CN109283436A - 一种基于电压波形衰减的过电压推演预测方法及装置 - Google Patents

一种基于电压波形衰减的过电压推演预测方法及装置 Download PDF

Info

Publication number
CN109283436A
CN109283436A CN201811311684.1A CN201811311684A CN109283436A CN 109283436 A CN109283436 A CN 109283436A CN 201811311684 A CN201811311684 A CN 201811311684A CN 109283436 A CN109283436 A CN 109283436A
Authority
CN
China
Prior art keywords
unit
monitoring point
indicate
line voltage
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811311684.1A
Other languages
English (en)
Inventor
刘红文
于广辉
王科
杨庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of Yunnan Power System Ltd
Original Assignee
Electric Power Research Institute of Yunnan Power System Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of Yunnan Power System Ltd filed Critical Electric Power Research Institute of Yunnan Power System Ltd
Priority to CN201811311684.1A priority Critical patent/CN109283436A/zh
Publication of CN109283436A publication Critical patent/CN109283436A/zh
Priority to CN201911042700.6A priority patent/CN110568321A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Locating Faults (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本申请实施例示出一种基于电压波形衰减的过电压推演预测方法及装置,本申请实施例示出的技术方案通过测得雷击故障点两侧任意的两点的线路电压值,基于输电线路电压衰减的规律计算出雷击故障点的过电压数据。当输电线路受到雷击时,雷击故障点将会出现较大的过电压,并且该过电压行波会以某一衰减系数向线路两侧衰减传播,通过对线路上不同位置处电压的测量,计算出线路电压衰减系数以及推算出雷击点的过电压数据。由此,可以迅速确定线路雷击故障点的过电压数据,为输电线路防雷水平以及不同位置安装相应等级的避雷器参数提供相应的参考依据。

Description

一种基于电压波形衰减的过电压推演预测方法及装置
技术领域
本发明属于高压输电线路雷电过电压监测技术领域,具体来说,涉及一种基于电压波形衰减的过电压推演预测方法及装置。
背景技术
输电线路是电力系统中非常重要的组成部分,同时也是直接与电力用户相连接的部分,输电线路的运行状况直接和用户的体验有着直接的关系,实际上,由于输电线路通常都位于户外,输电线路受多种因素的影响,经常会出现一些故障影响输电线路的正常运行。
在众多故障中,雷击是破坏电网运行最严重的因素。当输电线路受到雷击时,雷击点将会出现较大的过电压,并且该电压将会向线路两侧传播,在一定程度上对线路以及运行设备产生影响。因此,开展雷电系统的研究与过电压监测,对提高输电线路防雷水平以及对装配线路避雷器的参数选择显得尤为重要。
发明内容
本发明的发明目的在于提供一种基于电压波形衰减的过电压推演预测方法及装置,以为输电线路防雷水平以及不同位置安装相应等级的避雷器参数提供相应的参考依据。
本申请实施例第一方面示出一种基于电压波形衰减的过电压推演预测方法,所述方法包括:
测得故障点两侧的不同线路监测点线路电压值;
根据所述线路电压值,以及,对应监测点间的距离,推算出线路电压衰减系数;
根据所述线路电压值,以及,线路电压衰减系数,计算出雷击点的过电压数据。
可选择的,所述测得故障点两侧的不同线路监测点线路电压值的步骤具体为:
当输电线路受到雷击时,线路出现过电压,并向线路两侧传播,通过线路上的电压互感器测得故障点两侧的不同线路监测点线路电压值。
可选择的,所述根据线路电压值以及对应监测点间的距离,推算出线路电压衰减系数的步骤具体为:
式中,α表示第一线路电压衰减系数,单位:km-1;β表示第二线路电压衰减系数,单位:km-1;U11表示第一监测点测得的电压数据,单位:kV;U1表示第二监测点测得的电压数据,单位:kV;L3表示第一监测点与第二监测点的间距,单位:km,U2表示第三监测点测得的电压数据,单位:kV;U22表示第四监测点测得的电压数据,单位:kV;L4表示第三监测点与第四监测点的间距,单位:km。
可选择的,所述根据线路电压值,以及,线路电压衰减系数,,计算出雷击点的过电压数据的步骤具体为:
式中,α表示第一线路电压衰减系数,单位:km-1;β表示第二线路电压衰减系数,单位:km-1;U2表示第三监测点测得的电压数据,单位:kV;U1表示第二监测点测得的电压数据;L表示第二监测点与第三监测点间的距离,单位:km;L1表示第二监测点与雷击故障点之间的距离,单位:km;L2表示第三监测点与雷击故障点之间的距离,单位:km;U0表示推算雷击点的过电压数据,单位:kV。
本申请实施例第二方面示出一种基于电压波形衰减的过电压推演预测装置,所述装置包括:
测试单元,用于测得故障点两侧的不同线路监测点线路电压值;
推算单元,用于根据所述线路电压值,以及,对应监测点间的距离,推算出线路电压衰减系数;
计算单元,用于根据所述线路电压值,以及,线路电压衰减系数,计算出雷击点的过电压数据。
可选择的,当输电线路受到雷击时,线路出现过电压,并向线路两侧传播,通过控制线路上的电压互感器测得故障点两侧的不同线路监测点线路电压值。
可选择的,所述推算单元用于,计算第一线路电压衰减系数,以及,第二线路电压衰减系数,具体计算过程为:
式中,α表示第一线路电压衰减系数,单位:km-1;β表示第二线路电压衰减系数,单位:km-1;U11表示第一监测点测得的电压数据,单位:kV;U1表示第二监测点测得的电压数据,单位:kV;L3表示第一监测点与第二监测点的间距,单位:km,U2表示第三监测点测得的电压数据,单位:kV;U22表示第四监测点测得的电压数据,单位:kV;L4表示第三监测点与第四监测点的间距,单位:km。
可选择的,计算单元的计算过程具体为:
式中,α表示第一线路电压衰减系数,单位:km-1;β表示第二线路电压衰减系数,单位:km-1;U2表示第三监测点测得的电压数据,单位:kV;U1表示第二监测点测得的电压数据;L表示第二监测点与第三监测点间的距离,单位:km;L1表示第二监测点与雷击故障点之间的距离,单位:km;L2表示第三监测点与雷击故障点之间的距离,单位:km;U0表示推算雷击点的过电压数据,单位:kV
由以上技术方案可知,本申请实施例示出一种基于电压波形衰减的过电压推演预测方法及装置,所述方法包括:测得故障点两侧的不同线路监测点线路电压值;根据所述线路电压值,以及,对应监测点间的距离,推算出线路电压衰减系数;根据所述线路电压值,以及,线路电压衰减系数,计算出雷击点的过电压数据。本申请实施例示出的技术方案通过测得雷击故障点两侧任意的两点的线路电压值,基于输电线路电压衰减的规律计算出雷击故障点的过电压数据。当输电线路受到雷击时,雷击故障点将会出现较大的过电压,并且该过电压行波会以某一衰减系数向线路两侧衰减传播,通过对线路上不同位置处电压的测量,计算出线路电压衰减系数以及推算出雷击点的过电压数据。由此,可以迅速确定线路雷击故障点的过电压数据,为输电线路防雷水平以及不同位置安装相应等级的避雷器参数提供相应的参考依据。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据一优选实施例示出的一种基于电压波形衰减的过电压推演预测方法的流程图;
图2为根据一优选实施例示出的输电线路雷击故障过电压推演原理图;
图3为根据一优选实施例示出的一种基于电压波形衰减的过电压推演预测装置的结构框图。
图例说明:B表示第一监测点的位置,A表示第二监测点的位置,C表示第三监测点的位置,D表示第四监测点的位置,U0表示推算雷击点的过电压数据,U1表示第二监测点测得的电压数据,U2表示第三监测点测得的电压数据,U11表示第一监测点测得的电压数据,U22表示第四监测点测得的电压数据,L1表示第二监测点与雷击故障点之间的距离,L2表示第三监测点与雷击故障点之间的距离,L3表示第一监测点与第二监测点的间距,L4表示第三监测点与第四监测点的间距。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本申请实施例第一方面示出一种基于电压波形衰减的过电压推演预测方法,所述方法包括:
S101测得故障点两侧的不同线路监测点线路电压值;
S102根据所述线路电压值,以及,对应监测点间的距离,推算出线路电压衰减系数;
S103根据所述线路电压值,以及,线路电压衰减系数,计算出雷击点的过电压数据。
可选择的,所述测得故障点两侧的不同线路监测点线路电压值的步骤具体为:
当输电线路受到雷击时,线路出现过电压,并向线路两侧传播,通过线路上的电压互感器测得故障点两侧的不同线路监测点线路电压值。
请参阅图2,所述根据线路电压值以及对应监测点间的距离,推算出线路电压衰减系数的步骤具体为:
通过线路电压互感器可以测得线路ABCD四点的电压值U11、U1、U2、U22。
式中,α表示第一线路电压衰减系数,单位:km-1;β表示第二线路电压衰减系数,单位:km-1;U11表示第一监测点测得的电压数据,单位:kV;U1表示第二监测点测得的电压数据,单位:kV;L3表示第一监测点与第二监测点的间距,单位:km,U2表示第三监测点测得的电压数据,单位:kV;U22表示第四监测点测得的电压数据,单位:kV;L4表示第三监测点与第四监测点的间距,单位:km。
请继续参阅图2,所述根据线路电压值,以及,线路电压衰减系数,,计算出雷击点的过电压数据的步骤具体为:
式中,α表示第一线路电压衰减系数,单位:km-1;β表示第二线路电压衰减系数,单位:km-1;U2表示第三监测点测得的电压数据,单位:kV;U1表示第二监测点测得的电压数据;L表示第二监测点与第三监测点间的距离,单位:km;L1表示第二监测点与雷击故障点之间的距离,单位:km;L2表示第三监测点与雷击故障点之间的距离,单位:km;U0表示推算雷击点的过电压数据,单位:kV。
请参阅图3,本申请实施例第二方面示出一种基于电压波形衰减的过电压推演预测装置,所述装置包括:
测试单元21,用于测得故障点两侧的不同线路监测点线路电压值;
推算单元22,用于根据所述线路电压值,以及,对应监测点间的距离,推算出线路电压衰减系数;
计算单元23,用于根据所述线路电压值,以及,线路电压衰减系数,计算出雷击点的过电压数据。
可选择的,当输电线路受到雷击时,线路出现过电压,并向线路两侧传播,通过控制线路上的电压互感器测得故障点两侧的不同线路监测点线路电压值。
可选择的,所述推算单元用于,计算第一线路电压衰减系数,以及,第二线路电压衰减系数,具体计算过程为:
式中,α表示第一线路电压衰减系数,单位:km-1;β表示第二线路电压衰减系数,单位:km-1;U11表示第一监测点测得的电压数据,单位:kV;U1表示第二监测点测得的电压数据,单位:kV;L3表示第一监测点与第二监测点的间距,单位:km,U2表示第三监测点测得的电压数据,单位:kV;U22表示第四监测点测得的电压数据,单位:kV;L4表示第三监测点与第四监测点的间距,单位:km。
可选择的,计算单元的计算过程具体为:
式中,α表示第一线路电压衰减系数,单位:km-1;β表示第二线路电压衰减系数,单位:km-1;U2表示第三监测点测得的电压数据,单位:kV;U1表示第二监测点测得的电压数据;L表示第二监测点与第三监测点间的距离,单位:km;L1表示第二监测点与雷击故障点之间的距离,单位:km;L2表示第三监测点与雷击故障点之间的距离,单位:km;U0表示推算雷击点的过电压数据,单位:kV
由以上技术方案可知,本申请实施例示出一种基于电压波形衰减的过电压推演预测方法及装置,所述方法包括:测得故障点两侧的不同线路监测点线路电压值;根据所述线路电压值,以及,对应监测点间的距离,推算出线路电压衰减系数;根据所述线路电压值,以及,线路电压衰减系数,计算出雷击点的过电压数据。本申请实施例示出的技术方案通过测得雷击故障点两侧任意的两点的线路电压值,基于输电线路电压衰减的规律计算出雷击故障点的过电压数据。当输电线路受到雷击时,雷击故障点将会出现较大的过电压,并且该过电压行波会以某一衰减系数向线路两侧衰减传播,通过对线路上不同位置处电压的测量,计算出线路电压衰减系数以及推算出雷击点的过电压数据。由此,可以迅速确定线路雷击故障点的过电压数据,为输电线路防雷水平以及不同位置安装相应等级的避雷器参数提供相应的参考依据。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (8)

1.一种基于电压波形衰减的过电压推演预测方法,其特征在于,所述方法包括:
测得故障点两侧的不同线路监测点线路电压值;
根据所述线路电压值,以及,对应监测点间的距离,推算出线路电压衰减系数;
根据所述线路电压值,以及,线路电压衰减系数,计算出雷击点的过电压数据。
2.根据权利要求1所述的方法,其特征在于,所述测得故障点两侧的不同线路监测点线路电压值的步骤具体为:
当输电线路受到雷击时,线路出现过电压,并向线路两侧传播,通过线路上的电压互感器测得故障点两侧的不同线路监测点线路电压值。
3.根据权利要求1或2所述的方法,其特征在于,所述根据线路电压值以及对应监测点间的距离,推算出线路电压衰减系数的步骤具体为:
式中,α表示第一线路电压衰减系数,单位:km-1;β表示第二线路电压衰减系数,单位:km-1;U11表示第一监测点测得的电压数据,单位:kV;U1表示第二监测点测得的电压数据,单位:kV;L3表示第一监测点与第二监测点的间距,单位:km,U2表示第三监测点测得的电压数据,单位:kV;U22表示第四监测点测得的电压数据,单位:kV;L4表示第三监测点与第四监测点的间距,单位:km。
4.根据权利要求3所述的方法,其特征在于,所述根据线路电压值,以及,线路电压衰减系数,,计算出雷击点的过电压数据的步骤具体为:
式中,α表示第一线路电压衰减系数,单位:km-1;β表示第二线路电压衰减系数,单位:km-1;U2表示第三监测点测得的电压数据,单位:kV;U1表示第二监测点测得的电压数据;L表示第二监测点与第三监测点间的距离,单位:km;L1表示第二监测点与雷击故障点之间的距离,单位:km;L2表示第三监测点与雷击故障点之间的距离,单位:km;U0表示推算雷击点的过电压数据,单位:kV。
5.一种基于电压波形衰减的过电压推演预测装置,其特征在于,所述装置包括:
测试单元,用于测得故障点两侧的不同线路监测点线路电压值;
推算单元,用于根据所述线路电压值,以及,对应监测点间的距离,推算出线路电压衰减系数;
计算单元,用于根据所述线路电压值,以及,线路电压衰减系数,计算出雷击点的过电压数据。
6.根据权利要求5所述的装置,其特征在于,所述测试单元还用于,当输电线路受到雷击时,线路出现过电压,并向线路两侧传播,通过控制线路上的电压互感器测得故障点两侧的不同线路监测点线路电压值。
7.根据权利要求5或6所述的装置,其特征在于,所述推算单元用于,计算第一线路电压衰减系数,以及,第二线路电压衰减系数,具体计算过程为:
式中,α表示第一线路电压衰减系数,单位:km-1;β表示第二线路电压衰减系数,单位:km-1;U11表示第一监测点测得的电压数据,单位:kV;U1表示第二监测点测得的电压数据,单位:kV;L3表示第一监测点与第二监测点的间距,单位:km,U2表示第三监测点测得的电压数据,单位:kV;U22表示第四监测点测得的电压数据,单位:kV;L4表示第三监测点与第四监测点的间距,单位:km。
8.根据权利要求7所述的装置,其特征在于,计算单元的计算过程具体为:
式中,α表示第一线路电压衰减系数,单位:km-1;β表示第二线路电压衰减系数,单位:km-1;U2表示第三监测点测得的电压数据,单位:kV;U1表示第二监测点测得的电压数据;L表示第二监测点与第三监测点间的距离,单位:km;L1表示第二监测点与雷击故障点之间的距离,单位:km;L2表示第三监测点与雷击故障点之间的距离,单位:km;U0表示推算雷击点的过电压数据,单位:kV。
CN201811311684.1A 2018-11-06 2018-11-06 一种基于电压波形衰减的过电压推演预测方法及装置 Pending CN109283436A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811311684.1A CN109283436A (zh) 2018-11-06 2018-11-06 一种基于电压波形衰减的过电压推演预测方法及装置
CN201911042700.6A CN110568321A (zh) 2018-11-06 2019-10-30 一种基于电压波形衰减的过电压推演预测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811311684.1A CN109283436A (zh) 2018-11-06 2018-11-06 一种基于电压波形衰减的过电压推演预测方法及装置

Publications (1)

Publication Number Publication Date
CN109283436A true CN109283436A (zh) 2019-01-29

Family

ID=65175182

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201811311684.1A Pending CN109283436A (zh) 2018-11-06 2018-11-06 一种基于电压波形衰减的过电压推演预测方法及装置
CN201911042700.6A Pending CN110568321A (zh) 2018-11-06 2019-10-30 一种基于电压波形衰减的过电压推演预测方法及装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201911042700.6A Pending CN110568321A (zh) 2018-11-06 2019-10-30 一种基于电压波形衰减的过电压推演预测方法及装置

Country Status (1)

Country Link
CN (2) CN109283436A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111368440A (zh) * 2020-03-06 2020-07-03 云南电网有限责任公司电力科学研究院 基于多谱线插值的指数衰减正弦信号参数估计方法及装置
CN112666381A (zh) * 2020-12-30 2021-04-16 广东电网有限责任公司电力科学研究院 一种配电网络雷击过电压空间分布特性监测方法和系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111368440A (zh) * 2020-03-06 2020-07-03 云南电网有限责任公司电力科学研究院 基于多谱线插值的指数衰减正弦信号参数估计方法及装置
CN111368440B (zh) * 2020-03-06 2023-11-21 云南电网有限责任公司电力科学研究院 基于多谱线插值的指数衰减正弦信号参数估计方法及装置
CN112666381A (zh) * 2020-12-30 2021-04-16 广东电网有限责任公司电力科学研究院 一种配电网络雷击过电压空间分布特性监测方法和系统
CN112666381B (zh) * 2020-12-30 2023-08-04 广东电网有限责任公司电力科学研究院 一种配电网络雷击过电压空间分布特性监测方法和系统

Also Published As

Publication number Publication date
CN110568321A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
CN103278709B (zh) 一种输电线路雷电行波特性测试系统
CN100510765C (zh) 气体绝缘设备的局部放电诊断方法及系统
CN102565628B (zh) 基于雷电流幅值区间分布的架空线路雷击故障性质识别方法
CN104569481B (zh) 瓦斯继电器油流流速采集系统和重瓦斯整定值校验方法
CN109521326B (zh) 一种基于配电线路电压分布曲线的接地故障定位方法
CN105652152B (zh) 一种复线直供系统接触网的故障定位方法和系统
CN102841280A (zh) 500kV同塔四回路输电线雷击跳闸率仿真方法
KR101149520B1 (ko) 지능형 단자함과 이를 이용한 모니터링 시스템
CN109283436A (zh) 一种基于电压波形衰减的过电压推演预测方法及装置
Chowdhuri Parameters of lightning strokes and their effects on power systems
CN109000716A (zh) 一种基于opgw地线感应电流的输电线路舞动监测方法
Ahmadi et al. Enhancing the lightning performance of overhead transmission lines with optimal EGLA and downstream shield wire placement in mountainous areas: A complete study
CN111965566A (zh) 一种内置式通过霍尔传感器进行避雷器在线监测的方法
CN203275543U (zh) 一种输电线路雷电电磁暂态动模实验系统
Lee et al. The measurement of surge voltages on transmission lines due to lightning
CN111239543B (zh) 一种基于雷击过电压陡度传变特性的故障定位方法
CN111239546A (zh) 一种雷击过电压在线测距及故障定位方法
CN101915566B (zh) 一种测量架空输电线路档距两端不等高时雷电绕击率的方法
Mahdiraji Investigation of overvoltages caused by lightning strikes on transmission lines and GIS substation equipment
JPS62207974A (ja) 避雷碍子の監視システム
Phan Reduction of the number of faults caused by lightning for transmission line
CN111239547B (zh) 一种基于雷击过电压陡度传变特性的故障定位方法
CN203631984U (zh) 一种固定间隙避雷器
Marzinotto et al. Quality of the supplied electric service: A tool to evaluate the need of protection against lightning surges
JPH09236629A (ja) 送電線の地絡鉄塔検出方法および装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190129

WD01 Invention patent application deemed withdrawn after publication