CN109290573B - 一种激光增材制造铝铜复合制件的方法 - Google Patents

一种激光增材制造铝铜复合制件的方法 Download PDF

Info

Publication number
CN109290573B
CN109290573B CN201811214529.8A CN201811214529A CN109290573B CN 109290573 B CN109290573 B CN 109290573B CN 201811214529 A CN201811214529 A CN 201811214529A CN 109290573 B CN109290573 B CN 109290573B
Authority
CN
China
Prior art keywords
aluminum
copper
laser
layer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811214529.8A
Other languages
English (en)
Other versions
CN109290573A (zh
Inventor
周骏
张宏林
马威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou Hangfei Precision Electromechanical Co ltd
Original Assignee
Yangzhou Hangfei Precision Electromechanical Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou Hangfei Precision Electromechanical Co ltd filed Critical Yangzhou Hangfei Precision Electromechanical Co ltd
Priority to CN201811214529.8A priority Critical patent/CN109290573B/zh
Publication of CN109290573A publication Critical patent/CN109290573A/zh
Application granted granted Critical
Publication of CN109290573B publication Critical patent/CN109290573B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明涉及铝合金与铜复合材料制件加工技术领域内一种激光增材制造铝铜复合制件的方法。首先制造铝合金基材的制件,然后在铝合金基材制件需要镶嵌铜合金的部位预留镶嵌空间,通过激光光束分层选择性熔覆铜合金粉层,制作成设定尺寸的铜合金嵌件,所述铜合金粉层与铝合金的基材表面设有渐进过渡层,所述渐进过渡层的厚度为1.5~3mm,所述渐进过渡层的合金成份的质量配比为:Si:8~10%,Cu:10~15%,Ag:0.3~0.8%,Ni:0.65~0.85%,Mg:0.70~0.85%,余量为Al粉,总量为100%;所述铜合金粉的质量配比为:Al:12.85~14.25%,Fe:0.95~1.05%,Ni:2.56~3.06%,Mn:2.13~2.18%,P:0.018~0.022%,Pb:0.025~0.028%,Si:0.15~0.17%,Sn:0.080~0.085%,Zn:0.95~0.98%,余量为Cu,总量为100%。

Description

一种激光增材制造铝铜复合制件的方法
技术领域
本发明涉及铝合金与铜复合材料制件加工技术领域,特别涉及一种激光增材制造铝铜复合制件的方法。
背景技术
现有技术中,铝合金制品的内部或外部镶嵌铜合金或外部包覆铜合金结构的制品加工制作中,一般通过铝合金镶件铸造的方法加工制作,或者先分别制作成半成品,再将两者机械连接。前者的镶件铸造加工方法适用于大批量加工生产中,铸造过程中,镶件定位会存在一定的难度,其定位精度是影响铸件精度的关键因素,并且对于小批量或单件生产中,采用镶件铸造的加工方法中,模具投入成本大,经济效益差。后者铝铜制件通过机械连接的方法连接强度和精度影响整件制件的强度和尺寸精度。
发明内容
本发明针对现有技术中铝合金与铜合金嵌件制品的制造方法存在的上述问题,提供一种激光增材制造铝铜复合制件的方法,既适合单件小批量也适合大批量的生产制造中,并且加工精度高,利于快速成形,减少整件制造过程中的模具投入。
本发明的目的是这样实现的,一种激光增材制造铝铜复合制件的方法首先制造铝合金基材的制件,然后在铝合金基材制件需要镶嵌铜合金的部位预留镶嵌空间,通过激光光束分层选择性熔覆铜合金粉层,制作成设定尺寸的铜合金嵌件,所述铜合金粉层与铝合金基材制件表面结合部位设有渐进过渡层,所述渐进过渡层的厚度为1.5~3mm,所述渐进过渡层的合金成份的质量配比为:Si :8~10%,Cu:10~15%,Ag:0.3~0.8%,Ni:0.65~0.85%,Mg:0.70~0.85%,余量为Al粉,总量为100%;所述铜合金粉成份的质量配比为:Al :12.85~14.25%,Fe:0.95~1.05%,Ni:2.56~3.06%,Mn:2.13~2.18%,P:0.018~0.022%,Pb:0.025~0.028%,Si:0.15~0.17%,Sn:0.080~0.085, Zn:0.95~0.98%,余量为Cu,总量为100%;所述渐进过渡层和铜合金粉层采用激光分层逐层熔覆于铝合金基材表面,每层涂覆后激光熔覆的厚度为0.5~0.8 mm,各合金成份的粒度为35~50μm。
本发明的方法中,在铝合金制件上通过激光熔覆的方法增材制造铜合金件,改变传统的镶件铸造或机械连接的工艺方法,先按常规方法制作铝合金制件,预先预留铜合金件的位置,然后通过激光熔覆逐层选择性增材制造的方法将铜合金粉料熔覆烧结到铜合金件的位置,不需要另外的定位工装或模具投入,并且通过激光熔覆增材制造的方法获得的制件产品尺寸精度高,表面质量好,成形后的整体制件加工量少,为铝铜结合结构的制件的生产加工提供了一种新的加工制造方法。另一方面,为保证铝合金与铜合金结合的过渡部位具有良好的结合强度,在铝合金基材的底层设置一渐进过渡层,使铝合金表层的热膨胀系数降低,提高导热性,并提高铝与铜结合镀覆性能;还可以阻止铜铝连接的脆性相产生倾向,减少铝铜间金属间化合物的生成;提高铝铜结合的强度;本发明的铜合金材料,具有高强度,高温耐磨性和抗氧化性好、并且在高温下耐蚀性和抗氧化性大,特别适用恶劣环境条件下使用。
作为本发明的优选,激光熔覆的激光输出功率为3~7kW,光斑宽度为3~8mm,扫描速度为10-15mm/s,激光熔覆过程中采用氩气流保护,气流流量为25~30L/min。
作为本发明的再一优选,所述渐进过渡层的合金粉末成份的质量配比为:Si :9.0~9.3%,Al2O3 :11~11.5% ,Cu:12~13%,Ag:0.5~0.6%,Ni:0.70~0.78%,Mg:0.75~0.80%,余量为Al粉,总量为100%。
为便于激光熔覆,分层激光熔覆前先将待熔覆的合金粉末混合均匀后制成便于涂覆的浆料,分层涂覆于铝合金基材制件预留的镶嵌部位。
为进一步提高整体制件的尺寸精度,所述铝合 金基材制件的镶嵌空间激光熔覆渐进过渡层和铜合金粉层后,再进行整体的机械精密切削加工及热处理。
具体实施方式
实施例1
本实施例的激光增材制造铝铜复合制件的方法中,首先通过常规方法制造铝合金基材的制件,该制件可以是机械切削加工制造或压铸制造而成,制造中,在铝合金基材制件需要镶嵌铜合金的部位预留镶嵌空间,通过激光光束分层熔覆铜合金粉层,制作成设定尺寸的铜合金嵌件,该铜合金粉层与铝合金的基材表面设有渐进过渡层,本实施例中,渐进过渡层的厚度为1.5,渐进过渡层的合金粉沫成份的质量配比为:Si :8% ,Cu:10%,Ag:0.3%,Ni:0.65%,Mg:0.70%,余量为Al粉,总量为100%,各合金成份的粒度为35~50μm,上述合金粉沫混合均匀后研磨并制成便于涂覆的桨料分层涂于铝合金基材表面,涂层厚度为0.75mm,干燥后通过激光熔覆烧结合形成过渡底层,然后再涂覆第二层,干燥后再进行激光熔覆烧结,其中激光熔覆时的激光输出功率为3.5kW,光斑宽度为6.5mm,扫描速度为15mm/s,激光熔覆过程中采用氩气流保护,气流流量为25L/min。继续在渐进层的表面涂覆铜合金粉,其成份的质量配比为:Al :12.85%,:Fe:0.95%,Ni:2.56%,Mn:2.13%,P:0.018%,Pb:0.025%,Si:0.15%,Sn:0.080%, Zn:0.95%,余量为Cu,总量为100%,各合金成份的粒度为35~50μm;每层涂层的厚度为0.7mm,激光熔覆时的激光输出功率为5kW,光斑宽度为4.5mm,扫描速度为10mm/s,激光熔覆过程中采用氩气流保护,气流流量为25L/min。逐层涂覆、激光熔覆,直至达到设定的尺寸,然后再按最终尺寸要求,和表面质量要求,对整体制件进行机械加工。本实施例的方法制成的铝铜复合制件的铜合金嵌件部位的硬度达32HRC,屈服强度为780Mpa,并且铜铝结合面结合牢固,经过一系列的震动疲劳试验后结合部位无裂纹产生。
实施例2
本实施例的激光增材制造铝铜复合制件的方法中,首先通过常规方法制造铝合金基材的制件,该制件可以是机械切削加工制造或压铸制造而成,制造中,在铝合金基材制件外侧需要包覆铜合金的部位,通过激光光束分层熔覆铜合金粉层,制作成设定尺寸的铜合金包覆件,该铜合金粉层与铝合金的基材表面设有渐进过渡层,本实施例中,渐进过渡层的厚度为3,渐进过渡层的合金粉沫成份的质量配比为:Si :10% ,Cu:15%,Ag:0.8%,Ni:0.85%,Mg:0.85%,余量为Al粉,总量为100%,各合金成份的粒度为35~50μm,上述合金粉沫混合均匀后研磨并制成便于涂覆的桨料分层涂于铝合金基材表面,涂层厚度为0.6mm,干燥后通过激光熔覆烧结合形成过渡底层,然后再涂覆第二层,干燥后再进行激光熔覆烧结,继续涂覆激光烧结直到厚度达到3 mm,其中激光熔覆时的激光输出功率为4kW,光斑宽度为7.5mm,扫描速度为11mm/s,激光熔覆过程中采用氩气流保护,气流流量为30L/min。继续在渐进层的表面涂覆铜合金粉,其成份的质量配比为:Al :14.25%,:Fe:1.05%,Ni:3.05%,Mn:2.18%,P:0.022,Pb:0.028%,Si:0.17%,Sn:0.085%, Zn:0.98%,余量为Cu,总量为100%,各合金成份的粒度为35~50μm;每层涂层的厚度为0.6mm,激光熔覆时的激光输出功率为7kW,光斑宽度为6.5mm,扫描速度为12mm/s,激光熔覆过程中采用氩气流保护,气流流量为28L/min。逐层涂覆、激光熔覆,直至达到设定的尺寸,然后再按最终尺寸要求,和表面质量要求,对整体制件进行机械加工。本实施例的方法制成的铝铜复合制件的铜合金套件部位的硬度达33HRC,屈服强度为785Mpa,并且铜铝结合面结合牢固,经过一系列的震动疲劳试验后结合部位无裂纹产生。
实施例3
本实施例的激光增材制造铝铜复合制件的方法中,首先通过常规方法制造铝合金基材制件,该制件可以是机械切削加工制造或压铸制造而成,制造中,在铝合金基材制件一侧预留铜合金制件的嵌装空间,通过激光光束分层熔覆铜合金粉层,制作成设定尺寸的铜合金嵌件,该铜合金粉层与铝合金基材制件的结合部位设有厚度为2.4mm的渐进过渡层,渐进过渡层的合金粉沫成份的质量配比为:Si :9% ,Cu:13%,Ag:0.6,Ni:0.78%,Mg:0.78%,余量为Al粉,总量为100%,各合金成份的粒度为35~50μm,上述合金粉沫混合均匀后研磨并制成便于涂覆的桨料分层涂于铝合金基材表面,涂层厚度为0.8mm,干燥后通过激光熔覆烧结合形成过渡底层,然后再涂覆第二层,干燥后再进行激光熔覆烧结,继续涂覆激光烧结第三层,其中激光熔覆时的激光输出功率为5.5kW,光斑宽度为7mm,扫描速度为12mm/s,激光熔覆过程中采用氩气流保护,气流流量为30L/min。继续在渐进层的表面涂覆铜合金粉,其成份的质量配比为:Al :13.62%,:Fe:1.00%,Ni:2.78%,Mn:2.15%,P:0.020,Pb:0.026%,Si:0.16%,Sn:0.083%, Zn:0.97%,余量为Cu,总量为100%,各合金成份的粒度为35~50μm;每层涂层的厚度为0.6mm,激光熔覆时的激光输出功率为6kW,光斑27L/min,逐层涂覆、激光熔覆,直至达到设定的尺寸,然后再按最终尺寸要求和表面质量要求,对整体制件进行机械加工。本实施例的方法制成的铝铜复合制件的铜合金嵌件部位的硬度达34HRC,屈服强度为791Mpa。

Claims (5)

1.一种激光增材制造铝铜复合制件的方法,首先制造铝合金基材制件,然后在铝合金基材制件需要镶嵌铜合金的部位预留镶嵌空间,通过激光光束分层选择性熔覆铜合金粉层,制作成设定尺寸的铜合金嵌件,所述铜合金粉层与铝合金基材制件表面结合部位设有渐进过渡层,所述渐进过渡层的厚度为1.5~3mm,所述渐进过渡层的合金成份的质量配比为:Si :8~10%,Cu:10~15%,Ag:0.3~0.8%,Ni:0.65~0.85%,Mg:0.70~0.85%,余量为Al粉,总量为100%;
所述铜合金粉层的质量配比为:Al :12.85~14.25%,Fe:0.95~1.05%,Ni:2.56~3.06%,Mn:2.13~2.18%,P:0.018~0.022%,Pb:0.025~0.028%,Si:0.15~0.17%,Sn:0.080~0.085%, Zn:0.95~0.98%,余量为Cu,总量为100%;
所述渐进过渡层和铜合金粉层采用激光分层逐层熔覆于铝合金基材表面,每层涂覆及激光熔覆的厚度为0.5~0.8 mm,各合金成份的粒度为35~50μm。
2.根据权利要求1所述的激光增材制造铝铜复合制件的方法,其特征在于,激光熔覆的激光输出功率为3~7kW,光斑宽度为3~8mm,扫描速度为10-15mm/s,激光熔覆过程中采用氩气流保护,气流流量为25~30L/min。
3.根据权利要求1所述的激光增材制造铝铜复合制件的方法,其特征在于,所述渐进过渡层的合金成份的质量配比为:Si :9.0~9.3%,Cu:12~13%,Ag:0.5~0.6%,Ni:0.70~0.78%,Mg:0.75~0.80%,余量为Al粉,总量为100%。
4.根据权利要求1所述的激光增材制造铝铜复合制件的方法,其特征在于,分层激光熔覆前先将待熔覆的合金粉末混合均匀后制成便于涂覆的浆料,分层涂覆于铝合金基材制件预留的镶嵌部位。
5.根据权利要求1所述的激光增材制造铝铜复合制件的方法,其特征在于,所述铝合金基材制件的镶嵌空间激光熔覆渐进过渡层和铜合金粉层后,再进行整体的机械精密切削加工。
CN201811214529.8A 2018-10-18 2018-10-18 一种激光增材制造铝铜复合制件的方法 Active CN109290573B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811214529.8A CN109290573B (zh) 2018-10-18 2018-10-18 一种激光增材制造铝铜复合制件的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811214529.8A CN109290573B (zh) 2018-10-18 2018-10-18 一种激光增材制造铝铜复合制件的方法

Publications (2)

Publication Number Publication Date
CN109290573A CN109290573A (zh) 2019-02-01
CN109290573B true CN109290573B (zh) 2021-02-19

Family

ID=65158023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811214529.8A Active CN109290573B (zh) 2018-10-18 2018-10-18 一种激光增材制造铝铜复合制件的方法

Country Status (1)

Country Link
CN (1) CN109290573B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112077312B (zh) * 2020-09-27 2022-01-28 江苏科技大学 一种铜铝过渡段复合结构的制备方法
CN112958785A (zh) * 2021-02-02 2021-06-15 飞而康快速制造科技有限责任公司 一种3d打印铜铝复合材料及其制备方法
CN112496345B (zh) * 2021-02-05 2021-05-14 西安赛隆金属材料有限责任公司 硬质合金增材制备方法
CN116732510B (zh) * 2023-06-08 2024-05-03 帕诺瓦智能科技(苏州)有限公司 一种在铝合金表面制备铜基熔覆层的方法及其复合材料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048718A (ja) * 2000-07-31 2002-02-15 Nissan Motor Co Ltd レーザクラッド加工におけるクラッド層の品質判定方法
CN1164794C (zh) * 2001-02-21 2004-09-01 中国科学院金属研究所 汽车发动机缸盖上激光直接成型铜基合金气门座工艺方法
CN101717910B (zh) * 2009-12-22 2011-12-14 广州有色金属研究院 一种激光与热喷涂复合工艺制备铜基钨涂层的方法
CN102915949A (zh) * 2011-08-01 2013-02-06 中国科学院微电子研究所 在基板中嵌入金属材料的方法
DE102011081112A1 (de) * 2011-08-17 2013-02-21 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Herstellung eines Bauteils für hohe thermische Belastungen, ein Bauteil herstellbar mit dem Verfahren und ein Flugzeugtriebwerk mit dem Bauteil
CN105543839B (zh) * 2015-12-29 2018-02-02 长春理工大学 一种梯度耐磨涂层及制备梯度耐磨涂层的方法
CN105665709B (zh) * 2016-01-22 2018-11-13 吉林大学 一种钢/铝异种金属零件激光沉积增材制造方法
CN108296715B (zh) * 2018-01-30 2020-11-17 华中科技大学 一种采用锻造和增材制造复合成形金属大型构件的方法

Also Published As

Publication number Publication date
CN109290573A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
CN109290573B (zh) 一种激光增材制造铝铜复合制件的方法
US7066235B2 (en) Method for manufacturing clad components
CN110219002B (zh) 用于修复模具的高熵合金复合涂层材料及模具修复方法
JP5021636B2 (ja) アルミニウム−炭化珪素質複合体及びその加工方法
EP2759367B1 (en) Joining method
JPH0891951A (ja) アルミニウムと窒化ケイ素の接合体およびその製造方法
CN109477166B (zh) 铜-镍-锡合金、其生产方法和其用途
KR20080077255A (ko) Sn 함유 내구성 물질 조성물, 내구성 코팅 제조 방법 및그 용도
JP5037883B2 (ja) 放熱部品及びその製造方法
CN113118599B (zh) 机械冶金双重结合提升钢-铝异种焊接接头强度的方法
Chu et al. Structure-Property correlation in weld metals and interface regions of titanium/steel dissimilar joints
KR940008937B1 (ko) 복합화 재료의 제조방법 및 수열재료(受熱材料)와 수열재료의 제조방법
JP2008080385A (ja) 鋳包み用鋳鉄部材並びにその鋳包み用鋳鉄部材の製造方法及びその鋳包み用鋳鉄部材製品
CN105149769B (zh) 叠层复合中间层的设计引入使镁合金与铝合金连接的方法
Gnatenko et al. Detecting the influence of heat sources on material properties when producing aviation parts by a direct energy deposition method
CN113290254B (zh) 一种金属零件的复合制造方法
JPH073306A (ja) 高強度超硬合金複合材料およびその製造方法
CN102605379A (zh) 一种超细/纳米晶梯度涂层的制备方法
CN1248808C (zh) 带有复合层的零件的制造方法
CN111558757A (zh) 一种异种金属增材制造界面的强化方法
JP2835709B2 (ja) 鋼と超硬合金の接合した複合工具材の製造方法
CN111615565B (zh) 用于铝板或钢板的焊接电极以及获得该电极的方法
JP2001279365A (ja) ダイカストマシン用金型の構成部材およびその製造方法
CN109352108B (zh) 一种修复发动机缸盖的钨基粉末合金铸造模具涂层及工艺
CN116921837A (zh) 无需铝钢爆炸焊块的铝电解用阳极导电装置及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A Method for Laser Additive Manufacturing of Aluminum Copper Composite Parts

Granted publication date: 20210219

Pledgee: Yangzhou Branch of Bank of Nanjing Co.,Ltd.

Pledgor: YANGZHOU HANGFEI PRECISION ELECTROMECHANICAL Co.,Ltd.

Registration number: Y2024980010850