CN109295289A - 一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法 - Google Patents

一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法 Download PDF

Info

Publication number
CN109295289A
CN109295289A CN201811102919.6A CN201811102919A CN109295289A CN 109295289 A CN109295289 A CN 109295289A CN 201811102919 A CN201811102919 A CN 201811102919A CN 109295289 A CN109295289 A CN 109295289A
Authority
CN
China
Prior art keywords
sheet metal
banded structure
corrosion resistant
hydrogen sulfide
sulfide corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811102919.6A
Other languages
English (en)
Other versions
CN109295289B (zh
Inventor
莫德敏
邓建军
李�杰
龙杰
庞辉勇
吕建会
刘晓军
张俊凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuyang Iron and Steel Co Ltd
Original Assignee
Wuyang Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuyang Iron and Steel Co Ltd filed Critical Wuyang Iron and Steel Co Ltd
Priority to CN201811102919.6A priority Critical patent/CN109295289B/zh
Publication of CN109295289A publication Critical patent/CN109295289A/zh
Application granted granted Critical
Publication of CN109295289B publication Critical patent/CN109295289B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明公开了一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法,所述方法包括连铸、加热、轧制、冷却、热处理工序;所述连铸工序,钢水过热度为20~30℃;所述加热工序,最高加热温度1200~1220℃;所述轧制工序,采用二阶段轧制工艺,第一阶段开轧温度为1050~1100℃、终轧温度为920~950℃,第二阶段开轧温度为870~910℃、终轧温度为800~850℃;所述热处理工序,采用正火热处理工艺,正火温度为910~925℃,总加热时间1.8~2.0min/mm。本发明解决了带状组织级别显著降低以及由于带状组织造成的抗氢致开裂性能指标大幅度下降的问题;钢板质量稳定,带状组织级别低,抗氢致开裂性能优良。

Description

一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法
技术领域
本发明属于冶金技术领域,具体涉及一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法。
背景技术
钢板在轧制过程中产生的带状组织虽然对材料的强度性能没有重要影响,但是对塑性有负面影响,特别是对冲击韧性有重要影响,各向异性不可避免地随着带状组织的加重而恶化,同时带状组织对抗硫化氢腐蚀用薄钢板的抗氢致开裂性能影响较大。
目前中厚板生产过程中,连铸坯得到了广泛的应用,抗硫化氢腐蚀用薄钢板带状组织是连铸坯浇铸凝固过程中形成的枝晶偏析,在热加工时延伸成铁素体和珠光体交替的条带,带状组织主要是由于连铸坯在浇铸凝固过程中枝晶组织带来的Mn、Si等合金元素偏析造成的,凝固枝晶组织中,枝间Mn含量较高,枝干处Mn含量相对较低,在热轧过程中凝固枝晶组织因变形而发生扭转、破碎和延伸拉长,而由于加热和轧制过程中Mn偏析保留下来或没有完全消除,造成轧后钢板在冷却相变前的奥氏体中形成贫Mn带和富Mn带从而形成偏析带。
在连铸坯成形过程中仅在厚度方向施加压缩变形,造成难以充分的进行枝晶破碎和均匀组织,同时由于采用热送热装的工艺的轧制生产中,采用相对较低的加热温度和较短的加热时间,连铸坯中的成分扩散和均匀化不充分,这些都不利于减轻连铸坯带来的枝晶偏析,对钢板的带状组织控制不力。
因此开发减轻抗硫化氢腐蚀用薄钢板带状组织方法,解决由于带状组织造成的抗氢致开裂性能指标大幅度下降的问题,将具有较好的社会效益和经济效益。
发明内容
本发明要解决的技术问题是提供一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法。
为解决上述技术问题,本发明所采用的技术方案是:一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法,所述方法包括连铸、加热、轧制、冷却、热处理工序;所述连铸工序,钢水过热度为20~30℃;所述加热工序,最高加热温度1200~1220℃;所述轧制工序,采用二阶段轧制工艺,第一阶段为奥氏体再结晶阶段开轧温度为1050~1100℃、终轧温度为920~950℃,第二阶段为奥氏体未再结晶阶段开轧温度为870~910℃、终轧温度为800~850℃;所述冷却工序,轧后水冷至680~780℃;所述热处理工序,采用正火热处理工艺,正火温度为910~925℃,总加热时间1.8~2.0min/mm。
本发明所述连铸工序,降低二冷水量:结晶器冷却水量4200~4300min/L,一冷区冷却水量4300~4400min/L,二冷区冷却总水量4000~4100min/L;所述连铸工序,采用电磁搅拌,电流380~400A、频率5Hz。
本发明所述加热工序,连铸坯在连续式加热炉中进行加热,总加热时间≥11min/cm。
本发明所述轧制工序,第一阶段为奥氏体再结晶阶段,累计压下率为30~50%。
本发明所述轧制工序,第二阶段为奥氏体未再结晶阶段,累计压下率为30~50%,轧制后得到半成品钢板。
本发明所述冷却工序,水冷速率为≤5℃/s。
本发明所述热处理工序,采用正火热处理工艺,保温时间30~40min,出炉空冷。
本发明所述薄钢板厚度为8~20mm。
本发明所述方法所得抗硫化氢腐蚀用薄钢板带状组织≤2级,抗氢致开裂性能指标CLR:0~5%、CTR: 0~5%、CSR: 0~1.5%。
本发明所述薄钢板化学成分组成及其质量百分含量为:C≤0.20%,Si:0.20~0.40%,Mn:1.05~1.20%,P≤0.010%,S≤0.003%,Al:0.020~0.040%,Nb:0.010~0.015%,Mo:0.05~0.12%,Ca:0.0015~0.0030%,O≤0.003%,余量为Fe和不可避免的杂质。
本发明抗硫化氢腐蚀用薄钢板产品标准参考GB6654、NACE TM 0284;产品性能检测方法标准参考GB/T228、GB229、GB/T10561、NACE TM 0284。
采用上述技术方案所产生的有益效果在于:1、本发明解决了带状组织级别显著降低以及由于带状组织造成的抗氢致开裂性能指标大幅度下降的问题。2、本发明工艺生产的抗硫化氢腐蚀用薄钢板质量稳定,带状组织≤2级,抗氢致开裂性能优良。
具体实施方式
下面结合具体实施例对本发明作进一步详细的说明。
实施例1
本实施例抗硫化氢腐蚀用薄钢板SA516Gr70(HIC),厚度8mm,其化学成分组成及质量百分含量为:C:0.15%,Si:0.30%,Mn:1.10%,P:0.008%,S:0.002%,Al:0.030%,Nb:0.012%,Mo:0.08%,Ca:0.0018%,O:0.003%,余量为Fe和不可避免的杂质。
本实施例减轻抗硫化氢腐蚀用薄钢板带状组织的方法包括连铸、加热、轧制、冷却、热处理工序,具体工艺步骤如下所述:
(1)连铸工序:钢水过热度为25℃,采用电磁搅拌,电流390A、频率5Hz;降低二冷水量:结晶器冷却水量4200min/L,一冷区冷却水量4300min/L,二冷区冷却总水量4000min/L;
(2)加热工序:连铸坯在连续式加热炉中进行加热,最高加热温度1210℃,总加热时间11.5min/cm;
(3)轧制工序:采用二阶段轧制工艺,第一阶段为奥氏体再结晶阶段,开轧温度为1080℃,终轧温度为945℃,累计压下率为40%;第二阶段为奥氏体未再结晶阶段,开轧温度为900℃,终轧温度为800℃,累计压下率为40%,轧制后得到半成品钢板;
(4)冷却工序:轧后水冷至700℃,水冷速率为0.5℃/s;
(5)热处理工序:采用正火热处理工艺,正火温度为915℃,总加热时间1.9min/mm,保温时间35min,出炉空冷。
本实施例所得抗硫化氢腐蚀用薄钢板带状组织2.0级,抗氢致开裂性能指标:CLR:0%、CTR:0%、CSR:0%。
实施例2
本实施例抗硫化氢腐蚀用薄钢板SA516Gr70(HIC),厚度20mm,其化学成分组成及质量百分含量为:C:0.12%,Si:0.25%,Mn:1.15%,P:0.005%,S:0.001%,Al:0.025%,Nb:0.013%,Mo:0.07%,Ca:0.0020%,O:0.002%,余量为Fe和不可避免的杂质。
本实施例减轻抗硫化氢腐蚀用薄钢板带状组织的方法包括连铸、加热、轧制、冷却、热处理工序,具体工艺步骤如下所述:
(1)连铸工序:钢水过热度为25℃,采用电磁搅拌,电流395A、5Hz;降低二冷水量:结晶器冷却水量4250min/L,一冷区冷却水量4320min/L,二冷区冷却总水量4050min/L;
(2)加热工序:连铸坯在连续式加热炉中进行加热,最高加热温度1220℃,总加热时间11.5min/cm;
(3)轧制工序:采用二阶段轧制工艺,第一阶段为奥氏体再结晶阶段,开轧温度为1100℃,终轧温度为950℃,累计压下率为45%;第二阶段为奥氏体未再结晶阶段,开轧温度为890℃,终轧温度为820℃,累计压下率为40%,轧制后得到半成品钢板;
(4)冷却工序:轧后水冷至730℃,水冷速率为0.5℃/s;
(5)热处理工序:采用正火热处理工艺,正火温度为920℃,总加热时间1.8min/mm,保温时间36min,出炉空冷。
本实施例所得抗硫化氢腐蚀用薄钢板带状组织1.5级,抗氢致开裂性能指标:CLR:0%、CTR:0%、CSR:0%。
实施例3
本实施例抗硫化氢腐蚀用薄钢板SA516Gr70(HIC),厚度16mm,其化学成分组成及质量百分含量为:C:0.08%,Si:0.20%,Mn:1.05%,P:0.010%,S:0.003%,Al:0.020%,Nb:0.010%,Mo:0.05%,Ca:0.0015%,O:0.002%,余量为Fe和不可避免的杂质。
本实施例减轻抗硫化氢腐蚀用薄钢板带状组织的方法包括连铸、加热、轧制、冷却、热处理工序,具体工艺步骤如下所述:
(1)连铸工序:钢水过热度为30℃,采用电磁搅拌,电流385A、频率5Hz;降低二冷水量:结晶器冷却水量4200min/L,一冷区冷却水量4300min/L,二冷区冷却总水量4000min/L;
(2)加热工序:连铸坯在连续式加热炉中进行加热,最高加热温度1215℃,总加热时间11min/cm;
(3)轧制工序:采用二阶段轧制工艺,第一阶段为奥氏体再结晶阶段,开轧温度为1090℃,终轧温度为940℃,累计压下率为35%;第二阶段为奥氏体未再结晶阶段,开轧温度为885℃,终轧温度为815℃,累计压下率为40%,轧制后得到半成品钢板;
(4)冷却工序:轧后水冷至720℃,水冷速率为3.6℃/s;
(5)热处理工序:采用正火热处理工艺,正火温度为910℃,总加热时间2.0min/mm,保温时间30min,出炉空冷。
本实施例所得抗硫化氢腐蚀用薄钢板带状组织2.0级,抗氢致开裂性能指标:CLR:0%、CTR:0%、CSR:0%。
实施例4
本实施例抗硫化氢腐蚀用薄钢板SA516Gr70(HIC),厚度10mm,其化学成分组成及质量百分含量为:C:0.20%,Si:0.40%,Mn:1.20%,P:0.005%,S:0.002%,Al:0.040%,Nb:0.015%,Mo:0.12%,Ca:0.0030%,O:0.002%,余量为Fe和不可避免的杂质。
本实施例减轻抗硫化氢腐蚀用薄钢板带状组织的方法包括连铸、加热、轧制、冷却、热处理工序,具体工艺步骤如下所述:
(1)连铸工序:钢水过热度为25℃,采用电磁搅拌,电流395A、频率5Hz;降低二冷水量:结晶器冷却水量4250min/L,一冷区冷却水量4320min/L,二冷区冷却总水量4050min/L;
(2)加热工序:连铸坯在连续式加热炉中进行加热,最高加热温度1200℃,总加热时间11min/cm;
(3)轧制工序:采用二阶段轧制工艺,第一阶段为奥氏体再结晶阶段,开轧温度为1070℃,终轧温度为935℃,累计压下率为40%;第二阶段为奥氏体未再结晶阶段,开轧温度为870℃,终轧温度为810℃,累计压下率为40%,轧制后得到半成品钢板;
(4)冷却工序:轧后水冷至700℃,水冷速率为1.5℃/s;
(5)热处理工序:采用正火热处理工艺,正火温度为922℃,总加热时间1.9min/mm,保温时间33min,出炉空冷。
本实施例所得抗硫化氢腐蚀用薄钢板带状组织1.0级,抗氢致开裂性能指标:CLR:0%、CTR:0%、CSR:0%。
实施例5
本实施例抗硫化氢腐蚀用薄钢板SA516Gr70(HIC),厚度12.5mm,其化学成分组成及质量百分含量为:C:0.11%,Si:0.25%,Mn:1.12%,P:0.008%,S:0.003%,Al:0.027%,Nb:0.013%,Mo:0.09%,Ca:0.0025%,O:0.003%,余量为Fe和不可避免的杂质。
本实施例减轻抗硫化氢腐蚀用薄钢板带状组织的方法包括连铸、加热、轧制、冷却、热处理工序,具体工艺步骤如下所述:
(1)连铸工序:钢水过热度为20℃,采用电磁搅拌,电流380A、频率5Hz;降低二冷水量:结晶器冷却水量4300min/L,一冷区冷却水量4400min/L,二冷区冷却总水量4100min/L;
(2)加热工序:连铸坯在连续式加热炉中进行加热,最高加热温度1210℃,总加热时间11.5min/cm;
(3)轧制工序:采用二阶段轧制工艺,第一阶段为奥氏体再结晶阶段,开轧温度为1050℃,终轧温度为920℃,累计压下率为50%;第二阶段为奥氏体未再结晶阶段,开轧温度为910℃,终轧温度为850℃,累计压下率为30%,轧制后得到半成品钢板;
(4)冷却工序:轧后水冷至780℃,水冷速率为5℃/s;
(5)热处理工序:采用正火热处理工艺,正火温度为925℃,总加热时间2.0min/mm,保温时间40min,出炉空冷。
本实施例所得抗硫化氢腐蚀用薄钢板带状组织1.5级,抗氢致开裂性能指标:CLR:5%、CTR:2%、CSR:1%。
实施例6
本实施例抗硫化氢腐蚀用薄钢板SA516Gr70(HIC),厚度18mm,其化学成分组成及质量百分含量为:C:0.16%,Si:0.32%,Mn:1.15%,P:0.005%,S:0.001%,Al:0.024%,Nb:0.012%,Mo:0.08%,Ca:0.0020%,O:0.001%,余量为Fe和不可避免的杂质。
本实施例减轻抗硫化氢腐蚀用薄钢板带状组织的方法包括连铸、加热、轧制、冷却、热处理工序,具体工艺步骤如下所述:
(1)连铸工序:钢水过热度为27℃,采用电磁搅拌,电流400A、频率5Hz;降低二冷水量:结晶器冷却水量4270min/L,一冷区冷却水量4380min/L,二冷区冷却总水量4020min/L;
(2)加热工序:连铸坯在连续式加热炉中进行加热,最高加热温度1205℃,总加热时间12min/cm;
(3)轧制工序:采用二阶段轧制工艺,第一阶段为奥氏体再结晶阶段,开轧温度为1080℃,终轧温度为930℃,累计压下率为30%;第二阶段为奥氏体未再结晶阶段,开轧温度为890℃,终轧温度为820℃,累计压下率为50%,轧制后得到半成品钢板;
(4)冷却工序:轧后水冷至680℃,水冷速率为2.5℃/s;
(5)热处理工序:采用正火热处理工艺,正火温度为915℃,总加热时间1.8min/mm,保温时间32min,出炉空冷。
本实施例所得抗硫化氢腐蚀用薄钢板带状组织1.0级,抗氢致开裂性能指标:CLR:0%、CTR:5%、CSR:1.5%。
上述实施例表明,本发明减轻抗硫化氢腐蚀用薄钢板带状组织的方法解决了带状组织级别显著降低以及由于带状组织造成的抗氢致开裂性能指标大幅度下降的问题,所得抗硫化氢腐蚀用薄钢板质量稳定,带状组织级别低,抗氢致开裂性能优良。
以上实施例仅用以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法,其特征在于,所述方法包括连铸、加热、轧制、冷却、热处理工序;所述连铸工序,钢水过热度为20~30℃;所述加热工序,最高加热温度1200~1220℃;所述轧制工序,采用二阶段轧制工艺,第一阶段为奥氏体再结晶阶段开轧温度为1050~1100℃、终轧温度为920~950℃,第二阶段为奥氏体未再结晶阶段开轧温度为870~910℃、终轧温度为800~850℃;所述冷却工序,轧后水冷至680~780℃;所述热处理工序,采用正火热处理工艺,正火温度为910~925℃,总加热时间1.8~2.0min/mm。
2.根据权利要求1所述的一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法,其特征在于,所述连铸工序,降低二冷水量:结晶器冷却水量4200~4300min/L,一冷区冷却水量4300~4400min/L,二冷区冷却总水量4000~4100min/L;所述连铸工序,采用电磁搅拌,电流380~400A、频率5Hz。
3.根据权利要求1所述的一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法,其特征在于,所述加热工序,连铸坯在连续式加热炉中进行加热,总加热时间≥11min/cm。
4.根据权利要求1-3任意一项所述的一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法,其特征在于,所述轧制工序,第一阶段为奥氏体再结晶阶段,累计压下率为30~50%。
5.根据权利要求1-3任意一项所述的一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法,其特征在于,所述轧制工序,第二阶段为奥氏体未再结晶阶段,累计压下率为30~50%,轧制后得到半成品钢板。
6.根据权利要求1-3任意一项所述的一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法,其特征在于,所述冷却工序,水冷速率为≤5℃/s。
7.根据权利要求1-3任意一项所述的一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法,其特征在于,所述热处理工序,采用正火热处理工艺,保温时间30~40min,出炉空冷。
8.根据权利要求1-3任意一项所述的一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法,其特征在于,所述薄钢板厚度为8~20mm。
9.根据权利要求1-3任意一项所述的一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法,其特征在于,所述方法所得抗硫化氢腐蚀用薄钢板带状组织≤2级,抗氢致开裂性能指标CLR:0~5%、CTR: 0~5%、CSR: 0~1.5%。
10.根据权利要求1-3任意一项所述的一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法,其特征在于,所述薄钢板化学成分组成及其质量百分含量为:C≤0.20%,Si:0.20~0.40%,Mn:1.05~1.20%,P≤0.010%,S≤0.003%,Al:0.020~0.040%,Nb:0.010~0.015%,Mo:0.05~0.12%,Ca:0.0015~0.0030%,O≤0.003%,余量为Fe和不可避免的杂质。
CN201811102919.6A 2018-09-20 2018-09-20 一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法 Active CN109295289B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811102919.6A CN109295289B (zh) 2018-09-20 2018-09-20 一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811102919.6A CN109295289B (zh) 2018-09-20 2018-09-20 一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法

Publications (2)

Publication Number Publication Date
CN109295289A true CN109295289A (zh) 2019-02-01
CN109295289B CN109295289B (zh) 2021-02-12

Family

ID=65163876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811102919.6A Active CN109295289B (zh) 2018-09-20 2018-09-20 一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法

Country Status (1)

Country Link
CN (1) CN109295289B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231705A (zh) * 2021-12-22 2022-03-25 舞阳钢铁有限责任公司 一种大厚度p460nh钢正火热处理方法
CN115198063A (zh) * 2022-09-19 2022-10-18 苏州创镕新材料科技有限公司 一种减少中高碳工具钢带状组织的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287683A (ja) * 1993-03-31 1994-10-11 Nippon Steel Corp 溶接軟化部の耐硫化物応力割れ性に優れた高強度uoeラインパイプ
CN106086641A (zh) * 2016-06-23 2016-11-09 江阴兴澄特种钢铁有限公司 一种抗硫化氢腐蚀特大型石油储罐用高强钢及其制造方法
CN106521332A (zh) * 2016-10-31 2017-03-22 舞阳钢铁有限责任公司 一种抗应力导向氢致开裂用钢板及其生产方法
CN106521359A (zh) * 2016-10-31 2017-03-22 舞阳钢铁有限责任公司 海上钻井平台用抗硫化氢腐蚀调质高强钢板及生产方法
CN106636971A (zh) * 2016-09-28 2017-05-10 舞阳钢铁有限责任公司 一种690MPa级抗硫化氢腐蚀钢板及其生产方法
CN106917043A (zh) * 2017-02-17 2017-07-04 舞阳钢铁有限责任公司 一种抗硫化物应力腐蚀开裂用薄钢板及其生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287683A (ja) * 1993-03-31 1994-10-11 Nippon Steel Corp 溶接軟化部の耐硫化物応力割れ性に優れた高強度uoeラインパイプ
CN106086641A (zh) * 2016-06-23 2016-11-09 江阴兴澄特种钢铁有限公司 一种抗硫化氢腐蚀特大型石油储罐用高强钢及其制造方法
CN106636971A (zh) * 2016-09-28 2017-05-10 舞阳钢铁有限责任公司 一种690MPa级抗硫化氢腐蚀钢板及其生产方法
CN106521332A (zh) * 2016-10-31 2017-03-22 舞阳钢铁有限责任公司 一种抗应力导向氢致开裂用钢板及其生产方法
CN106521359A (zh) * 2016-10-31 2017-03-22 舞阳钢铁有限责任公司 海上钻井平台用抗硫化氢腐蚀调质高强钢板及生产方法
CN106917043A (zh) * 2017-02-17 2017-07-04 舞阳钢铁有限责任公司 一种抗硫化物应力腐蚀开裂用薄钢板及其生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吕瑞国 等: "《连续铸钢实训指导书》", 30 April 2016, 冶金工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231705A (zh) * 2021-12-22 2022-03-25 舞阳钢铁有限责任公司 一种大厚度p460nh钢正火热处理方法
CN115198063A (zh) * 2022-09-19 2022-10-18 苏州创镕新材料科技有限公司 一种减少中高碳工具钢带状组织的方法

Also Published As

Publication number Publication date
CN109295289B (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
WO2018090682A1 (zh) 一种紧固件用高淬透性中碳低合金圆钢及其制造方法
CN106947917B (zh) 一种低合金高强度超厚钢板s420nl及其生产方法
CN106521359B (zh) 海上钻井平台用抗硫化氢腐蚀调质高强钢板及生产方法
CN105925894A (zh) 一种超厚高强抗层状撕裂q500d-z35水电机组钢板及其制造方法
CN103014554A (zh) 一种低屈强比高韧性钢板及其制造方法
CN109371317A (zh) 一种1000MPa级超快冷冷轧双相钢板及其制备方法
CN107099752A (zh) 一种低合金12Cr1MoV钢板及其生产方法
CN108998741A (zh) 超高强韧性中锰相变诱发塑性钢及其制备方法
CN106917043B (zh) 一种抗硫化物应力腐蚀开裂用薄钢板及其生产方法
CN104294155A (zh) 一种超低碳取向硅钢及其制备方法
CN112322995B (zh) 低屈强比高韧性tmcp型桥梁钢板及其生产方法
WO2013044641A1 (zh) 一种屈服强度700MPa级高强度高韧性钢板及其制造方法
CN109280857A (zh) 一种1200MPa级超快冷冷轧双相钢板及其制备方法
CN106811700A (zh) 一种厚规格抗酸性x60ms热轧卷板及其制造方法
CN108251748A (zh) 一种低碳当量核安全壳用钢板及其生产方法
WO2023197572A1 (zh) 一种500hb级以上的耐磨钢及其生产方法
CN106917051B (zh) 一种耐腐蚀双相耐磨钢板及其生产方法
JP6056235B2 (ja) 溶接性および耐遅れ破壊特性に優れた引張強さ950MPa以上の高張力鋼板の製造方法
CN109295289A (zh) 一种减轻抗硫化氢腐蚀用薄钢板带状组织的方法
CN105256231B (zh) 冷凝管用冷轧钢板及其制备方法
CN108385020B (zh) 420MPa级低焊接裂纹敏感性的高强度钢板及其制造方法
CN106521332B (zh) 一种抗应力导向氢致开裂用钢板及其生产方法
CN109722598A (zh) 一种12Cr1MoV加钒铬钼钢板及其生产方法
CN107267859B (zh) 一种超高强防弹钢板及其制备方法
CN108251749A (zh) 460MPa级低屈强比核电配管用钢板及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant