CN109000716A - 一种基于opgw地线感应电流的输电线路舞动监测方法 - Google Patents

一种基于opgw地线感应电流的输电线路舞动监测方法 Download PDF

Info

Publication number
CN109000716A
CN109000716A CN201810575590.9A CN201810575590A CN109000716A CN 109000716 A CN109000716 A CN 109000716A CN 201810575590 A CN201810575590 A CN 201810575590A CN 109000716 A CN109000716 A CN 109000716A
Authority
CN
China
Prior art keywords
ground wire
oscillograph
transmission line
wire
opgw ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810575590.9A
Other languages
English (en)
Other versions
CN109000716B (zh
Inventor
张波
再木然·乌斯曼
何金良
胡军
庄池杰
曾嵘
余占清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201810575590.9A priority Critical patent/CN109000716B/zh
Publication of CN109000716A publication Critical patent/CN109000716A/zh
Application granted granted Critical
Publication of CN109000716B publication Critical patent/CN109000716B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Abstract

本发明公开了一种基于OPGW地线感应电流的输电线路舞动监测方法,假定需要通过测量某输电线路第n基杆塔OPGW地线上的感应电流推知输电线路导线的舞动频率、舞动幅度及舞动位置,包括:在第n基杆塔OPGW地线上安装电流互感器,并将电流互感器的输出端与录波仪相连;录波仪设有触发阈值,线路正常工作时录波仪不记录波形;当导线发生舞动时,OPGW地线耦合出感应过电流,录波仪被触发并记录电流波形;根据信号分析与电磁场理论,计算OPGW地线与导线之间的耦合系数,从而推算出导线的舞动频率与舞动幅度;通过分析安装于不同基杆塔上的录波仪所记录的波形,对舞动位置进行定位。

Description

一种基于OPGW地线感应电流的输电线路舞动监测方法
技术领域
本发明涉及高电压技术领域,尤其涉及一种基于OPGW地线感应电流的输电线路舞动监测方法,用于监测架空输电线路的舞动。
背景技术
架空输电线路在运行过程中会受到自然条件的影响而发生多种灾害事故,舞动便是其中危害较为严重的一种。架空输电线路舞动即导线在风的激励下产生的一种低频率(约0.1~3Hz)、大振幅(可达10m以上)的自激震动现象。舞动产生的危害是多方面的,轻者会发生闪络、跳闸,重者则会发生金具及绝缘子损坏,导线断股、断线,杆塔螺栓松动、脱落,甚至倒塔,导致重大电网事故。易于发生舞动的局部敏感地段主要在风口、开阔地带、江河湖面等易于覆冰,且风激励较强的地区。
目前大多通过分析输电线路现场视频画面的方式来监测输电线路的舞动,然而这种方式可监测到的距离较短,且分析视频画面计算复杂,所需时间较长。现提出一种基于OPGW地线感应电流的输电线路舞动监测方法。
发明内容
针对上述问题中存在的不足之处,本发明提供一种基于OPGW地线感应电流的输电线路舞动监测方法,使用该方法后可监测距离较传统方法更长,计算简便快捷,可实现实时监测。
为实现上述目的,本发明提供一种基于OPGW地线感应电流的输电线路舞动监测方法,假定需要通过测量某输电线路第n基杆塔OPGW地线上的感应电流推知输电线路导线的舞动频率、舞动幅度及舞动位置,包括:
步骤1、在第n基杆塔OPGW地线上安装电流互感器,并将电流互感器的输出端与录波仪相连;
步骤2、录波仪设有触发阈值,线路正常工作时录波仪不记录波形;
步骤3、当导线发生舞动时,OPGW地线耦合出感应过电流,录波仪被触发并记录电流波形;
步骤4、根据信号分析与电磁场理论,计算OPGW地线与导线之间的耦合系数,从而推算出导线的舞动频率与舞动幅度;
步骤5、通过分析安装于不同基杆塔上的录波仪所记录的波形,对舞动位置进行定位。
作为本发明的进一步改进,录波仪的触发阈值为线路正常工作时地线与杆塔绝缘处电位差的1.15倍。
作为本发明的进一步改进,录波仪记录的电流波形包括工频信号和舞动信号,电流波形经解调后舞动信号波形的频率为导线的舞动频率。
与现有技术相比,本发明的有益效果为:
1、本发明可以实现输电线路的舞动监测;
2、监测距离较传统方法更远,可以达到10档输电线路以上;
3、监测方法简便快捷,可以实现全天候实时监测;
4、测量全自动进行,无需人工操作。
附图说明
图1为本发明一种实施例公开的基于OPGW地线感应电流的输电线路舞动监测方法的流程图;
图2为本发明一种实施例公开的架空输电线路导线舞动示意图;
图3为本发明一种实施例公开的OPGW地线感应电流波形图;
图4为本发明一种实施例公开的舞动信号波形图;
图5为本发明一种实施例公开的单回架空输电线路导线布置图;
图6为本发明一种实施例公开的OPGW地线等值电路图。
图中:
1、第n基杆塔;2、第n+1基杆塔;3、OPGW地线;4、导线;5、电流互感器;6、录波仪。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图对本发明做进一步的详细描述:
本发明提供一种基于OPGW地线感应电流的输电线路舞动监测方法,该监测方法应用在图2所示的架空输电线路导线舞动示意图上,架空输电线路包括:连续布置的多个基杆塔,如第n基杆塔1和第n+1基杆塔2,第n基杆塔1与第n+1基杆塔2之间搭有OPGW地线3和导线4,OPGW地线3上安装电流互感器5、电流互感器5的输出端与录波仪6的输入端相连,录波仪6安装在第n基杆塔1上;其测量原理为:OPGW地线,即光纤复合架空地线,把光纤放置在架空高压输电线的地线中,这种结构形式兼具地线与通信双重功能。在输电线路通电运行时,OPGW地线与导线之间存在电磁耦合,地线上产生感应电压,其值与地线和各导线间的距离相关。当导线发生舞动时,导线与OPGW地线间的距离随时间发生变化,从而地线上的感应电压也随之改变,进而影响OPGW地线中的电流。因此可以通过测量OPGW地线上的感应电流推知导线的舞动幅值、舞动频率及舞动位置。
如图1、2所示,本发明提供一种基于OPGW地线感应电流的输电线路舞动监测方法,假定需要通过测量某输电线路第n基杆塔OPGW地线上的感应电流推知输电线路导线的舞动频率、舞动幅度及舞动位置,具体实现方法如下:
S1、在第n基杆塔OPGW地线3上安装电流互感器5,并将电流互感器5的输出端与录波仪6相连,录波仪6安装在第n基杆塔1上;
S2、录波仪6设置一定的触发阈值,线路正常工作时录波仪不记录波形;其中,录波仪的触发阈值为线路正常工作时地线与杆塔绝缘处电位差的1.15倍;
S3、当导线发生舞动时,OPGW地线耦合出感应过电流,录波仪被触发并记录电流波形;
S4、根据信号分析与电磁场理论,计算OPGW地线与导线之间的耦合系数,从而可以推算出导线的舞动频率与舞动幅度;其中,根据信号分析与电磁场理论计算OPGW地线与导线之间的耦合系数为现有常规的计算方法,故在此不对其计算过程做详细阐述;录波仪记录的电流波形包括工频信号和舞动信号,如图3所示;电流波形经解调后舞动信号波形的频率为导线的舞动频率,舞动信号波形如图4所示;导线的舞动幅度为:
正常运行时,架空地线以大地为回路的自阻抗可由式(1)表示为:
式中:Zmm为架空地线m与大地回路的自阻抗,R为架空地线的电阻,r为架空地线的有效半径,D0为地中电流的等价深度,计算公式为:
式中:f为电流的频率,单位为Hz;ρ为大地电阻率,单位为Ω·m。
对于架空输电线路,导线之间和地线之间互感可由式(2)计算得到。
其中Zmn为架空地线m与输电线路n单相导线之间的互感阻抗,dmn为架空地线m与输电线路n单相导线之间的距离。
如图5所示,对于单回输电线路,在正常情况下a、b、c三相电流平衡,即Ia=α2Ib=αIc。Ia、Ib、Ic为a、b、c三相导线的负荷电流,α=e-120j,j为虚数单位。架空地线上的感应电压是a、b、c三相导线对架空地线的感应电压之和,故单回线路地线1上的电磁感应电压E1如式(3)所示。
其中,d1a、d1b、d1c分别为普通地线1与各相导线之间的距离,单位为m。
如图6所示的OPGW地线等值电路图,图中R,L以及接地电阻可由各输电线路设计手册中线路型号得到。
假定相线a发生舞动,而其余相线不发生舞动。由测量得到的OPGW中的电流I,可以得到E1,且由于d1b,d1c已知,可以推出d1a随时间变化的表达式。假定d1a0为相线a不发生舞动时地线1与相线a之间的初始距离,通过计算d1a-d1a0可以的得到舞动幅值随时间变化的函数,因此可以得到a相导线的舞动的幅值。
S5、通过分析安装于不同基杆塔上的录波仪所记录的波形,对舞动位置进行定位;其中,通过判断不同基杆塔上的录波仪所记录的波形,找出舞动幅度最大的基杆塔的位置,从而推算出舞动位置;同时,也可在基杆塔上间隔安装录波仪,找出舞动幅度最大的两个基杆塔的位置,从而推算出导线的舞动位置在两个基杆塔上或两个基杆塔之间,从而推算出舞动位置。
实施例:
某500kV双回输电线路第50基杆塔处导线发生舞动,基杆塔相邻五个上安装有录波仪;导线与地线间的距离随时间不断改变,OPGW地线上耦合出感应过电流,在沿线第55基杆塔处,安装于该杆塔上的录波仪被触发并记录电流波形,如图3所示,经过有效的信号分析手段,可以得到舞动信号波形如图4所示,并根据OPGW地线与导线间的耦合系数,推算出舞动幅度为4m,舞动频率为3Hz。同时可以通过结合安装于不同杆塔处的录波仪记录的电流波形,来对导线舞动位置进行定位,推算出第50基杆塔处发生舞动。
本发明的优点为:
1、本发明可以实现输电线路的舞动监测;
2、监测距离较传统方法更远,可以达到10档输电线路以上;
3、监测方法简便快捷,可以实现全天候实时监测;
4、测量全自动进行,无需人工操作。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种基于OPGW地线感应电流的输电线路舞动监测方法,其特征在于,假定需要通过测量某输电线路第n基杆塔OPGW地线上的感应电流推知输电线路导线的舞动频率、舞动幅度及舞动位置,包括:
步骤1、在第n基杆塔OPGW地线上安装电流互感器,并将电流互感器的输出端与录波仪相连;
步骤2、录波仪设有触发阈值,线路正常工作时录波仪不记录波形;
步骤3、当导线发生舞动时,OPGW地线耦合出感应过电流,录波仪被触发并记录电流波形;
步骤4、根据信号分析与电磁场理论,计算OPGW地线与导线之间的耦合系数,从而推算出导线的舞动频率与舞动幅度;
步骤5、通过分析安装于不同基杆塔上的录波仪所记录的波形,对舞动位置进行定位。
2.如权利要求1所述的基于OPGW地线感应电流的输电线路舞动监测方法,其特征在于,录波仪的触发阈值为线路正常工作时地线与杆塔绝缘处电位差的1.15倍。
3.如权利要求1所述的基于OPGW地线感应电流的输电线路舞动监测方法,其特征在于,录波仪记录的电流波形包括工频信号和舞动信号,电流波形经解调后舞动信号波形的频率为导线的舞动频率。
CN201810575590.9A 2018-06-06 2018-06-06 一种基于opgw地线感应电流的输电线路舞动监测方法 Active CN109000716B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810575590.9A CN109000716B (zh) 2018-06-06 2018-06-06 一种基于opgw地线感应电流的输电线路舞动监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810575590.9A CN109000716B (zh) 2018-06-06 2018-06-06 一种基于opgw地线感应电流的输电线路舞动监测方法

Publications (2)

Publication Number Publication Date
CN109000716A true CN109000716A (zh) 2018-12-14
CN109000716B CN109000716B (zh) 2020-06-02

Family

ID=64599974

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810575590.9A Active CN109000716B (zh) 2018-06-06 2018-06-06 一种基于opgw地线感应电流的输电线路舞动监测方法

Country Status (1)

Country Link
CN (1) CN109000716B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946617A (zh) * 2020-12-24 2021-06-11 国网浙江省电力有限公司衢州供电公司 一种基于微波干涉技术的导线舞动幅值监测系统
CN114295196A (zh) * 2021-12-06 2022-04-08 清华大学 一种基于地线电磁信号的架空线路舞动定位方法及装置
CN114384352A (zh) * 2021-12-06 2022-04-22 清华大学 基于地线电磁信号的架空线路覆冰监测方法及装置
CN114396859A (zh) * 2021-12-06 2022-04-26 清华大学 基于地线电磁信号的架空线路风偏监测方法及装置
CN114396860A (zh) * 2021-12-06 2022-04-26 清华大学 基于地线电磁信号的输电线路增容时弧垂监测方法和装置
WO2023103278A1 (zh) * 2021-12-06 2023-06-15 清华大学 基于地线电磁信号的输电线路导线位置信息在线监测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201134152Y (zh) * 2007-12-29 2008-10-15 国网北京电力建设研究院 一种架空输电线路舞动监测装置及系统
CN102564493A (zh) * 2011-10-28 2012-07-11 江苏省电力公司连云港供电公司 一种架空输电线路舞动在线监测系统
CN202471814U (zh) * 2012-03-16 2012-10-03 广州思泰信息技术有限公司 一种配电线路电流波形采集器
CN103941138A (zh) * 2014-04-16 2014-07-23 华北电力大学 Opgw线全线监测诊断系统及监测诊断方法
CN104183103A (zh) * 2014-08-12 2014-12-03 西安工程大学 输电线路在线监测设备现场调试系统及调试方法
CN105911427A (zh) * 2016-04-26 2016-08-31 武汉新电电气技术有限责任公司 一种基于光纤复合架空地线温度分布的输电线路故障定位方法
CN106017542A (zh) * 2015-09-10 2016-10-12 无锡群欣物联科技有限公司 一种电力线路监测系统
CN106097627A (zh) * 2016-08-13 2016-11-09 哈尔滨理工大学 输电线路舞动智能视频在线监测系统
CN107764491A (zh) * 2017-09-21 2018-03-06 国网河南省电力公司电力科学研究院 一种基于载荷等效的相间间隔棒舞动承载模拟试验方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201134152Y (zh) * 2007-12-29 2008-10-15 国网北京电力建设研究院 一种架空输电线路舞动监测装置及系统
CN102564493A (zh) * 2011-10-28 2012-07-11 江苏省电力公司连云港供电公司 一种架空输电线路舞动在线监测系统
CN202471814U (zh) * 2012-03-16 2012-10-03 广州思泰信息技术有限公司 一种配电线路电流波形采集器
CN103941138A (zh) * 2014-04-16 2014-07-23 华北电力大学 Opgw线全线监测诊断系统及监测诊断方法
CN104183103A (zh) * 2014-08-12 2014-12-03 西安工程大学 输电线路在线监测设备现场调试系统及调试方法
CN106017542A (zh) * 2015-09-10 2016-10-12 无锡群欣物联科技有限公司 一种电力线路监测系统
CN105911427A (zh) * 2016-04-26 2016-08-31 武汉新电电气技术有限责任公司 一种基于光纤复合架空地线温度分布的输电线路故障定位方法
CN106097627A (zh) * 2016-08-13 2016-11-09 哈尔滨理工大学 输电线路舞动智能视频在线监测系统
CN107764491A (zh) * 2017-09-21 2018-03-06 国网河南省电力公司电力科学研究院 一种基于载荷等效的相间间隔棒舞动承载模拟试验方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946617A (zh) * 2020-12-24 2021-06-11 国网浙江省电力有限公司衢州供电公司 一种基于微波干涉技术的导线舞动幅值监测系统
CN114295196A (zh) * 2021-12-06 2022-04-08 清华大学 一种基于地线电磁信号的架空线路舞动定位方法及装置
CN114384352A (zh) * 2021-12-06 2022-04-22 清华大学 基于地线电磁信号的架空线路覆冰监测方法及装置
CN114396859A (zh) * 2021-12-06 2022-04-26 清华大学 基于地线电磁信号的架空线路风偏监测方法及装置
CN114396860A (zh) * 2021-12-06 2022-04-26 清华大学 基于地线电磁信号的输电线路增容时弧垂监测方法和装置
CN114295196B (zh) * 2021-12-06 2022-09-16 清华大学 一种基于地线电磁信号的架空线路舞动定位方法及装置
WO2023103278A1 (zh) * 2021-12-06 2023-06-15 清华大学 基于地线电磁信号的输电线路导线位置信息在线监测方法
CN114384352B (zh) * 2021-12-06 2023-09-19 清华大学 基于地线电磁信号的架空线路覆冰监测方法及装置

Also Published As

Publication number Publication date
CN109000716B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
CN109000716A (zh) 一种基于opgw地线感应电流的输电线路舞动监测方法
CN108801442B (zh) 一种基于地线感应电压的输电线路舞动监测方法
CN104459529B (zh) 变电站高压断路器机械特性试验的双环流测试方法
Marx et al. Traveling wave fault location in protective relays: Design, testing, and results
CN102565628B (zh) 基于雷电流幅值区间分布的架空线路雷击故障性质识别方法
CN105699855B (zh) 基于不受行波波速影响的单端行波故障测距计算方法和测距方法
JP6778366B2 (ja) ダブルダウンコンダクタシステム、ダブルダウンコンダクタシステムを用いた落雷判定システム、及び風力発電装置
CN110221180A (zh) 一种10kV配电线路雷击故障识别与定位方法
CN106019080B (zh) 一种基于沿线能量突变的同塔双回直流线路单端行波测距方法
CN108152662A (zh) 一种基于接地电流的交叉互联箱故障诊断方法及系统
CN103344889B (zh) 一种用电容跳线来测量电缆局部放电的方法
CN104931793B (zh) 一种变电站接地网接地阻抗获取方法
CN106500825A (zh) 一种输电铁塔振动位移实时监测系统
CN109596935A (zh) 一种结合磁场能衰减特征的输电线路故障行波法
CN111239543B (zh) 一种基于雷击过电压陡度传变特性的故障定位方法
CN109470989A (zh) 一种基于110kV部分同塔双回线路的雷击故障选线与定位方法
CN111239546B (zh) 一种雷击过电压在线测距及故障定位方法
CN108490315A (zh) 一种基于电磁感应的输、配电线路故障定位装置
Yamada et al. Observation and analysis of lightning surges at substations connected with UHV designed transmission lines
CN105740500A (zh) 一种复合杆塔过电压仿真模型设计方法
CN109613341A (zh) 一种接地材料与土壤接触电阻的测量装置
CN109283436A (zh) 一种基于电压波形衰减的过电压推演预测方法及装置
JP6851053B2 (ja) ダブルダウンコンダクタシステム、ダブルダウンコンダクタシステム用の健全性評価システム、及び風力発電装置
CN111239547B (zh) 一种基于雷击过电压陡度传变特性的故障定位方法
CN105136192B (zh) 一种复合绝缘子金具串舞动实验装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant