CN1092845C - 光电发电装置 - Google Patents

光电发电装置 Download PDF

Info

Publication number
CN1092845C
CN1092845C CN98108476A CN98108476A CN1092845C CN 1092845 C CN1092845 C CN 1092845C CN 98108476 A CN98108476 A CN 98108476A CN 98108476 A CN98108476 A CN 98108476A CN 1092845 C CN1092845 C CN 1092845C
Authority
CN
China
Prior art keywords
solar cell
ground
circuit breaker
generating device
cell array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN98108476A
Other languages
English (en)
Other versions
CN1200589A (zh
Inventor
竹原信善
近藤博志
黑神诚路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN1200589A publication Critical patent/CN1200589A/zh
Application granted granted Critical
Publication of CN1092845C publication Critical patent/CN1092845C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/006Calibration or setting of parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/26Building materials integrated with PV modules, e.g. façade elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)
  • Inverter Devices (AREA)

Abstract

一种光电发电装置,其所用的太阳电池阵列覆盖相当大的室外安装面积,并且在太阳电池阵列与地之间存在相当大的对地电容Ca。很小泄漏电流流过对地电容Ca,而对地电容Ca会引起置于变换器与工业用交流电力系统之间的对地泄漏断路器不希望有的操作。因此,通过对其进行设计,以便对地电容Ca[μF]与对地泄漏断路器的泄漏电流检测灵敏度EL[mA]之间的关系为Ca<EL/3,则防止由于泄漏电流所引起的对地泄漏断路器不希望有的操作。

Description

光电发电装置
本发明涉及一种光电发电装置,以及其设计和安装。
供住房使用的光电发电装置开始推广,并且积极进行了目的在于降低装置费用的各种研究。作为降低费用的最后手段,正在考虑使一种太阳电池模件实用,这种太阳电池模件与不需要支架的屋顶材料及非绝缘式变换器,即所谓无变压器的变换器相结合。无变压器的变换器效率高,并且价格便宜,因此,无变压器的变换器最近得到广泛地使用。
图1是一个方块图,说明一种可以与普通电力系统连接的光电发电装置的布置。通过变换器2供电,电功率从太阳电池阵列1供给工业用交流电力系统3和/或用户负荷6。在变换器2与工业用交流电力系统3之间,设有对地泄漏断路器4a和4b,并且在用户的住房或建筑物中发生漏电时,使工业用交流电力系统3完全断开。
然而,太阳电池阵列1要求相当大的室外安装面积,例如,3kW发电能力的太阳电池阵列1要求约30m2的面积,因此太阳电池阵列1有相当大的对地电容5。因此,正如Furukawa等人在1996年日本工业应用学会电气工程师协会(Institute of Electrical Engineers of Japan,IndustryApplication Society)的全国会议上所指出(文章编号No.77),存在小泄漏电流流过对地电容5,并且可能不必要地使对地泄漏断路器4a或4b动作(即断开电路)的危险。在对地泄漏断路器4a响应通过对地电容5的泄漏电流而动作情况下,负荷6与工业用交流电力系统3断开,并且发生断电。此外,在对地泄漏断路器4b动作情况下,光电电源被断开,因此,太阳电池阵列1产生的功率被浪费。
上述问题为使用无变压器的变换器的情况所特有,该无变压器的变换器直接把太阳电池阵列1连接到工业用交流电力系统3而不用绝缘变压器。此外,在与屋顶材料结合的太阳电池模件中(在下文称为“屋顶太阳电池模件”),它按这样方式构成,即用树脂使具有金属衬底的太阳电池封装到作为屋顶材料的金属增强板上,金属增强板则接地;因此,在金属衬底与金属增强板之间存在相当大的电容。因此,如上所述易于引起对地泄漏断路器不希望有的操作(断开电路)。
在Furukawa等人的文章中,叙述了泄漏(接地)电流的原因及其电流值,然而,在该文章中没有提及对地电容5多大电容值会引起对地泄漏电路动作。因此,在安装太阳电池阵列1时不清楚应该使对地电容5定界在多大电容。
本发明是在考虑到上述情况下实现的,并且其目的是提供一种光电发电装置,以及设计和安装该装置,这种装置能够防止对地泄漏断路器的不希望有的操作。
按照本发明,上述目的是通过提供一种与工业用交流电力系统连接使用的光电发电装置来实现,该装置包括:一个太阳电池阵列;一个非绝缘式变换器,以把太阳电池阵列输出的直流功率变换成交流功率;以及一个对地泄漏断路器,装设在非绝缘式变换器与工业用交流电力系统之间,其中太阳电池阵列相对于地电位的杂散电容Ca[μF]和对地泄漏断路器的断路器断路额定值EL[mA]具有关系Ca<EL/3。
本发明的其他特点和优点将从以下连同附图所作的叙述变得显而易见,其中在所有图中相同标号表示同样或类似部件。
附图结合在本说明书之中,并且构成本说明书的一部分,它们说明本发明的实施例,并且与叙述一起用作说明本发明的原理。
图1是说明光电发电装置的系统互连的布置的方块图;
图2是表示太阳电池模件的结构的断面图;
图3是表示太阳电池的示例结构的断面图;
图4是表示测量太阳电池模件的对地电容的一种方法的视图;
图5是表示测量太阳电池阵列的对地电容的一种方法的视图;
图6是说明用于实验2的光电发电装置的布置的方块图;
图7是表示泄漏电流的测量结果与对地电容之间关系的曲线图;
图8A至图8C是表示屋顶太阳电池模件的透视图;
图9是表示实验1结果的表;以及
图10是供光电发电装置的设计者或安装者所使用的设计图表。
按照附图将详细地叙述本发明的光电发电装置的优选实施例。参考图1,在本发明的光电发电装置中,确定构成太阳电池阵列1的太阳电池模件的数目,及/或对地泄漏断路器4a和4b的断路器断路额定值,以便太阳电池阵列1相对于地电位的杂散电容Ca[μF](在下文称为“对地电容”)和对地泄漏断路器4a和4b的泄漏电流检测灵敏度EL[mA]具有关系Ca<EL/3。于是,本发明的光电发电装置根据该确定结果构成。
如图5所示,例如通过把太阳电池阵列1的阳极31和阴极32短路,并且在阳极31和阴极32之间的短路点与作为屋顶材料的金属增强板之间连接一个阻抗计30,可以测量太阳电池阵列1的对地电容Ca。
以下将说明构成本发明的光电发电装置的各个元件。
太阳电池阵列1包括多个串联和/或并联连接的太阳电池模件。对于太阳电池模件,优选地使用用树脂封装并密封在作为屋顶材料的增强板上的元件。
对于太阳电池,可以使用结晶硅太阳电池,多晶硅太阳电池,以及非晶硅太阳电池,或化合物半导体太阳电池,例如铜铟硒化物太阳电池。特别是,有利地使用通过化学汽相淀积而在长金属衬底上形成的非晶硅太阳电池,以降低制造费用。
对于增强板材料,例如可以使用金属,玻璃,塑料,以及纤维增强塑料(FRP)。
对于用来封装和密封的树脂,可以使用聚烯烃树脂,例如乙烯-醋酸乙烯酯共聚物(EVA),乙烯-丙烯酸甲酯共聚物(EMA),乙烯-丙烯酸乙酯共聚物(EEA),以及丁酰树脂,氨基甲酸乙酯树脂,以及硅树脂。太阳电池模件表面涂有透明树脂膜,例如氟树脂膜和丙烯酸树脂膜,以作为保护层。对于用来封装和密封的树脂及膜树脂,优选那些具有高阳光透射特性的树脂。
当在太阳电池模件中使用金属增强板时,通过弯曲处理金属增强板,可以使太阳电池模件用作建筑材料,例如墙壁材料和屋顶材料。图8A至图8C表示结合式屋顶太阳电池模件的例子。图8A表示具有脊啮合部分81和檐啮合部分82的屋顶材料,它们向相对方向弯曲;图8B表示其啮合部分83通过固定在屋顶板85上的固定部件84插入并啮合的屋顶材料;以及图8C表示其邻接对屋顶材料的啮合部分86通过盖87保持在一起的屋顶材料。在图8A至图8C所示的各屋顶材料的接收表面,设置太阳电池模件80。
当在太阳电池模件中用玻璃作加强板时,优选地周围用金属框加强。
变换器2为无变压器的变换器,它在直流侧(太阳电池阵列1侧)与交流侧(工业用交流电力系统3和负荷6侧)之间不用绝缘变压器。由于不用变压器,所以无变压器的变换器具有变换效率高,重量轻,以及费用低的显著优点。然而,因为工业用交流电力系统3接地,所以不能使直流侧的无变压器的变换器与工业用交流电力系统3绝缘。
此外,为了使无变压器的变换器与工业用交流电力系统3连接,需要对变换器2提供一系列保护功能,它们符合由运输部(Ministry of Transport)制定的“发电机与电力系统电气互连技术导则”(Technical Guideline forElectric Interconnection of Generators with Power System)。
对地泄漏断路器4a和4b检测零相序电流,它是流过构成电路的多条电线的电流总计,并且当零相序电流超过断路器断路额定值(泄漏电流检测灵敏度)EL时,对地泄漏断路器断开电路。此外,当零相序电流小于非操作电流额定值,即在对地泄漏断路器的死区时,那么对地泄漏断路器不断开电路。一般地,使非操作电流额定值的值设定为断路器断路额定值EL的一半值。市场上有各种各样的对地泄漏断路器,它们的断路器断路额定值EL设定在15mA与100mA之间,并且可以根据待连接的电气设备来选择一种具有适当断路器断路额定值EL的对地泄漏断路器。此外,许多对地泄漏断路器具有过电流保护功能。
对地电容Ca与对地泄漏断路器4a和4b的断路器断路额定值EL之间的关系由下述实验结果来确定。
(实验1)
条件1
在图1所示光电发电装置中,太阳电池阵列1是通过连接100个太阳电池模件9(图2)而构成。太阳电池阵列1以30度倾斜角面朝南安装在地上的金属支架上。
图2是太阳电池模件9的断面图,并且非晶太阳电池11用树脂12,例如EVA树脂封装并密封在金属增强板10上。太阳电池模件表面涂有保护膜13,例如乙烯-四氟乙烯(ETFE)膜。太阳电池模件9背面的金属板10接地。
图3是非晶太阳电池11的断面图,它按这样方式构成,即在金属衬底20上层叠金属层21,透明导电层22,光电转换层23,透明电极24,以及集电极25。光电转换层23是通过层叠三层非晶硅的pin结构成。
对于变换器2,使用无变压器式变换器(可从Toshiba Corp.买得,产品型号PVUL0035)。
对于对地泄漏断路器4a和4b,使用那些泄漏电流检测灵敏度EL为15mA,非操作电流额定值小于7.5mA,以及额定电流为30A的断路器(可从Matsusita Electric Works,Ltd.买得,产品型号BJJ330225K)。这些对地泄漏断路器连接到工业用交流电力系统3(60Hz,200V),以形成供实验用的光电发电装置。
如图4所示,各太阳电池模件9的电容Cx由阻抗计30(可从Hioki E.E.Corp.买得,产品型号3620LCR-Hi-TESTER)测量,它连接在阳极14和阴极15之间的短路点与金属增强板10之间。太阳电池模件9(宽:45cm,长:130cm)的测量电容Cx为20nF。对于测量频率,选择120Hz,这个频率为变换器2的脉动频率。
其次,在太阳电池阵列1的阳极31和阴极32如图5所示被短路下,测量太阳电池阵列1的对地电容Ca,为2μF,它刚好比各太阳电池模件9的电容Cx大100倍。
因此,在使用太阳电池模件的具有金属框,例如金属增强板10的太阳电池阵列中,可以在接地金属框与太阳电池阵列的电输出端之间短路点之间测量太阳电池阵列的对地电容Ca。
使上述那样安装的光电发电装置运行一个月,在这段时间期间对地泄漏断路器没有动作。
条件2
对上述光电发电装置布置添加200个太阳电池模件9。在光电发电装置运行期间的一周内,观察到三次对地泄漏断路器不希望有的操作。在这些次所测量的对地电容Ca为6μF。
条件3
其次,使构成太阳电池阵列1的太阳电池模件的数目减少到100,于是在阳极31与地之间及阴极32与地之间形成1.5μF的薄膜电容器,形成总计3μF的电容。在这种布置下,太阳电池阵列1的对地电容Ca为5μF。在实验的四周期间,对地泄漏断路器不希望有地动作一次。
条件4
其次,使所添加的电容器的电容降低到1μF,以使太阳电池阵列1的总对地电容Ca等于4μF。在这样条件下,在实验的一个月期间没有观察到对地泄漏断路器不希望有的操作。
结果
实验1的结果示于图9。参考图9,可知当太阳电池阵列1的对地电容Ca[μF]设定约为对地泄漏断路器的灵敏度EL(15mA)的三分之一,即EL[mA]/3=5[μF]时,不发生对地泄漏断路器不希望有的操作。
上述关系适用于大多数用无变压器的变换器作变换器2的光电发电装置,而与太阳电池阵列1和对地泄漏断路器4a和4b的型号无关。
(实验2)
在实验2中,太阳电池阵列1设置在建筑物的屋顶上,并且通过改变太阳电池阵列的额定发电功率,即改变构成太阳电池阵列1的太阳电池模件9的数目,来改变对地电容Ca。于是,对于不同数目的太阳电池模件9,测量泄漏电流,以根据实验1的结果通过设计光电发电装置,澄清泄漏电流落在一个对地泄漏死区之内(一般地,小于泄漏电流检测灵敏度EL的50%。当泄漏电流检测灵敏度EL为30mA时,死区保持小于15mA)。对于变换器2,选择不同于实验1所使用型号的变换器,以便证明本发明的光电发电装置提供基本相同的效果,而与变换器的型号无关。
图6是一个方块图,说明实验2中所使用的光电发电装置的布置。从Japan Storage Battery Co.,Ltd.可买到的产品名为LINEBACK-EX的无变压器的变换器用作变换器2。
太阳电池阵列1有696个集成的屋顶太阳电池模件,各如图8A所示,它们排列成58个串,各串包括12个串联连接的模件,并且这些串并联连接。除光电转换层是通过压凹结合两层非晶硅的pin结构成外,太阳电池80的布置与实验1所用布置相同。各屋顶太阳电池模件的电容Cx大约与实验1所用太阳电池模件9的电容相同。使用上述屋顶太阳电池模件的太阳电池阵列1的面积约为300m2。一串太阳电池模件(即12个串联连接的模件)的测量对地电容Cs为240nF。
对于对地泄漏断路器4,选择额定电流50A,泄漏电流检测灵敏度30mA,以及非操作电流额定值15mA的断路器(可从Matsusita ElectricWorks,Ltd.买得,产品型号BJ35025K1),并且通过绝缘变压器7连接到60Hz及200V的工业用交流电力系统3。使用绝缘变压器7的理由是使得有可能在绝缘变压器7的二次侧(即太阳电池阵列1侧)用泄漏安培计8测量泄漏电流,而且对本发明的实施例无影响。换句话说,对于实际操作本发明的光电发电装置,则不用绝缘变压器7。
使太阳电池阵列1的额定发电功率增加10串,即对地电容Ca增加2.4μF,并且记录相应的泄漏电流(频率等于或小于1kHz)。设定频率范围等于或小于1kHz来测量泄漏电流的理由是由于对地泄漏断路器的灵敏度的频率范围设定等于或小于1kHz。图7是一个曲线图,表示如上述获得的泄漏电流相对于对地电容Ca的测量结果。注意,在曲线图中直线上由方块点标写的数字表示太阳电池模件的连接串的数目。
如从测量结果清楚所见,把对地电容Ca限制在小于泄漏电流检测灵敏度EL的三分之一,即EL/3=30/3=10μF,则泄漏电流落在对地泄漏电流的死区之内(小于15mA)。因此,证明了当改变变换器2和安装位置时,由实验1获得的知识适用。因此,在根据实验1获得的知识设计的本发明的光电发电装置中,可能防止由于太阳电池阵列的对地电容而引起对地泄漏断路器不希望有地动作。
根据实验1和2获得的知识设计的光电发电装置提供下列效果。
(1)把由于太阳电池阵列的对地电容所引起的泄漏电流限制在对地泄漏断路器的死区之内,则可能防止由于太阳电池阵列的对地电容所引起的对地泄漏断路器不希望有的操作。
(2)在安装光电发电装置的地方,可能防止由于太阳电池阵列的对地电容引起对地泄漏断路器不希望有的操作而造成的对用户的断电。
(3)由于(2)中所说明的断电通常同时造成光电发电装置中断操作,所以通过防止断路,可能避免浪费发电功率。
因此,本发明光电发电装置所提供的效果非常显著,并且工业实用价值非常高。
显然,本发明光电发电装置的对地泄漏断路器的泄漏电流检测灵敏度EL和/或非操作电流额定值是根据实验1和2的结果,按照图7所示曲线图(设计图表)来设计的。此外,图10设计图表表示太阳板中所用太阳电池模件的数目或额定发电功率与泄漏电流之间的关系。通过测量或估计太阳板的对地电容,或根据太阳电池模件的希望数目或太阳板的希望额定发电功率,光电发电装置的设计者或安装者能够由图7或图10所示设计图表来确定待设计或安装的光电发电装置的泄漏电流。于是,设计者或安装者能够根据所获得的泄漏电流来设定泄漏电流检测灵敏度EL和/或非操作电流额定值,以便不发生由于太阳电池阵列的对地电容所引起的不希望有的断路,并且可能使设计者或安装者选择具有上述泄漏电流灵敏度EL和/或非操作电流额定值的对地泄漏断路器。换句话说,图7和图10中设计图表的例子表示太阳板对地电容或太阳电池模件的数目或额定发电功率与泄漏电流之间的关系,它们构成本发明。
注意,图7和图10设计图表并不总是以记录在媒介例如纸上的可见形式提供。为了适应用计算机设计或安装光电发电装置情况,可能以表示太阳板的对地电容或太阳电池模件的数目或额定发电功率与泄漏电流之间关系的信息,以表格或数学函数,按照计算机中所用磁记录媒介或光记录媒介上记录的或通过通信媒介交换的程序码或数据形式,提供本发明。更具体地说,在媒介带有程序码或数据情况下,这些媒介也构成本发明,这里媒介可以由计算机用作上述测量媒介,而程序码或数据则表示太阳板的对地电容或太阳电池模件的数目或额定发电功率与泄漏电流之间的关系。
注意,图7和图10所示设计图表以工业用交流电力系统的电压和频率作为参数。此外,对本领域技术人员来说显而易见,还可以包括太阳电池模件的产品名或型号作为参数。
本发明不限于上述实施例,而是在本发明的精神和范围内可以作出种种改变和变更。因此,为了公布本发明的范围,提出如下权利要求。

Claims (6)

1.一种与工业用交流电力系统连接使用的光电发电装置,所述装置包括:
一个太阳电池阵列;
一个非绝缘式变换器,以把所述太阳电池阵列输出的直流功率变换成交流功率;以及
一个对地泄漏断路器,装设在所述非绝缘式变换器与工业用交流电力系统之间,
其中所述太阳电池阵列相对于地电位的杂散电容Ca[μF]和所述对地泄漏断路器的断路器断路额定值EL[mA]具有关系Ca<EL/3。
2.按照权利要求1的光电发电装置,其中所述太阳电池阵列包括多个太阳电池模件,各有多个固定在一个增强板上的太阳电池。
3.按照权利要求2的光电发电装置,其中所述增强板由金属制成。
4.按照权利要求2的光电发电装置,其中所述太阳电池在金属衬底上构成。
5.按照权利要求2的光电发电装置,其中所述太阳电池具有非晶体半导体。
6.按照权利要求2的光电发电装置,其中所述太阳电池模件构成建筑材料。
CN98108476A 1997-05-14 1998-05-14 光电发电装置 Expired - Fee Related CN1092845C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9123989A JPH10322885A (ja) 1997-05-14 1997-05-14 太陽光発電装置
JP123989/97 1997-05-14

Publications (2)

Publication Number Publication Date
CN1200589A CN1200589A (zh) 1998-12-02
CN1092845C true CN1092845C (zh) 2002-10-16

Family

ID=14874293

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98108476A Expired - Fee Related CN1092845C (zh) 1997-05-14 1998-05-14 光电发电装置

Country Status (6)

Country Link
US (1) US6107560A (zh)
EP (1) EP0878850A3 (zh)
JP (1) JPH10322885A (zh)
KR (1) KR100316132B1 (zh)
CN (1) CN1092845C (zh)
AU (1) AU724559B2 (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3697121B2 (ja) * 1998-10-15 2005-09-21 キヤノン株式会社 太陽光発電装置およびその制御方法
AU755700B2 (en) * 1999-11-29 2002-12-19 Canon Kabushiki Kaisha Power generation system, and method for installing the same
JP2001161032A (ja) * 1999-12-01 2001-06-12 Canon Inc 系統連系パワーコンディショナ及びそれを用いた発電システム
JP2001275259A (ja) 2000-03-29 2001-10-05 Canon Inc 系統連系インバータおよび分散形発電システム
JP4463963B2 (ja) * 2000-09-29 2010-05-19 キヤノン株式会社 系統連系装置
JP2002354678A (ja) 2001-05-29 2002-12-06 Canon Inc 発電装置およびその制御方法
JP2003158282A (ja) * 2001-08-30 2003-05-30 Canon Inc 太陽光発電システム
US7353123B2 (en) * 2001-10-04 2008-04-01 Hitachi, Ltd. Leakage current or resistance measurement method, and monitoring apparatus and monitoring system of the same
JP4167872B2 (ja) * 2001-10-04 2008-10-22 株式会社日立産機システム 漏れ電流の監視装置及びその監視システム
KR20030065098A (ko) * 2002-01-30 2003-08-06 어익수 주택의 직·교류 조명장치를 위한 창문형 솔라 라이팅시스템
US7612283B2 (en) * 2002-07-09 2009-11-03 Canon Kabushiki Kaisha Solar power generation apparatus and its manufacturing method
JP2004179637A (ja) * 2002-11-14 2004-06-24 Canon Inc 太陽電池モジュール
JP2004336944A (ja) * 2003-05-09 2004-11-25 Canon Inc 電力変換装置及び太陽光発電システム
US20050139259A1 (en) * 2003-12-30 2005-06-30 Robert Steigerwald Transformerless power conversion in an inverter for a photovoltaic system
DE102004025924A1 (de) * 2004-05-27 2005-12-22 Siemens Ag Solarwechselrichter und Photovoltaikanlage mit mehreren Solarwechselrichtern
GB0505087D0 (en) * 2005-03-12 2005-04-20 Acal Energy Ltd Fuel cells
GB2436403B (en) * 2006-03-20 2010-09-01 Solar Century Holdings Ltd Photovoltaic functional earthing unit
IN266777B (zh) 2006-03-24 2015-06-01 Acal Energy Ltd
GB0608079D0 (en) 2006-04-25 2006-05-31 Acal Energy Ltd Fuel cells
GB0614337D0 (en) 2006-07-19 2006-08-30 Acal Energy Ltd Fuel Cells
GB0614338D0 (en) 2006-07-19 2006-08-30 Acal Energy Ltd Fuel cells
GB0718349D0 (en) 2007-09-20 2007-10-31 Acal Energy Ltd Fuel cells
GB0718577D0 (en) 2007-09-24 2007-10-31 Acal Energy Ltd Fuel cells
KR100809482B1 (ko) * 2007-10-25 2008-03-07 이현화 3상 차단기가 설치된 태양광 발전 시스템
WO2009092110A2 (en) * 2008-01-18 2009-07-23 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
US8933320B2 (en) 2008-01-18 2015-01-13 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
GB0801198D0 (en) 2008-01-23 2008-02-27 Acal Energy Ltd Fuel cells
GB0801199D0 (en) 2008-01-23 2008-02-27 Acal Energy Ltd Fuel cells
US20100275971A1 (en) * 2008-04-04 2010-11-04 Arthur R Zingher Scalable Dense PV Solar Receiver for High Concentration
US8274805B2 (en) * 2008-04-08 2012-09-25 Samsung Electro-Mechanics Co., Ltd. High voltage power supply
JP4612731B1 (ja) * 2009-09-29 2011-01-12 富士フイルム株式会社 太陽電池モジュール
US9773933B2 (en) 2010-02-23 2017-09-26 Tenksolar, Inc. Space and energy efficient photovoltaic array
EP2372857B1 (de) 2010-03-31 2015-10-07 SMA Solar Technology AG Bestimmung des Fehlerstromanteils eines Differenzstroms
US20130300428A1 (en) * 2010-03-31 2013-11-14 Sma Solar Technology Ag Determination of a Stray Capacitance of an AC Current Generator
EP2553737A4 (en) * 2010-04-01 2015-05-20 Morgan Solar Inc INTEGRATED PHOTOVOLTAIC MODULE
US9299861B2 (en) 2010-06-15 2016-03-29 Tenksolar, Inc. Cell-to-grid redundandt photovoltaic system
DE102013202926A1 (de) * 2013-02-22 2014-08-28 Siemens Aktiengesellschaft Unterdrückung von AC-Oberwellen an Fotovoltaik-Modulen
KR101470349B1 (ko) * 2014-08-20 2014-12-15 주식회사 코텍에너지 지락 및 누설전류를 검출하는 장치를 구비한 태양광 발전 시스템
JP6161584B2 (ja) * 2014-09-27 2017-07-12 オリジン電気株式会社 パワーコンディショナ及びその接続方法
CN106787110A (zh) * 2017-01-10 2017-05-31 国家电网公司 一种断路器独立光伏系统控制电源
JP6709743B2 (ja) * 2017-01-30 2020-06-17 京セラ株式会社 電力変換装置及びその制御方法
DE102017129083A1 (de) 2017-12-06 2019-06-06 Sma Solar Technology Ag Fehlabschaltsicheres Betriebsverfahren für eine dezentrale Energieerzeugungsanlage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08149843A (ja) * 1994-11-18 1996-06-07 Sanyo Electric Co Ltd 系統連系インバータの保護装置
EP0768721A2 (en) * 1995-10-11 1997-04-16 Canon Kabushiki Kaisha Solar cell module and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8906885D0 (en) * 1989-03-28 1989-05-10 Raychem Ltd Monitoring electric cables
US5111127A (en) * 1990-06-25 1992-05-05 Woodward Johnson Portable power supply
GB2258095B (en) * 1991-07-26 1995-02-08 Paul Victor Brennan Residual current device
JPH07264873A (ja) * 1994-03-18 1995-10-13 Toshiba Corp 電力変換装置
US5677833A (en) * 1995-05-16 1997-10-14 Raytheon Company Power conditioning system for a four quadrant photovoltaic array with an inverter for each array quadrant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08149843A (ja) * 1994-11-18 1996-06-07 Sanyo Electric Co Ltd 系統連系インバータの保護装置
EP0768721A2 (en) * 1995-10-11 1997-04-16 Canon Kabushiki Kaisha Solar cell module and manufacturing method thereof

Also Published As

Publication number Publication date
EP0878850A2 (en) 1998-11-18
EP0878850A3 (en) 2000-05-10
AU6592798A (en) 1998-11-26
KR100316132B1 (ko) 2002-01-16
CN1200589A (zh) 1998-12-02
US6107560A (en) 2000-08-22
JPH10322885A (ja) 1998-12-04
AU724559B2 (en) 2000-09-28
KR19980087002A (ko) 1998-12-05

Similar Documents

Publication Publication Date Title
CN1092845C (zh) 光电发电装置
US6703555B2 (en) Solar cell string, solar cell array and solar photovoltaic power system
US6093581A (en) Solar cell module, production method thereof, and installation method of solar cell modules
JP5966027B2 (ja) 不均一な照度に寛容な太陽電池パネルのための光起電力モジュールの電力制御方法
Kobougias et al. PV systems installed in marine vessels: technologies and specifications
US20190326459A1 (en) Single-cell encapsulation and flexible-format module architecture and mounting assembly for photovoltaic power generation and method for constructing, inspecting and qualifying the same
CN102624288A (zh) 交流太阳能模块及电能调度方法
AU6993298A (en) Method and apparatus for estimating generated energy of solar cell
CN1647284A (zh) 向手持装置提供电能的太阳能装置
Xia et al. Luminescent Solar Concentrator with Advanced Structure for Reabsorption Loss Suppression and Synergistic Energy Harvesting
Steigen Solar PhotoVoltaics in Norway: a state of the art study
CN212257413U (zh) 一种太阳能电池组件
US11264945B2 (en) Verta solar sun panel
CN209767443U (zh) 一种光伏砖
US20200343853A1 (en) Verta solar sun panel
CN209232802U (zh) 一种能够双面发电的低倍槽式聚光光伏组件
Bunoti ASSESSMENT OF TRANSPARENT LUMINESCENT SOLAR CONCENTRATORS FOR BUILDING INTEGRATED PHOTOVOLTAICS
JP2002190611A (ja) 複数個の太陽電池モジュールを備えた発電装置
Yoshida et al. Roofing material integrated flexible a-Si PV modules
NATH SOLAR PANEL
Zhaedi Modelling and computer simulation of solar photovoltaic module and battery storage unit for performance prediction of the system
Donkin Plastic photovoltaic roof tiles
Paradis et al. Photovoltaic building materials
Thornton Cost-effective applications of photovoltaics
Cheng et al. On the improvement of solar cell based photovoltaic charger system

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1056471

Country of ref document: HK

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20021016

Termination date: 20140514