CN109298475B - Cr/C高热稳定性X射线多层膜反射镜及其制备方法 - Google Patents

Cr/C高热稳定性X射线多层膜反射镜及其制备方法 Download PDF

Info

Publication number
CN109298475B
CN109298475B CN201811487200.9A CN201811487200A CN109298475B CN 109298475 B CN109298475 B CN 109298475B CN 201811487200 A CN201811487200 A CN 201811487200A CN 109298475 B CN109298475 B CN 109298475B
Authority
CN
China
Prior art keywords
film
multilayer film
layer
protective layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811487200.9A
Other languages
English (en)
Other versions
CN109298475A (zh
Inventor
涂昱淳
朱京涛
袁妍妍
叶君建
谢志勇
王伟
黄秀光
傅思祖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute Of Laser Plasma China Academy Of Engineering Physics
Original Assignee
Shanghai Institute Of Laser Plasma China Academy Of Engineering Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute Of Laser Plasma China Academy Of Engineering Physics filed Critical Shanghai Institute Of Laser Plasma China Academy Of Engineering Physics
Priority to CN201811487200.9A priority Critical patent/CN109298475B/zh
Publication of CN109298475A publication Critical patent/CN109298475A/zh
Application granted granted Critical
Publication of CN109298475B publication Critical patent/CN109298475B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

本发明公开了一种Cr/C高热稳定性X射线多层膜反射镜,该反射镜包括基底,在所述基底上依次层叠设有打底层,Cr/C周期多层膜和保护层,所述Cr/C周期多层膜中包括C膜和Cr膜,所述C膜和Cr膜交替分布,所述打底层镀制在基底上,Cr/C周期多层膜中与打底层接触的为C膜,Cr/C周期多层膜中与保护层接触的为Cr膜,保护层镀制在与其相接触的Cr膜上。本发明中Cr,C材料在X射线波段的光学常数合适,Cr/C多层膜反射镜有优异的光学性能。本发明精确控制Cr与C的膜层厚度比,克服了传统的金属/碳多层膜受热后碳膜层膨胀和金属结晶等缺陷。兼顾了光学性能和热稳定性的Cr/C多层膜反射镜适用于在等离子体诊断、同步辐射、空间观测等工作环境温度高的X射线波段的应用。

Description

Cr/C高热稳定性X射线多层膜反射镜及其制备方法
技术领域
本发明属于精密光学元件制作领域,尤其是涉及一种应用于X射线波段的以C为间隔层,Cr为反射层的Cr/C高热稳定性X射线多层膜反射镜及其制备方法。
背景技术
宇宙中辐射X射线的天体包括X射线双星、脉冲星、伽玛射线暴、超新星遗迹、活动星系核、太阳活动区,以及星系团周围的高温气体等等。因此空间X射线观测是研究天文学的主要工具。另一方面,X射线波段存在许多的元素特征谱线,在同步辐射、激光等离子体辐射等人造光源中进行元素特征谱线的鉴定是化学分析和等离子体诊断的重要手段。而在X射线外波段,各种材料均存在吸收且折射率接近1,折射式光学系统不适用,采用多层膜反射镜作为基本元件的近正入射反射系统是最常见的有效的系统。由于Cr的K吸收边在约6keV,在2-6keV波段是较好的反射层材料。C是X射线波段广泛应用的间隔层材料,现有的Pt/C,Co/C,W/C等C基多层膜反射镜,展示出了优异的光学性能。在同步辐射光源和空间观测等应用中,多层膜反射镜长时间在强光的照射下工作而引起反射镜温度上升达几百摄氏度,在这些工作环境中,要求多层膜反射镜能在高温的环境中稳定地工作。然而,溅射得到的C受热后结构会发生改变,石墨化会使C层膨胀,膜层周期变化将造成多层膜工作能点偏移。另外在金属/碳多层膜中,金属受热后的晶化现象使界面质量下降最终导致光学性能下降。研究表明,在目前已有的Pt/C,W/C和Co/C多层膜都会发生上述两种现象。因此现有的C基多层膜反射镜只适当于工作环境温度较低的应用中,其热稳定性极大地限制了它在同步辐射光源和空间天文观测等等重要领域中的应用。
发明内容
本发明的目的就是为了克服上述现有的金属/碳基多层膜热稳定性差的缺陷而提出的一种采用金属Cr作为吸收层并精确控制Cr与C厚度比以提高其热稳定性的多层膜反射镜及其制作方法。
为实现上述目的,本发明采用以下技术方案:
一种Cr/C高热稳定性X射线多层膜反射镜,该反射镜包括基底,在所述基底上依次层叠设有打底层,Cr/C周期多层膜和保护层,所述Cr/C周期多层膜中包括C膜和Cr膜,所述C膜和Cr膜交替分布,所述打底层镀制在基底上,Cr/C周期多层膜中与打底层接触的为C膜,Cr/C周期多层膜中与保护层接触的为Cr膜,保护层镀制在与其相接触的Cr膜上。
所述基底的材料为硅片或玻璃;所述打底层的材料为Cr,所述打底层的厚度为5-10纳米。
与打底层接触的为C膜的厚度为1-5nm;与保护层接触的为Cr膜的厚度为1-5nm。
所述Cr/C周期多层膜的周期数为20-100,其总厚度为200-400纳米。
所述保护层的材料为C或B4C,其厚度为2-5纳米。
所述C膜和Cr膜的厚度比为1:1。
一种Cr/C高热稳定性X射线多层膜反射镜的制作方法,该方法包括以下步骤:
S1、首先在基底上镀制打底层;
S2、然后在打底层上镀制Cr/C周期多层膜;
S3、然后在Cr/C周期多层膜上镀制保护层,制得Cr/C高热稳定性X射线多层膜反射镜。
所述S1- S3中镀制均采用直流磁控溅射方法,模式为恒功率溅射。
所述S1- S3中所述的镀制打底层、镀制Cr/C周期多层膜、镀制保护层所采用的Cr靶、C靶和B4C靶的纯度均在99.5%以上。
所述S1中镀制打底层前基底真空优于8E-5帕斯卡。
与现有技术相比,本发明的有益效果为:
1)与现有的C基多层膜相比,Cr/C X射线多层膜反射镜中Cr与C的厚度比控制在1:1,在温度升高后,C有一定的膨胀,但也有一部分扩散进Cr层,形成铬碳化合物,这样的共同作用使得Cr与C膜层厚度相同的多层膜在温度升高至600度左右,多层膜周期的厚度几乎不发生变化,而铬碳化合物与铬的X射线波段的光学常数数值上极为接近,对多层膜反射镜的光学性能影响很小;
2)由于C层扩散进Cr层,破坏了Cr的结晶过程,使得界面粗糙度随着温度的升高仍保持原有水平;
3)Cr与C层厚度比为1:1的多层膜反射镜很好地解决了长期困扰金属/碳多层膜的受热周期厚度变化以及金属结晶等热稳定性问题,Cr/C多层膜反射镜在600摄氏度左右依然保持着和常温下几乎一致的结构和光学性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的结构示意图。
图2为本发明中Cr/CX射线多层膜反射镜的工作示意图。
图3为本发明中8keV的X射线掠入射反射曲线图。
附图标记中:1-基底、2-打底层、3- Cr/C周期多层膜、31- C膜、32-Cr膜、4-保护层、5-入射光、6-为反射光。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1、图2和图3所示,本实施例Cr/C高热稳定性X射线多层膜反射镜,该反射镜包括基底1,在所述基底1上依次层叠设有打底层2,Cr/C周期多层膜3和保护层4,所述Cr/C周期多层膜3中包括C膜31和Cr膜32,所述C膜31和Cr膜32交替分布,所述打底层2镀制在基底1上,Cr/C周期多层膜3中与打底层2接触的为C膜31,Cr/C周期多层膜3中与保护层4接触的为Cr膜32,保护层4镀制在与其相接触的Cr膜32上。
作为优选,本实施例所述基底1的材料为硅片或玻璃;所述打底层2的材料为Cr,所述打底层的厚度为5-10纳米。
作为进一步优选,本实施例与打底层2接触的为C膜31的厚度为1-5nm;与保护层4接触的为Cr膜32的厚度为1-5nm。
作为进一步优选,本实施例所述Cr/C周期多层膜3的周期数为20-100个,其总厚度为200-400纳米。
作为进一步优选,本实施例所述保护层4的材料为C或B4C,其厚度为2-5纳米。
作为更进一步优选,本实施例所述C膜31和Cr膜32的厚度比为1:1。
本实施例Cr/C高热稳定性X射线多层膜反射镜的制作方法,该方法包括以下步骤:
S1、首先选用超光滑的单晶硅片(晶向为100)或玻璃作为反射镜的基底1,基底1粗糙度为0.2-0.5纳米,在基底1上镀制厚度为5-10纳米的Cr膜层打底层2,镀制打底层2前基底1真空优于8E-5帕斯卡;
S2、然后在打底层2上镀制Cr/C周期多层膜3,交替镀制C膜31和Cr膜32以形成Cr/C周期多层膜3周期数为20、50、100或20-100、50-100中任一数值,Cr的厚度与C厚度之比为1:1;
S3、然后在Cr/C周期多层膜3上镀制厚度为2-5纳米的C或B4C作为保护层4,制得Cr/C高热稳定性X射线多层膜反射镜;在S1- S3中镀制均采用直流磁控溅射方法,模式为恒功率溅射;所述S1- S3中所述的镀制打底层2、镀制Cr/C周期多层膜3、镀制保护层4所采用的Cr靶、C靶和B4C靶的纯度均为99.5%。
本实施例的工作过程如下:
入射光5通过保护层4,Cr/C周期多层膜3,打底层2,在每个界面上均发生反射,出射反射光6,Cr与C的光学常数合适,同时保护层C或B4C的吸收比较小,反射镜能获得比较高的反射率,展示出优良的光学性能。另一方面,C扩散进Cr中和了C的膨胀效应并抑制了Cr的结晶,即使光能转化为热量而引起温度上升到600摄氏度时,Cr/C多层膜能保持其在室温下的性能。
具体应用例:
采用8keV的X射线掠入射到Cr/C多层膜反射镜,在镜像方向上用探测器检测光强得到X射线反射率随入射角度变化曲线,并由曲线计算拟合得到Cr/C多层膜的厚度和结构。结果表明,原Cr/C多层膜的周期厚度为4.96nm,反射率为50%;经过600摄氏度的高温处理后,Cr/C多层膜的周期厚度为5.04nm,反射率为48%,Cr/C多层膜的周期厚度变化仅为0.08nm。可知C膜和Cr膜的厚度比为1:1的Cr/C多层膜反射镜在600摄氏度左右依然保持着和常温下几乎一致的结构和光学性能。
本申请并不局限于本发明详细记载的实施例,本领域技术人员可以对此作出各种变形或修改。但是这些变形或修改只要不背离本发明的精神和意图,仍在本发明的保护范围之内。

Claims (7)

1.一种Cr/C高热稳定性X射线多层膜反射镜,其特征在于,该反射镜包括基底(1),在所述基底(1)上依次层叠设有打底层(2),Cr/C周期多层膜(3)和保护层(4),所述Cr/C周期多层膜(3)中包括C膜(31)和Cr膜(32),所述C膜(31)和Cr膜(32)交替分布,所述打底层(2)镀制在基底(1)上,Cr/C周期多层膜(3)中与打底层(2)接触的为C膜(31),Cr/C周期多层膜(3)中与保护层(4)接触的为Cr膜(32),保护层(4)镀制在与其相接触的Cr膜(32)上;
与打底层(2)接触的为C膜(31)的厚度为1-5nm;与保护层(4)接触的为Cr膜(32)的厚度为1-5nm,所述Cr/C周期多层膜(3)的周期数为20-100个,其总厚度为200-400纳米,所述C膜(31)和Cr膜(32)的厚度比为1:1。
2.根据权利要求1所述的Cr/C高热稳定性X射线多层膜反射镜,其特征在于,所述基底(1)的材料为硅片或玻璃;所述打底层(2)的材料为Cr,所述打底层的厚度为5-10纳米。
3.根据权利要求1所述的Cr/C高热稳定性X射线多层膜反射镜,其特征在于,所述保护层(4)的材料为C或B4C,其厚度为2-5纳米。
4.一种权利要求1所述的Cr/C高热稳定性X射线多层膜反射镜的制作方法,其特征在于,该方法包括以下步骤:
S1、首先在基底(1)上镀制打底层(2);
S2、然后在打底层(2)上镀制Cr/C周期多层膜(3);
S3、然后在Cr/C周期多层膜(3)上镀制保护层(4),制得Cr/C高热稳定性X射线多层膜反射镜。
5.根据权利要求4所述的Cr/C高热稳定性X射线多层膜反射镜的制作方法,其特征在于,所述S1-S3中镀制均采用直流磁控溅射方法,模式为恒功率溅射。
6.根据权利要求4所述的Cr/C高热稳定性X射线多层膜反射镜的制作方法,其特征在于,所述S1-S3中所述的镀制打底层(2)、镀制Cr/C周期多层膜(3)、镀制保护层(4)所采用的Cr靶、C靶和B4C靶的纯度均在99.5%以上。
7.根据权利要求4所述的Cr/C高热稳定性X射线多层膜反射镜的制作方法,其特征在于,所述S1中镀制打底层(2)前基底(1)真空优于8E-5帕斯卡。
CN201811487200.9A 2018-12-06 2018-12-06 Cr/C高热稳定性X射线多层膜反射镜及其制备方法 Active CN109298475B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811487200.9A CN109298475B (zh) 2018-12-06 2018-12-06 Cr/C高热稳定性X射线多层膜反射镜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811487200.9A CN109298475B (zh) 2018-12-06 2018-12-06 Cr/C高热稳定性X射线多层膜反射镜及其制备方法

Publications (2)

Publication Number Publication Date
CN109298475A CN109298475A (zh) 2019-02-01
CN109298475B true CN109298475B (zh) 2021-05-04

Family

ID=65141552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811487200.9A Active CN109298475B (zh) 2018-12-06 2018-12-06 Cr/C高热稳定性X射线多层膜反射镜及其制备方法

Country Status (1)

Country Link
CN (1) CN109298475B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575678A (zh) * 2020-05-21 2020-08-25 中国科学院电工研究所 一种x射线多层膜反射镜的制备方法
CN112684526B (zh) * 2020-12-28 2021-09-14 中国科学院长春光学精密机械与物理研究所 超光滑双波段反射镜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280999A (ja) * 1994-04-12 1995-10-27 Nikon Corp X線多層膜反射鏡
JP2001066399A (ja) * 1999-08-27 2001-03-16 Nikon Corp 多層膜反射鏡および露光装置、又は分析装置。
CN102866442A (zh) * 2011-07-07 2013-01-09 同济大学 一种Mg/Zr极紫外多层膜反射镜及其制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056943A (ja) * 2003-08-08 2005-03-03 Canon Inc X線多層ミラーおよびx線露光装置
JP2005156201A (ja) * 2003-11-21 2005-06-16 Canon Inc X線全反射ミラーおよびx線露光装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280999A (ja) * 1994-04-12 1995-10-27 Nikon Corp X線多層膜反射鏡
JP2001066399A (ja) * 1999-08-27 2001-03-16 Nikon Corp 多層膜反射鏡および露光装置、又は分析装置。
CN102866442A (zh) * 2011-07-07 2013-01-09 同济大学 一种Mg/Zr极紫外多层膜反射镜及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
4. 48nm正入射软X射线激光用Cr/C多层膜高反射镜的研制";王蓓 等;《光学学报》;20070131;第27卷(第1期);第2-3节 *

Also Published As

Publication number Publication date
CN109298475A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
Thomas et al. Semiconductor-based multilayer selective solar absorber for unconcentrated solar thermal energy conversion
Quijada et al. Enhanced far-ultraviolet reflectance of MgF2 and LiF over-coated Al mirrors
CN109298475B (zh) Cr/C高热稳定性X射线多层膜反射镜及其制备方法
US20110110499A1 (en) X-ray reflecting device
Fan Sputtered films for wavelength-selective applications
Soufli et al. Development and testing of EUV multilayer coatings for the atmospheric imaging assembly instrument aboard the Solar Dynamics Observatory
Lesser Antireflection coatings for silicon charge-coupled devices
Gholizadeh et al. Design and fabrication of MgF2 single-layer antireflection coating by glancing angle deposition
Goela et al. Properties of chemical-vapor-deposited silicon carbide for optics applications in severe environments
La Palombara et al. Mirror production for the Cherenkov telescopes of the ASTRI mini-array and the MST project for the Cherenkov Telescope Array
López-Reyes et al. Far-UV reflectance and stress of narrowband AlF 3/LaF 3 multilayers
CN105929471B (zh) 一种低成本太阳能薄膜反射镜材料
Vu et al. A homogeniser inspired by the crustacean’s eye with uniform irradiance distribution and high optical efficiency characteristics for concentrated photovoltaics system
WO2022185944A1 (ja) 光学製品及び集光器
Dhar et al. Development of a new type of metallic mirrors for 21m MACE γ-ray telescope
Grèzes-Besset et al. Optical coatings for large facilities
CN102866442A (zh) 一种Mg/Zr极紫外多层膜反射镜及其制作方法
JP2005083862A (ja) 光学薄膜およびこれを用いたミラー
Bonardi et al. A new solution for mirror coating in γ-ray Cherenkov astronomy
Hinton et al. New far-ultraviolet reflectivity measurements from ALD-deposited mirror coatings
Rodríguez-de Marcos et al. Enhanced far-UV reflectance of Al mirrors protected with hot-deposited MgF2
GB2472443A (en) Method of making a temperature resistant highly reflective metallic based surface for solar reflectors and reflector parts made thereof
Gubarev et al. From x-ray telescopes to neutron focusing
Rodríguez-De Marcos et al. Narrowband filters for the FUV range
Sebag et al. LSST reflective coating studies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant