M TPP
在每个实施例中,将组分溶液[BT]、[CT]、[DT]或[ET]注入[AC]中以形成水凝胶,所述水凝胶具有壳聚糖涂层作为所形成的水凝胶上的外皮。氯化钙与壳聚糖组分共溶解,以提供快速的凝胶形成。带负电荷的交联剂TPP可以包含在带负电荷的ChS或藻酸盐中,以有助于壳聚糖涂层的形成并在必要时增加其厚度。
实施例56-具有壳聚糖涂层的散装硫酸软骨素水凝胶
将一定体积的[BT]注入等体积的[AC]中。其产生具有壳聚糖涂层的含有TSOL18的ChS-Ca2+水凝胶。在该实施例中,壳聚糖涂层是非交联的。
实施例57-具有交联壳聚糖涂层的散装硫酸软骨素水凝胶
将一定体积的[CT]注入等体积的[AC]中。其产生具有交联壳聚糖涂层的含有TSOL18的ChS-Ca2+水凝胶,其中壳聚糖与TPP交联。
实施例58-具有壳聚糖涂层的散装藻酸盐-Ca水凝胶
将一定体积的[DT]注入等体积的[AC]中。其产生具有壳聚糖涂层的含有TSOL18的藻酸盐-Ca2+水凝胶。在该实施例中,壳聚糖涂层是非交联的。
实施例59-具有交联壳聚糖涂层的散装藻酸盐-Ca水凝胶
将一定体积的[ET]注入等体积的[AC]中。其产生具有交联壳聚糖涂层的含有TSOL18的藻酸盐-Ca2+水凝胶。在该实施例中,TPP用于形成交联壳聚糖涂层。
TSOL18从涂布的散装水凝胶中的脱水收缩释放
在4和24小时后测量TSOL18从实施例56至59的涂布的散装水凝胶样品向水性液体中的脱水收缩释放。结果显示在图14中。
如图14所示,在4和24小时处,实施例56的样品表现出24%的TSOL18初始量的恒定脱水收缩释放值。同时,实施例57的脱水收缩释放值恒定为42%的TSOL18初始量。这表示与实施例56相比有增加。据信,这种增加可能是由于壳聚糖-TPP涂层的孔隙率增加,使得更多的TSOL18扩散到水性液体中。
在实施例58中,在4和24小时后未观察到TSOL18脱水收缩进入水相。相比之下,在实施例59中,与实施例58相比,从该样品的TSOL18脱水收缩释放增加。在4和24小时后测量的TSOL18脱水收缩进入水相中的恒定值为6%。这种增加可能是由于壳聚糖-TPP涂层的孔隙率的增加。这些实施例还显示,TSOL18和藻酸盐之间的相互作用比TSOL18和硫酸软骨素之间的相互作用强得多。
实施例60-含有TSOL18的具有壳聚糖涂布的藻酸盐水凝胶颗粒的可注射组合物
制备并使用以下组分溶液:
[A3]部分 在1%AcOH中的2%壳聚糖中的2.8%CaCl2
[D3]部分 具有TSOL18(300μg/mL)的2%藻酸盐
[F1]部分 具有20mg Span 80/mL的芝麻油
使用高剪切乳化器将一定体积的含有TSOL18的[D3]在[F]中乳化。在恒定剪切下,向该初级乳剂中滴加一定体积的[A3]。组分溶液[F1]:[D3]:[A3]的比例为2:1:0.5。所得的组合物显示在图16中。
具有TSOL18抗绦虫疫苗的可注射组合物
使用以下组分溶液以制备不同的含有TSOL18负载的水凝胶的可注射组合物:
[M]部分:在1%AcOH中的2%壳聚糖
[N]部分:三聚磷酸盐(TPP)溶液(0.08M)
[O]部分:在1%AcOH中的含有1mg羟基磷灰石(HAp)/mL的2%壳聚糖
[P]部分:含有1%硫酸软骨素(ChS)的三聚磷酸盐(TPP)溶液(0.08M)。
[Q]部分:含有1%藻酸盐的三聚磷酸盐(TPP)溶液(0.08M)。
实施例61-包含具有TSOL18的壳聚糖-TPP水凝胶的可注射组合物
在该实施例中,将TSOL18以0.5mg/mL的浓度掺入组分溶液[M]中。使用高剪切乳化器将一定体积的含有TSOL18的[M](0.25mL)在1mL Montanide ISA 61 VG油中乳化。在恒定剪切下,向该初级乳剂中滴加0.25mL[N]。所得的组合物为稳定的均匀乳剂,液滴直径小于1μm。
实施例62-包含具有TSOL18的壳聚糖-TPP水凝胶的可注射组合物
将TSOL18以0.5mg/mL的浓度掺入组分溶液[N]中。使用高剪切乳化器将一定体积的[M](0.25mL)在1mL Montanide ISA 61 VG油中乳化。在恒定剪切下,向该初级乳剂中滴加0.25mL含有TSOL18的[N]。所得的组合物为稳定的均匀乳剂,液滴直径小于1μm。示例显示在图15中。
实施例63-包含具有TSOL18的(壳聚糖-HAp)-(ChS-TPP)水凝胶的可注射组合物
将TSOL18以0.5mg/mL的浓度掺入组分溶液[O]中。使用高剪切乳化器将一定体积的含有TSOL18的[O](0.25mL)在1mL Montanide ISA 61 VG油中乳化。在恒定剪切下,向该初级乳剂中滴加0.25mL[P]。所得的可注射组合物为稳定的均匀乳剂,液滴直径小于1μm。组合物中的水凝胶颗粒包含交联壳聚糖-Hap核心和包含硫酸软骨素的涂层。
实施例64-包含具有TSOL18的(壳聚糖-HAp)-(ChS-TPP)水凝胶的可注射组合物
在该实施例中使用实施例62的组分溶液[O]和[P]。但是,将TSOL18以0.5mg/mL的浓度掺入组分溶液[P]中。使用高剪切乳化器将一定体积的含有TSOL18的[O](0.25mL)在1mL Montanide ISA 61 VG油中乳化。在恒定剪切下,向该初级乳剂中滴加0.25mL[P]。所得的可注射组合物为稳定的均匀乳剂,液滴直径小于1μm。组合物中的水凝胶颗粒包含交联壳聚糖-Hap核心和包含硫酸软骨素的涂层。
实施例65-包含具有TSOL18的(壳聚糖-HAp)-(藻酸盐-TPP)水凝胶的可注射组合物
将TSOL18以0.5mg/mL的浓度掺入组分溶液[O]中。使用高剪切乳化器将一定体积的含有TSOL18的[O](0.25mL)在1mL Montanide ISA 61 VG油中乳化。在恒定剪切下,向该初级乳剂中滴加0.25mL[Q]。所得的可注射组合物为稳定的均匀乳剂,液滴直径小于1μm。组合物中的水凝胶颗粒包含交联壳聚糖-HAp核和包含藻酸盐的涂层。
实施例66-包含具有TSOL18的(壳聚糖-HAp)-(藻酸盐-TPP)水凝胶的可注射组合物
在该实施例中使用实施例64的组分溶液[O]和[Q]。但是,将TSOL18以0.5mg/mL的浓度掺入组分溶液[Q]中。使用高剪切乳化器将0.25mL[O]在1mL Montanide ISA 61 VG油中乳化。在恒定剪切下,向该初级乳剂中滴加0.25mL[Q]。所得的可注射组合物为稳定的均匀乳剂,液滴直径小于1μm。组合物中的水凝胶颗粒包含交联壳聚糖-HAp核和包含藻酸盐的涂层。
含有壳聚糖涂布的水凝胶颗粒和TSOL18抗绦虫疫苗的可注射组合物
使用以下组分溶液以制备不同的含有TSOL18负载的涂布的水凝胶的可注射组合物:
[AC]部分 在1%AcOH中的1%壳聚糖中的1%CaCl2
[BT]部分 具有TSOL18(0.5mg/mL)的2%ChS
[CT]部分 具有TSOL18(0.5mg/mL)的2%ChS-0.01M TPP
[DT]部分 具有TSOL18(0.5mg/mL)的2%藻酸盐
[ET]部分 具有TSOL18(0.5mg/mL)的2%藻酸盐-0.01M TPP
实施例67-包含具有TSOL18的壳聚糖涂布的硫酸软骨素水凝胶的可注射组合物
使用高剪切乳化器将一定体积的[BT]在1mL Montanide ISA 61 VG油中乳化。在恒定剪切下,向该初级乳剂中滴加0.25mL[AC]。所得的组合物为稳定的均匀乳剂,液滴直径小于1μm。其产生可注射组合物,所述可注射组合物具有含有TSOL18和壳聚糖涂层的ChS-Ca2+水凝胶颗粒。
实施例68-包含具有TSOL18的交联壳聚糖涂布的硫酸软骨素水凝胶的可注射组合物
使用高剪切乳化器将一定体积的[CT]在1mL Montanide ISA 61 VG油中乳化。在恒定剪切下,向该初级乳剂中滴加0.25mL[AC]。所得的组合物为稳定的均匀乳剂,液滴直径小于1μm。其产生可注射组合物,所述可注射组合物具有含有TSOL18和交联壳聚糖-TPP涂层的ChS-Ca2+水凝胶颗粒。
实施例69-包含具有TSOL18的壳聚糖涂布的藻酸盐水凝胶的可注射组合物
使用高剪切乳化器将一定体积的[DT]在1mL Montanide ISA 61 VG油中乳化。在恒定剪切下,向该初级乳剂中滴加0.25mL[AC]。所得的组合物为稳定的均匀乳剂,液滴直径小于1μm。其产生可注射组合物,所述可注射组合物具有含有TSOL18和非交联壳聚糖涂层的藻酸盐-Ca2+水凝胶颗粒。
实施例70-包含具有TSOL18的交联壳聚糖涂布的藻酸盐水凝胶的可注射组合物
使用高剪切乳化器将一定体积的[ET]在1mL Montanide ISA 61 VG油中乳化。在恒定剪切下,向该初级乳剂中滴加0.25mL[AC]。所得的组合物为稳定的均匀乳剂,液滴直径小于1μm。其产生可注射组合物,所述可注射组合物具有含有TSOL18和交联壳聚糖-TPP涂层的藻酸盐-Ca2+水凝胶颗粒。
应理解,在不脱离本文概述的本发明的精神的情况下,可以进行各种其他修改和/或改变。

Claims (29)

1.一种用于快速和持续递送生物活性剂的可注射组合物,其包含:
油包水乳剂,所述油包水乳剂包含分散在油相中的水相,所述水相包含多个水凝胶颗粒和水性液体;和
在水相的水凝胶颗粒和水性液体中的生物活性剂,
其中当施用时,可注射组合物在体内提供生物活性剂的快速和持续递送。
2.根据权利要求1所述的组合物,其中组合物进一步包含佐剂。
3.根据权利要求2所述的组合物,其中乳剂的油相包含佐剂。
4.根据权利要求2或权利要求3所述的组合物,其中乳剂的油相包含辅助油。
5.根据权利要求1至4中任一项所述的组合物,其中水凝胶颗粒包含交联多糖。
6.根据权利要求5所述的组合物,其中水凝胶颗粒包含与交联剂交联的多糖,所述交联剂具有参与与多糖的非共价键合相互作用的官能团。
7.根据权利要求5或权利要求6所述的组合物,其中交联多糖包含粘多糖(GAG)。
8.根据权利要求5至7中任一项所述的组合物,其中交联多糖包含选自壳聚糖、藻酸盐、透明质酸、纤维素、硫酸软骨素,硫酸皮肤素、硫酸角质素、肝素及其衍生物和其混合物的多糖。
9.根据权利要求8所述的组合物,其中多糖选自壳聚糖、藻酸盐和硫酸软骨素及其混合物。
10.根据权利要求5至9中任一项所述的组合物,其中交联多糖包含与磷酸盐化合物交联的壳聚糖。
11.根据权利要求5至9中任一项所述的组合物,其中交联多糖包含藻酸盐或硫酸软骨素,并且所述藻酸盐或硫酸软骨素与来源于碱土金属的二价阳离子交联。
12.根据权利要求1至11中任一项所述的组合物,其中水凝胶颗粒的平均颗粒直径为约10nm至20μm,优选为约50nm至约5μm。
13.根据权利要求1至12中任一项所述的组合物,其中水凝胶颗粒进一步包含水不溶性碱土金属磷酸盐。
14.根据权利要求13所述的组合物,其中水不溶性碱土金属磷酸盐为羟基磷灰石。
15.根据权利要求1至14中任一项所述的组合物,其中多个水凝胶颗粒中的一个或多个包含涂层。
16.根据权利要求1至15中任一项所述的组合物,其中油包水乳剂包含表面活性剂。
17.根据权利要求1至16中任一项所述的组合物,其中生物活性剂选自激素、抗微生物剂、治疗性抗体、细胞因子、融合蛋白、病毒、细菌或细菌片段、疫苗和抗原。
18.根据权利要求1至17中任一项所述的组合物,其中生物活性剂为选自疫苗抗原和激素中的一种或多种。
19.根据权利要求1至18中任一项所述的组合物,其中水凝胶颗粒中的生物活性剂与颗粒缀合。
20.一种向受试者递送生物活性剂的方法,所述方法包括通过注射向受试者施用根据权利要求1至19中任一项所述的组合物的步骤。
21.根据权利要求20所述的方法,其中生物活性剂为抗原。
22.根据权利要求21所述的方法,其中抗原为Bm86或TSOL18。
23.根据权利要求20所述的方法,其中生物活性剂为激素。
24.根据权利要求23所述的方法,其中激素为生长激素或促黄体激素释放激素(LHRH)。
25.一种治疗或预防受试者中的疾病或病症的方法,其包括通过注射向受试者施用根据权利要求1至19中任一项所述的组合物的步骤。
26.根据权利要求25所述的方法,其中疾病或病症为微生物感染。
27.根据权利要求25所述的方法,其中疾病或病症为病毒感染。
28.一种用于制备用于快速和持续递送生物活性剂的本文所描述的实施方案的可注射组合物的方法,所述方法包括以下步骤:
提供包含第一水凝胶形成组分的第一水性组合物和包含第二水凝胶形成组分的第二水性组合物,所述第一水性组合物和所述第二水性组合物中的至少一种包含生物活性剂;
将第一水性组合物与包含油的亲脂性组合物组合以形成乳化组合物;和
在允许第一水凝胶形成组分与第二水凝胶形成组分反应以在原位形成多个水凝胶颗粒的条件下,将第二水性组合物与乳化组合物组合,从而提供包含油包水乳剂的可注射组合物,所述油包水乳剂包含分散在油相中的水相,所述水相包含多个水凝胶颗粒和水性液体,和
其中生物活性剂包含在油包水乳剂水相的水凝胶颗粒和水性液体中。
29.根据权利要求1至19中任一项所述的可注射组合物在制备用于治疗或预防受试者的疾病或病症的药物中的用途。
CN201780035920.9A 2016-04-12 2017-04-11 用于递送生物活性剂的可注射组合物 Pending CN109310632A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410305484.4A CN118203542A (zh) 2016-04-12 2017-04-11 用于递送生物活性剂的可注射组合物

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
AU2016901365 2016-04-12
AU2016901365A AU2016901365A0 (en) 2016-04-12 Injectable composition for delivery of a biologically active agent
AU2016903682A AU2016903682A0 (en) 2016-09-13 Injectable composition for delivery of a biologically active agent
AU2016903682 2016-09-13
PCT/AU2017/050316 WO2017177265A1 (en) 2016-04-12 2017-04-11 Injectable composition for delivery of a biologically active agent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202410305484.4A Division CN118203542A (zh) 2016-04-12 2017-04-11 用于递送生物活性剂的可注射组合物

Publications (1)

Publication Number Publication Date
CN109310632A true CN109310632A (zh) 2019-02-05

Family

ID=60041251

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202410305484.4A Pending CN118203542A (zh) 2016-04-12 2017-04-11 用于递送生物活性剂的可注射组合物
CN201780035920.9A Pending CN109310632A (zh) 2016-04-12 2017-04-11 用于递送生物活性剂的可注射组合物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202410305484.4A Pending CN118203542A (zh) 2016-04-12 2017-04-11 用于递送生物活性剂的可注射组合物

Country Status (7)

Country Link
US (1) US10905649B2 (zh)
EP (1) EP3442503B1 (zh)
CN (2) CN118203542A (zh)
AU (1) AU2017250005B2 (zh)
CA (1) CA3020657A1 (zh)
WO (1) WO2017177265A1 (zh)
ZA (1) ZA201806822B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113144288A (zh) * 2021-04-26 2021-07-23 磐升瑞祥(山东)生物工程有限公司 一种复合多组分的胶原蛋白微乳填充剂及其制备方法
CN114129507A (zh) * 2021-07-13 2022-03-04 浙江仙琚制药股份有限公司 一种黄体酮凝胶组合物及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10344100B1 (en) * 2018-02-28 2019-07-09 The Florida International University Board Of Trustees Micro/nano magnetic hydrogels with autofluorescence for therapeutic and diagnostic applications
WO2019234738A1 (en) * 2018-06-04 2019-12-12 Ramot At Tel-Aviv University Ltd. Support medium for 3d printing of biomaterials
MA55033A (fr) 2019-02-18 2021-12-29 Lilly Co Eli Formulation d'anticorps thérapeutique
US11576920B2 (en) 2019-03-18 2023-02-14 The Menopause Method, Inc. Composition and method to aid in hormone replacement therapy
US20230097658A1 (en) * 2020-02-27 2023-03-30 Fred Hutchinson Cancer Research Center Tunable extended release hydrogels
CN113117066A (zh) * 2021-03-22 2021-07-16 华南农业大学 一种禽流感壳聚糖纳米颗粒疫苗的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008100044A1 (en) * 2007-02-15 2008-08-21 Amorepacific Corporation Chemically cross-linked hyaluronic acid hydrogel nanoparticles and the method for preparing thereof
WO2011003155A1 (en) * 2009-07-09 2011-01-13 Polymers Crc Limited Biopolymer hybrid gel-depot delivery system
EP2425814B1 (en) * 2010-09-03 2013-06-19 Novagali Pharma S.A. A water-in-oil type emulsion for treating a disease of the eye
WO2013119183A1 (en) * 2012-02-06 2013-08-15 Nanyang Technological University Methods of manufacturing core-shell microparticles, and microparticles formed thereof
US20140271596A1 (en) * 2011-10-11 2014-09-18 Genic Co., Ltd. Emulsified hydrogel composition and a production method therefor
WO2016038221A1 (en) * 2014-09-11 2016-03-17 Viscogel Ab Chitosan composition
CN108883189A (zh) * 2016-03-14 2018-11-23 生物相容性英国公司 包含颗粒的乳液

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563066B2 (en) * 2007-12-17 2013-10-22 New World Pharmaceuticals, Llc Sustained release of nutrients in vivo
US7902128B2 (en) * 2008-04-29 2011-03-08 Halliburton Energy Services Inc. Water-in-oil emulsions with hydrogel droplets background
MX2015000554A (es) * 2012-07-13 2015-09-28 Univ Tufts Encapsulación de fases inmisibles en biomateriales de fibroína de seda.
US9784730B2 (en) * 2013-03-21 2017-10-10 University Of Washington Through Its Center For Commercialization Nanoparticle for targeting brain tumors and delivery of O6-benzylguanine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008100044A1 (en) * 2007-02-15 2008-08-21 Amorepacific Corporation Chemically cross-linked hyaluronic acid hydrogel nanoparticles and the method for preparing thereof
WO2011003155A1 (en) * 2009-07-09 2011-01-13 Polymers Crc Limited Biopolymer hybrid gel-depot delivery system
EP2425814B1 (en) * 2010-09-03 2013-06-19 Novagali Pharma S.A. A water-in-oil type emulsion for treating a disease of the eye
US20140271596A1 (en) * 2011-10-11 2014-09-18 Genic Co., Ltd. Emulsified hydrogel composition and a production method therefor
WO2013119183A1 (en) * 2012-02-06 2013-08-15 Nanyang Technological University Methods of manufacturing core-shell microparticles, and microparticles formed thereof
WO2016038221A1 (en) * 2014-09-11 2016-03-17 Viscogel Ab Chitosan composition
CN108883189A (zh) * 2016-03-14 2018-11-23 生物相容性英国公司 包含颗粒的乳液

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRENDON Y. CHUA ET AL: "A single dose biodegradable vaccine depot that induces persistently high levels of antibody over a year", 《BIOMATERIALS》 *
EDITH C. ROJAS ET AL.: "Controlled release from a nanocarrier entrapped within a microcarrier", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
KIM SH ET AL.: "Polymersomes Containing a Hydrogel Network for High Stability and Controlled Release", 《SMALL》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113144288A (zh) * 2021-04-26 2021-07-23 磐升瑞祥(山东)生物工程有限公司 一种复合多组分的胶原蛋白微乳填充剂及其制备方法
CN114129507A (zh) * 2021-07-13 2022-03-04 浙江仙琚制药股份有限公司 一种黄体酮凝胶组合物及其制备方法

Also Published As

Publication number Publication date
CA3020657A1 (en) 2017-10-19
AU2017250005B2 (en) 2022-12-22
NZ747155A (en) 2023-09-29
EP3442503A4 (en) 2019-11-20
WO2017177265A1 (en) 2017-10-19
BR112018071007A2 (pt) 2019-01-29
AU2017250005A1 (en) 2018-11-01
US10905649B2 (en) 2021-02-02
CN118203542A (zh) 2024-06-18
EP3442503B1 (en) 2023-03-15
ZA201806822B (en) 2020-01-29
US20190125661A1 (en) 2019-05-02
EP3442503A1 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
CN109310632A (zh) 用于递送生物活性剂的可注射组合物
DE69630253T2 (de) Füllmaterial für implantierbare Prothesen aus Weichgewebe und Implantate daraus
CN103764127B (zh) 药理学活性物质的持续释放脂质预浓缩物和含有其的药物组合物
EP3801625A1 (en) Silk-based product formulations and methods of use
JP5675798B2 (ja) バイオポリマーハイブリッドゲルデポー送達システム
JP5208332B2 (ja) 関節疾患及び関節損傷を治療する関節内補充法
CN104427976B (zh) 疏水的活性成分的储库制剂及其制备方法
KR20070057767A (ko) 인지질 조성물 및 이의 제조 및 사용 방법
KR20140059238A (ko) 주사 시술용 보형물
CN107496358A (zh) 一种脂质体增强型水凝胶及其应用
US10500225B2 (en) Injectable composition; method for preparing said composition; use of said composition
US20160136094A1 (en) Compositions For Treating Acute, Post-Operative, or Chronic Pain and Methods of Using the Same
AU2015350347A1 (en) Compositions for treating acute, post-operative, or chronic pain and methods of using the same
Johnbosco et al. Microencapsulated stem cells reduce cartilage damage in a material dependent manner following minimally invasive intra-articular injection in an OA rat model
JP2020521769A (ja) プロバイオティクスの制御送達のための安定化された組成物およびその製造方法
US11351249B2 (en) Vaccine compositions comprising a water-in-oil emulsion, immunogen-loaded hydrogel particles, and cationic polymer
NZ747155B2 (en) Injectable composition for delivery of a biologically active agent
BR112018071007B1 (pt) Composição injetável, processo para preparo de uma composição injetável, e, uso de uma composição injetável
DE102013018193A1 (de) Injizierbare Depotformulierungen zur kontrollierten Wirkstofffreisetzung
Chantadee et al. Vancomycin hydrochloride-loaded stearic acid/lauric acid in situ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination