CN109280902B - 一种氮硅双修饰石墨烯量子点固态膜的制备方法 - Google Patents

一种氮硅双修饰石墨烯量子点固态膜的制备方法 Download PDF

Info

Publication number
CN109280902B
CN109280902B CN201811132537.8A CN201811132537A CN109280902B CN 109280902 B CN109280902 B CN 109280902B CN 201811132537 A CN201811132537 A CN 201811132537A CN 109280902 B CN109280902 B CN 109280902B
Authority
CN
China
Prior art keywords
graphene quantum
nitrogen
quantum dot
purity
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811132537.8A
Other languages
English (en)
Other versions
CN109280902A (zh
Inventor
姜礼华
田海燕
彭宇
汪涛
肖婷
向鹏
谭新玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201811132537.8A priority Critical patent/CN109280902B/zh
Publication of CN109280902A publication Critical patent/CN109280902A/zh
Application granted granted Critical
Publication of CN109280902B publication Critical patent/CN109280902B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges

Abstract

本发明公开了一种氮硅双修饰石墨烯量子点固态膜的制备方法。该方法以射频等离子体增强化学气相沉积技术作为石墨烯量子点固态膜生长方法,以高纯乙烯作为石墨烯量子点生长的碳源气体,以硅烷混合气和高纯氮气分别为石墨烯量子点的生长提供硅元素修饰和氮元素修饰。相对于目前常用的石墨烯量子点制备方法,如电化学法、水热法、酸氧化法、溶液化学法以及微波超声等方法,该方法的突出优点是石墨烯量子点不是以液态和胶体态的形式存在,而是以固态膜的形式存在且制备工艺同传统半导体工艺相兼容。本发明所提出的这种氮硅双修饰石墨烯量子点固态膜的制备方法能使石墨烯量子点在太阳能电池、光电探测器以及发光二极管等半导体器件中得到很好的应用。

Description

一种氮硅双修饰石墨烯量子点固态膜的制备方法
技术领域
本发明涉及纳米薄膜材料制备技术领域,具体涉及一种氮硅双修饰石墨烯量子点固态膜制备方法。
背景技术
研究发现石墨烯量子点具有优良的电学性质、生物相容性、低毒性、耐强酸强碱、结构稳定以及较好的机械强度等特性。此外,它还拥有量子点所具有的一些独特纳米结构效应,如量子限域效应、边缘效应以及优异的宽吸收窄发射特性、光电转换能力和电子迁移率等。以上特性使石墨烯量子点具有很多优异的物理和化学性质,因此它在生物成像、疾病检测、药物运输、电子器件、太阳能光伏电池、拉曼增强、催化剂、传感器等各领域具有重要的应用价值。由此也激起了多种石墨烯量子点制备方法,如强酸氧化法、电化学法、水热法、微波超声法、剥离法、溶剂热法等。以上方法在石墨烯量子点制备过程中存在使用强酸强碱或者石墨烯量子点产量低或者石墨烯量子点结晶度差等缺点。此外,这些方法所制备的石墨烯量子点一般分散在溶液或胶体中,这种液体或胶体状石墨烯量子点在光电器件中应用时将产生封装方面的困难。因此,在不使用强酸强碱的条件下,为减少半导体器件封装技术困难,寻求一种石墨烯量子点固态薄膜制备方法不仅有利于提高石墨烯量子点在光电器件中的应用,而且有利于环保。
发明内容
本发明目的是在纳米材料制备技术领域提供一种氮硅双修饰石墨烯量子点固态膜制备方法。该方法通过控制高纯乙烯、硅烷混合气和高纯氮气的进气流量以及优化石墨烯量子点生长射频功率、温度和气压等工艺参数进行氮硅双修饰石墨烯量子点的制备。
本发明提供的一种氮硅双修饰石墨烯量子点固态膜制备方法,包括以下简单步骤:
(1)采用常规清洗方法清洗单晶硅基片。首先,采用丙酮超声清洗单晶硅片10-15分钟,之后,采用超纯水超声清洗10-15分钟;接着,使用乙醇超声清洗10-15分钟,之后,采用超纯水超声清洗10-15分钟;再次,使用稀释浓度为3%-5%的氢氟酸超声清洗3-5分钟,之后,采用超纯水超声清洗10-15分钟;最后,清洗后的单晶片用氮气吹干并备用。
(2)以高纯乙烯、硅烷混合气和高纯氮气为工作气体,采用等离子体增强化学气相沉积技术在单晶硅基片表面生长氮硅双修饰石墨烯量子点固态膜。
所述的高纯乙烯的纯度大于99.995%;所述的高纯氮气的纯度大于99.999%;所述的硅烷混合气为采用氩气稀释到体积浓度为5-10%的硅烷。
步骤(2)中,采用等离子体增强化学气相沉积技术在步骤(1)中的单晶硅基片表面生长氮硅双修饰石墨烯量子点固态膜,其工艺参数是:射频功率密度为400~750 mW/cm-2,射频频率为13.56MHz,基片温度为200~350℃,腔体压强为60~100Pa,高纯乙烯气体流量为60~100sccm,高纯氮气气体流量为10~15sccm,硅烷混合气气体流量为5~10sccm,镀膜时间为60~100分钟。
本发明的技术方案以射频等离子体增强化学气相沉积技术作为石墨烯量子点固态膜生长方法,以高纯乙烯作为石墨烯量子点生长的碳源气体,以硅烷混合气和高纯氮气分别为石墨烯量子点的生长提供硅元素修饰和氮元素修饰。相对于目前常用的石墨烯量子点制备方法,如电化学法、水热法、酸氧化法、溶液化学法以及微波超声等方法,该方法的突出优点是石墨烯量子点不是以液态和胶体态的形式存在,而是以固态膜的形式存在且制备工艺同传统半导体工艺相兼容。并且,氮硅双元素修饰还可修正石墨烯量子点的电子态密度和调整石墨烯量子点光学带隙。这种石墨烯量子点固态膜制备方法简单、快捷且能有效避免石墨烯量子点液体或胶体的泄露,从而克服液态和胶体状石墨烯量子点密封难的问题。因此,本发明所提出的这种氮硅双修饰石墨烯量子点固态膜的制备方法能使石墨烯量子点在太阳能电池、光电探测器以及发光二极管等半导体器件中得到很好的应用。
附图说明
图1为实施例1样品氮硅双修饰石墨烯量子点固态膜HRTEM图。
具体实施方式
为进一步阐述本发明所提供的一种氮硅双修饰石墨烯量子点固态膜制备方法,以下实施案例用以说明本发明,但不用于限制本发明。
实施例1:
一种氮硅双修饰石墨烯量子点固态膜制备方法,该方法包括以下步骤:
(1)采用常规清洗方法清洗单晶硅基片;
(2)以高纯乙烯(纯度大于99.995%)、高纯氮气(纯度大于99.999%)和被氩气稀释浓度为5%的硅烷混合气为工作气体,采用等离子体增强化学气相沉积技术在步骤(1)中的单晶硅基片表面沉积一层氮硅双修饰石墨烯量子点固态膜,其工艺参数是:射频功率密度为400W/cm2,基片温度为200℃,射频频率为13.56MHz,腔体压强为60Pa,高纯乙烯气体流量为60sccm,高纯氮气气体流量为10sccm,硅烷混合气体流量为5sccm,镀膜时间为60分钟。
通过以上步骤一种氮硅双修饰石墨烯量子点固态膜便制备完成。图1为实施例1样品氮硅双修饰石墨烯量子点HRTEM图,其中图中的圈代表固态膜中所形成的石墨烯量子点。
实施例2:
一种氮硅双修饰石墨烯量子点固态膜制备方法,该方法包括以下步骤:
(1)采用常规清洗方法清洗单晶硅基片;
(2)以高纯乙烯(纯度大于99.995%)、高纯氮气(纯度大于99.999%)和被氩气稀释浓度为5%的硅烷混合气为工作气体,采用等离子体增强化学气相沉积技术在步骤(1)中的单晶硅基片表面沉积一层氮硅双修饰石墨烯量子点固态膜,其工艺参数是:射频功率密度为500W/cm2,基片温度为250℃,射频频率为13.56MHz,腔体压强为80Pa,高纯乙烯气体流量为80sccm,高纯氮气气体流量为12sccm,硅烷混合气体流量为7sccm,镀膜时间为80分钟。
通过以上步骤一种氮硅双修饰石墨烯量子点固态膜便制备完成。
实施例3:
一种氮硅双修饰石墨烯量子点固态膜制备方法,该方法包括以下步骤:
(1)采用常规清洗方法清洗单晶硅基片;
(2)以高纯乙烯(纯度大于99.995%)、高纯氮气(纯度大于99.999%)和被氩气稀释浓度为10%的硅烷混合气为工作气体,采用等离子体增强化学气相沉积技术在步骤(1)中的单晶硅基片表面沉积一层氮硅双修饰石墨烯量子点固态膜,其工艺参数是:射频功率密度为600W/cm2,基片温度为300℃,射频频率为13.56MHz,腔体压强为90Pa,高纯乙烯气体流量为90sccm,高纯氮气气体流量为15sccm,硅烷混合气体流量为10sccm,镀膜时间为90分钟。
通过以上步骤一种氮硅双修饰石墨烯量子点固态膜便制备完成。
实施例4:
一种氮硅双修饰石墨烯量子点固态膜制备方法,该方法包括以下步骤:
(1)采用常规清洗方法清洗单晶硅基片;
(2)以高纯乙烯(纯度大于99.995%)、高纯氮气(纯度大于99.999%)和被氩气稀释浓度为10%的硅烷混合气为工作气体,采用等离子体增强化学气相沉积技术在步骤(1)中的单晶硅基片表面沉积一层氮硅双修饰石墨烯量子点固态膜,其工艺参数是:射频功率密度为750W/cm2,基片温度为350℃,射频频率为13.56MHz,腔体压强为100Pa,高纯乙烯气体流量为100sccm,高纯氮气气体流量为15sccm,硅烷混合气体流量为10sccm,镀膜时间为100分钟。
通过以上步骤一种氮硅双修饰石墨烯量子点固态膜便制备完成。
以上所述为本发明较佳实施例而已,但本发明不应该局限于该实施例所公开的内容。所以凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。

Claims (2)

1.一种氮硅双修饰石墨烯量子点固态膜制备方法,其特征在于,该方法包括下述步骤:
(1)清洗单晶硅基片;
(2)以高纯乙烯、硅烷混合气和高纯氮气为工作气体,高纯乙烯气体流量为60~100sccm,高纯氮气气体流量为10~15sccm,硅烷混合气气体流量为5~10sccm,采用等离子体增强化学气相沉积方法在步骤(1)中的单晶硅基片表面生长氮硅双修饰石墨烯量子点固态膜,其工艺参数是:射频功率密度为400~750 mW/cm-2,射频频率为13.56MHz,基片温度为200~350℃,腔体压强为60~100Pa,镀膜时间为60~100分钟,即可得到氮硅双修饰石墨烯量子点。
2.权利要求1所述的氮硅双修饰石墨烯量子点固态膜制备方法,其特征在于,所述的高纯乙烯的纯度大于99.995%;所述的高纯氮气的纯度大于99.999%;所述的硅烷混合气为采用氩气稀释到体积浓度为5-10%的硅烷。
CN201811132537.8A 2018-09-27 2018-09-27 一种氮硅双修饰石墨烯量子点固态膜的制备方法 Active CN109280902B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811132537.8A CN109280902B (zh) 2018-09-27 2018-09-27 一种氮硅双修饰石墨烯量子点固态膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811132537.8A CN109280902B (zh) 2018-09-27 2018-09-27 一种氮硅双修饰石墨烯量子点固态膜的制备方法

Publications (2)

Publication Number Publication Date
CN109280902A CN109280902A (zh) 2019-01-29
CN109280902B true CN109280902B (zh) 2020-10-09

Family

ID=65181504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811132537.8A Active CN109280902B (zh) 2018-09-27 2018-09-27 一种氮硅双修饰石墨烯量子点固态膜的制备方法

Country Status (1)

Country Link
CN (1) CN109280902B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113277499B (zh) * 2021-05-07 2022-11-08 优彩科技(湖北)有限公司 一种硅氮共掺杂石墨烯量子点的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102260858A (zh) * 2010-05-26 2011-11-30 中国科学院物理研究所 一种在各种基底上直接生长石墨烯的方法
CN104556014A (zh) * 2015-01-08 2015-04-29 复旦大学 一种非金属表面低温制备掺杂石墨烯的方法
CN105463401A (zh) * 2015-12-02 2016-04-06 浙江大学 一种化学气相沉积制备硅掺杂石墨烯材料的方法
CN108346791A (zh) * 2018-02-09 2018-07-31 中国矿业大学 锂离子电池用硅/氮掺杂石墨烯复合材料制备方法及应用
CN108461386A (zh) * 2018-03-16 2018-08-28 三峡大学 一种含硅量子点多层膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102260858A (zh) * 2010-05-26 2011-11-30 中国科学院物理研究所 一种在各种基底上直接生长石墨烯的方法
CN104556014A (zh) * 2015-01-08 2015-04-29 复旦大学 一种非金属表面低温制备掺杂石墨烯的方法
CN105463401A (zh) * 2015-12-02 2016-04-06 浙江大学 一种化学气相沉积制备硅掺杂石墨烯材料的方法
CN108346791A (zh) * 2018-02-09 2018-07-31 中国矿业大学 锂离子电池用硅/氮掺杂石墨烯复合材料制备方法及应用
CN108461386A (zh) * 2018-03-16 2018-08-28 三峡大学 一种含硅量子点多层膜及其制备方法

Also Published As

Publication number Publication date
CN109280902A (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
Yu et al. Van der Waals epitaxy of iii‐nitride semiconductors based on 2D materials for flexible applications
He et al. Growth and characterization of ternary AlGaN alloy nanocones across the entire composition range
Kuykendall et al. Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections
Lauhon et al. Semiconductor nanowire heterostructures
Wang et al. Two-dimensional wide band-gap nitride semiconductor GaN and AlN materials: properties, fabrication and applications
CN101245491B (zh) 在纳米棒的氧化锌上生长无支撑的氮化镓纳米晶的方法
Tang et al. Controllable Synthesis of Vertically Aligned p‐Type GaN Nanorod Arrays on n‐Type Si Substrates for Heterojunction Diodes
CN104418380B (zh) 一种氧化锌纳米线阵列结构及其制备方法
CN109280902B (zh) 一种氮硅双修饰石墨烯量子点固态膜的制备方法
WO2014032467A1 (zh) 一种制备低应力GaN薄膜的方法
CN104402039B (zh) 一种制备三维ZnO纳米线网的方法
CN102828250A (zh) 一种GaN纳米线生长方法
Water et al. Effect of growth temperature on photoluminescence and piezoelectric characteristics of ZnO nanowires
Feng et al. Direct Growth of GaN Nanowires by Ga and N2 without Catalysis
CN103757693B (zh) 一种GaN纳米线的生长方法
CN107578988B (zh) 碳化硅外延层钝化方法
CN106757323B (zh) 一种无应力InN纳米线生长方法
Ho et al. A novel method to grow vertically aligned silicon nanowires on Si (111) and their optical absorption
CN114232083A (zh) 二维氮化镓晶体的制备方法
JP6927429B2 (ja) SiCエピタキシャル基板の製造方法
CN103058264B (zh) 化学气相沉积法制备双层氧化锌纳米线阵列的方法
CN104495766A (zh) 一种氮化铝一维纳米结构材料的制备方法
CN102146586B (zh) 单晶二氧化钛纳米棒大面积生长方法及该纳米棒的应用
Meng et al. The influence of B 2 H 6 on the growth of silicon nanowire
KR100536483B1 (ko) 산화아연계 나노바늘, 이의 제법 및 이를 이용한 전기 소자

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190129

Assignee: Henan Chaomei Building Materials Co.,Ltd.

Assignor: CHINA THREE GORGES University

Contract record no.: X2024980000728

Denomination of invention: Preparation method of nitrogen silicon double modified graphene quantum dot solid-state film

Granted publication date: 20201009

License type: Common License

Record date: 20240116