CN109271742B - 磁控忆阶元 - Google Patents

磁控忆阶元 Download PDF

Info

Publication number
CN109271742B
CN109271742B CN201811266601.1A CN201811266601A CN109271742B CN 109271742 B CN109271742 B CN 109271742B CN 201811266601 A CN201811266601 A CN 201811266601A CN 109271742 B CN109271742 B CN 109271742B
Authority
CN
China
Prior art keywords
voltage
order
reactance
fractional
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811266601.1A
Other languages
English (en)
Other versions
CN109271742A (zh
Inventor
余波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Normal University
Original Assignee
Chengdu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Normal University filed Critical Chengdu Normal University
Priority to CN201811266601.1A priority Critical patent/CN109271742B/zh
Publication of CN109271742A publication Critical patent/CN109271742A/zh
Application granted granted Critical
Publication of CN109271742B publication Critical patent/CN109271742B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Networks Using Active Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

本发明公开一种磁控忆阶元,包括引脚a、引脚b、压控变阶分抗UF、电压积分器A。压控变阶分抗UF包括电压控制端uc和变阶分抗
Figure DDA0001845019730000011
压控变阶分抗UF内变阶分抗
Figure DDA0001845019730000012
的运算阶受电压控制端uc的电压值控制。电压积分器A包括电压输入端u和电压输出端uc,电压输出端的电压值
Figure DDA0001845019730000013
Ki为电压积分器A的比例系数。该磁控忆阶元具有磁通量记忆功能,磁通量改变了元件的运算阶,可作为新电路元件广泛的应用于电路与系统的设计中,其倍频性质是磁控忆阶元特有。

Description

磁控忆阶元
技术领域
本发明专利涉及电路元件基础理论,具体涉及磁控忆阶元。
背景技术
电子元件是构成电路与系统的最基本单元。1745年荷兰莱顿大学P.穆森布罗克发明的莱顿瓶是最原始的电容(capacitor),1826年德国欧姆发现欧姆定律提出电阻(resistor)的概念, 1831年英国法拉第制成铁芯线圈制作出电感(inductor)。电阻、电容和电感是全世界公认的三种基本无源电路元件,已在电路与系统中得到最广泛的应用。
分数阶微积分(fractional calculus)是运算阶次为非整数的一种微积分,已成为数学分析的一个重要分支。由于分数阶微积分的长时记忆性、非定域性和弱奇异性,近年来,已成为科学和工程技术领域中使用的一种新数学手段。分数阶微积分在物理、化学、生物、控制、信号处理、图像处理、神经网络、电路与系统等领域得到了有效的应用,并已取得许多有益的结果。依据分数阶微积分理论,电容的运算阶为-1,电阻的运算阶为0,电感的运算阶为+1。运算特性介于电阻和电容之间的元件为容性分抗元(capacitive fractor),运算特性介于电阻和电感之间的元件称为感性分抗元(inductive fractor),分抗元(fractor)的分抗量简称为分抗 (fractance)。
电流、电压、电荷和磁通是电路理论的四个基本变量,它们之间共有六种关系:1.电流和电荷的关系由电流定义式建立;2.电压和磁通的关系由法拉第电磁感应定律建立;3.电压和电流之间的关系由电阻建立;4.电压和电荷的关系由电容建立;5.电流和电荷的关系由电感建立。电荷和磁通的关系由什么元件或定律来建立?很长时间以来,一直没有引起人们的关注和重视。
根据电路基本变量组合完备性原理,1971年美籍华裔科学家蔡少棠先生从理论预测出忆阻(memristor)的存在,蔡先生认为忆阻是建立电荷和磁通关系的电路元件,从而称忆阻为第四种基本电路元件,并得到学界的广泛认可。蔡先生还依据电路变量与电路元件的公理完备性(axiomatic completeness)、逻辑相容性(logical consistency)和形式对称性(formal symmetry)等,提出公理化的电路元件体系——蔡氏公理化元件系(Chua’saxiomatic element system),进而得电路元件的到蔡氏周期表(Chua’s periodictable)。
2008年,《Nature》报道了美国科学家Williams领导的团队在纳米尺度下制造出的忆阻物理实体,震惊国际电工电子领域,掀起忆阻的研究热潮。忆阻在计算机科学、神经网络、生物工程、通信工程和非线性电路等领域有着广泛的应用前景。同年,忆容(memcapacitor) 和忆感(meminductor)也被提出,并得到人们的关注和研究。在记忆元件(memory elements) 中,忆阻量、忆容量或忆感量随电荷或磁通而变化。忆阻(memristor)的忆阻量(memristance) 记忆电荷量或磁通量、忆容(memcapacitor)的忆容量(memcapacitance)记忆电荷量或磁通量、忆感(meminductor)的忆感量(meminductance)记忆电荷量或磁通量。然而,忆阻器作为第四种基本电路元件的物理身份仍存在质疑。2008年,Mathur撰文在《Nature》指出,实际的忆阻是从伏安关系获得的,线性磁电耦合效应的材料可以建立电荷和磁通的关系,满足第四种基本电路元件的定义。2015年,中国科学院物理研究所孙阳、尚大山、柴一晟等依据磁电耦合效应物理实现满足原始磁通和电荷关系的电耦元(transtor)及相应的非线性记忆元件——忆耦元(memtranstor),他们认为电偶元才是真正的第四种基本电路元件。电耦元 (transtor)和忆耦元(memtranstor)在开发新一代信息功能器件方面具有巨大的潜力。关于第四种基本元件的确定,学界虽然广泛认可忆阻,但还是存在质疑,但不影响忆阻和电偶有关理论与应用研究。
受蔡氏周期表启发,依据分数阶微积分理论,分数阶忆阻(fractional-ordermemristor)的概念应运而生,并发展出两种类型:第一种分数阶忆阻(fractionalmemristor)的单位和电阻一致,忆阻量(memristance)记忆电压或电流的分数阶积分量;第二种分数阶忆阻的单位和分抗元一致,可称为忆分抗(memory fractor),忆分抗的忆分抗量(memory fractance)记忆电荷量或磁通量。我们认为还应存在第三种分数阶忆阻,其单位和分抗元一致,忆分抗量记忆电压或电流的分数阶积分值。四川大学蒲亦非教授等人在2016年提出一种分忆抗的概念,并创造新单词“fracmemristor”作为英文名,还于2017年尝试用标度分形格结构方式实现,蒲亦非教授等人提出的分忆抗属于上述第二种。
至此,记忆元件的(忆)电阻量、(忆)电容量、(忆)电感量或(忆)分抗量作为记忆变量,受到电荷量、磁通量、电流分数阶积分量或电压分数阶积分量的控制,进而得到的忆阻、忆容、忆感、忆分抗和分数阶忆阻均得到人们的研究,并取得丰富的理论和实验成果。然后,从分数阶微积分理论视角,记忆元件的运算阶为记忆变量时,受电荷量、磁通量、电流分数阶积分量或电压分数阶积分量的控制,得到的忆阶元(memory-order element)将会呈现出什么理论与实践意义?这是值得深入研究和挖掘的问题,也将启发人们从全新角度研究和丰富蔡氏周期表。
发明内容
本发明所要解决的技术问题是提供磁控忆阶元(flux-controlled memory-orderelement),作为一种新元件,解决现有电路元件无法实现磁通量控制运算阶的问题。
本发明解决上述技术问题的技术方案如下:一种磁控忆阶元,包括引脚a、引脚b、压控变阶分抗UF、电压积分器A,所述压控变阶分抗UF包括电压控制端uc和变阶分抗
Figure BDA0001845019710000031
所述压控变阶分抗UF内变阶分抗
Figure BDA0001845019710000032
的运算阶受电压控制端uc的电压值控制,所述压控变阶分抗内电压控制端uc的输入阻抗为无穷大,所述电压积分器A包括电压输入端u和电压输出端uc,所述电压积分器的输入端u的输入阻抗为无穷大,所述电压积分器的电压输出端uc的输出阻抗为零,所述引脚a、压控变阶分抗UF内变阶分抗
Figure BDA0001845019710000033
以及引脚b为串联关系,所述压控变阶分抗UF内变阶分抗
Figure BDA0001845019710000034
与电压积分器的电压输入端并联,所述电压积分器电压输出端与压控变阶分抗的电压控制端相联;所述变阶分抗
Figure BDA0001845019710000035
的阻抗函数
Figure BDA0001845019710000036
变阶分抗的运算阶μ与电压控制端uc的电压值有关,F(μ)称为变阶分抗的特征量,s是拉普拉斯变量;从时刻t0至tn,所述电压积分器A内电压输出端的电压值
Figure BDA0001845019710000037
Ki为电压积分器 A的比例系数。在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述压控变阶分抗UF内变阶分抗
Figure BDA0001845019710000038
的运算阶μ(uc)=kuc,k为压控变阶分抗UF的控制系数。
本发明的有益效果是:在本发明中,磁控忆阶元具有磁通量记忆功能,磁通量改变了元件的运算阶,可作为新电路元件广泛的应用于电路与系统的设计中,其倍频性质是磁控忆阶元特有。
附图说明
图1为本发明的原理图
图2为本发明元件名称与其它二端电路元件名称一览图
图3为本发明实施例中磁控忆阶元k=1时的电流变化曲线图
图4为本发明实施例中磁控忆阶元k=1时的记忆阶曲线图
图5为本发明实施例中磁控忆阶元k=-1时的电流变化曲线图
图6为本发明实施例中磁控忆阶元k=-1时的记忆阶曲线图
图7为本发明实施例中磁控忆阶元k=20时的电流变化曲线图
图8为本发明实施例中磁控忆阶元k=20时的记忆阶曲线图
图9为本发明实施例中磁控忆阶元k=1时的电压电流曲线图
图10为本发明实施例中磁控忆阶元k=1时的伏安特性曲线图
图11为本发明实施例中磁控忆阶元k=1时的记忆阶曲线图
图12为本发明实施例中磁控忆阶元k=-1时的电压电流曲线图
图13为本发明实施例中磁控忆阶元k=-1时的伏安特性曲线图
图14为本发明实施例中磁控忆阶元k=-1时的记忆阶曲线图
图15为本发明实施例中磁控忆阶元k=10时的电压电流曲线图
图16为本发明实施例中磁控忆阶元k=10时的伏安特性曲线图
图17为本发明实施例中磁控忆阶元k=10时的记忆阶曲线图
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
如图1所示,一种磁控忆阶元,包括引脚a、引脚b、压控变阶分抗UF、电压积分器A,压控变阶分抗UF包括电压控制端uc和变阶分抗
Figure BDA0001845019710000041
压控变阶分抗UF内变阶分抗
Figure BDA0001845019710000042
的运算阶受电压控制端uc的电压值控制,压控变阶分抗内电压控制端uc的输入阻抗为无穷大,电压积分器A包括电压输入端u和电压输出端uc,电压积分器的输入端u的输入阻抗为无穷大,电压积分器的电压输出端uc的输出阻抗为零,引脚a、压控变阶分抗UF内变阶分抗
Figure BDA0001845019710000043
以及引脚 b为串联关系,压控变阶分抗UF内变阶分抗
Figure BDA0001845019710000044
与电压积分器的电压输入端并联,电压积分器电压输出端与压控变阶分抗的电压控制端并联;变阶分抗
Figure BDA0001845019710000045
的阻抗函数
Figure BDA0001845019710000046
变阶分抗的运算阶μ与电压控制端uc的电压值有关,F(μ)称为变阶分抗的特征量,s是拉普拉斯变量;从时刻t0至tn,电压积分器A内电压输出端的电压值
Figure BDA0001845019710000047
Ki为电压积分器A的比例系数。
在本发明实施例中,压控变阶分抗UF内变阶分抗
Figure BDA0001845019710000048
的运算阶μ(uc)=kuc,k为压控变阶分抗UF的控制系数。
本发明的工作原理为:
常见的分数阶微积分定义有黎曼-刘维尔(Riemann-Liouville)定义、卡普图(Caputo) 定义和格林瓦尔-莱特尼科夫(Grünwald-Letikov)定义等。从时刻0到时刻t,
Figure BDA0001845019710000051
称为函数f(t)的-μ阶黎曼-刘维尔分数阶积分,其中
Figure BDA0001845019710000052
为积分运算符号,
Figure BDA0001845019710000053
为伽玛函数,时刻0为分数阶积分的下限,时刻t为分数阶积分的上限。当函数f(t)及其各阶导数的初值均为0,若f(t)=sin(ω0t),则有
Figure BDA0001845019710000054
若f(t)=cos(ω0t),则有
Figure BDA0001845019710000055
ω0为信号角频率。若函数f(t)及其各阶导数的初值均为0,则其分数阶微积分的拉普拉斯变换为
Figure BDA0001845019710000056
s是拉普拉斯变量,亦称运算变量。
图1所示磁控忆阶元引脚a、引脚b间的阻抗(磁控忆阶元的阻抗Z(s))与变阶分抗
Figure BDA0001845019710000057
的阻抗
Figure BDA0001845019710000058
相等,即
Figure BDA0001845019710000059
若磁控忆阶元引脚a、引脚b间电压u(t)与电流 i(t)采用关联参考方向,由分数阶微积分的拉普拉斯变换性质可得到描述其特性的伏安关系为
Figure BDA00018450197100000510
图2所示为磁控忆阶元与其它二端记忆元件的一览图。
变阶分抗
Figure BDA00018450197100000511
的运算阶μ(uc)=kuc,电压积分器A内电压输出端的电压值
Figure BDA00018450197100000512
Figure BDA00018450197100000513
为电压u(t)的磁通量,运算阶
Figure BDA00018450197100000514
由运算阶
Figure BDA00018450197100000515
可知,磁控忆阶元的运算阶μ受到电引脚a、引脚b间的磁通量
Figure BDA00018450197100000516
的控制。磁控忆阶元的伏安关系可进一步表示为:
Figure BDA00018450197100000517
由磁控忆阶元的伏安关系和分数阶微积分的拉普拉斯变换性质可知,本发明公开的磁控忆阶元阻抗函数
Figure BDA00018450197100000518
F=F(μ)
Figure BDA00018450197100000519
u(s)为端口电压,i(s)为端口电流,F为忆阶元特征值,忆阶元运算阶μM受到磁通量
Figure BDA00018450197100000520
的控制,运算阶记忆了磁通量,因此也称μM为记忆阶。进一步数学描述磁控忆阶元伏安关系为:
Figure BDA00018450197100000521
从系统性质可知,磁控忆阶元具有记忆性、可逆性、因果性、稳定性、时变性、非线性等性质,这些性质可将磁控忆阶元的电压u(t)作为输入、电流i(t)作为输出分析得到。
记忆性:磁控忆阶元的电流i(t)不仅与电压u(t)有关,还与磁通量
Figure BDA0001845019710000067
有关;磁通量
Figure BDA0001845019710000068
是电压u(t)的积分,电流i(t)不仅取决于当前时刻的电压值,还与过去的电压值有关,磁控忆阶元具有记忆性。这种记忆可以是易失的也可为非易失的。
可逆性:如果一个系统在不同的输入下,导致不同的输出,就称该系统是可逆的。由磁控忆阶元伏安关系可知,不同电压u(t)会导致不同的电流i(t),因此磁控忆阶元具有可逆性,有望用于保密通信。
因果性:磁控忆阶元任何一个时刻的电压u(t)只取决于现在的输入电流i(t)与过去的输入电流,具有因果性。
稳定性:磁控忆阶元任何一个时刻的输入电压u(t)为有限电压值时,由其伏安关系可知,电流i(t)也是有界的,不会发散,具有稳定性。
时变性:磁控忆阶元任何一个时刻的输入电压u(t)时,电流
Figure BDA0001845019710000061
Figure BDA0001845019710000062
如果输入电压有一个时移tx,即u(t-tx),则电流不为i(t-tx),符合时变性。
非线性:磁控忆阶元任何一个时刻的输入电压为xu(t)时(x为给定的常数),电流
Figure BDA0001845019710000063
不满足系统的齐次性,为非线性元件。
通过输入磁控忆阶元为恒定压值和正弦交流电压信号时的时域波形,可呈现出磁控忆阶元的应用价值及其特有的性质。
若输入磁控忆阶元两端的电压u1(t)=aH(t)(H(t)为单位阶跃函数,a为电压值),则内部状态磁通量
Figure BDA0001845019710000064
记忆阶
Figure BDA0001845019710000065
依据黎曼-刘维尔分数阶积分得到磁控忆阶元的二端电流
Figure BDA0001845019710000066
若电压源u1(t)=0.1H(t)A(t>0),磁控忆阶元的特征值F=1,Ki=1。当k=1时,磁控忆阶元的电流曲线图如图3所示,记忆阶曲线如图4所示;当k=-1时,磁控忆阶元的电流曲线图如图5所示,记忆阶曲线如图6所示;当k=20时,磁控忆阶元的电流曲线图如图7所示,记忆阶曲线如图8所示。
由图3~图8所示的电流曲线和记忆阶曲线可知,磁控忆阶元展现出丰富的非线性特性,电压变化曲线为非单调曲线,记忆阶为直线。随着k的增大,记忆阶变化越快。
将磁控忆阶元a、b二引脚连接正弦电压源u2(t)作为激励信号,u2(t)=Umsin(2πft),Um为电压源的峰值,f为正弦电压源的频率,角频率ω=2πf。磁控忆阶元内部状态磁通量变量
Figure 1
记忆阶
Figure BDA0001845019710000072
由此得到磁控忆阶元的电流
Figure 2
若正弦电压源u2(t)的峰值Um=1V,角频率ω=1rad/s,磁控忆阶元的特征值F=1。当k=1 时得到电压电流曲线、伏安特性曲线、记忆阶曲线分别如图9、图10和图11所示;当k=-1 时得到电压电流曲线、伏安特性曲线、记忆阶曲线分别如图12、图13和图14所示;当k=10 时得到电压电流曲线、伏安特性曲线、记忆阶曲线分别如图15、图16和图17所示。
从图10、图13和图16可知,磁控忆阶元不再具有已有记忆元件具有的捏滞回线,具有已有记忆元件不具有的新的非线性特性。从图9、图12和图15可知,磁控忆阶元不仅展现出丰富的非线性特性,而且还具有倍频功能;忆阶元是目前已知的唯一的可实现倍频的电路元件,结合图11、图14和图17可知,倍频比例与记忆阶的大小有关。
总之,磁控忆阶元具有磁通量记忆功能,磁通量改变元件的运算阶,可作为新电路元件广泛的应用于电路与系统的设计中,其倍频性质是磁控忆阶元特有。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种磁控忆阶元,其特征在于,包括引脚a、引脚b、压控变阶分抗UF、电压积分器A,所述压控变阶分抗UF包括电压控制端和变阶分抗
Figure FDA0003842990650000011
所述压控变阶分抗UF内变阶分抗
Figure FDA0003842990650000012
的运算阶受电压控制端的电压值uc控制,所述压控变阶分抗内电压控制端的输入阻抗为无穷大,所述电压积分器A包括电压输入端和电压输出端,所述电压积分器的输入端的输入阻抗为无穷大,所述电压积分器的输入端的输入电压为u(t),所述电压积分器的电压输出端的输出阻抗为零,所述引脚a、压控变阶分抗UF内变阶分抗
Figure FDA0003842990650000013
以及引脚b为串联关系,所述压控变阶分抗UF内变阶分抗
Figure FDA0003842990650000014
与电压积分器的电压输入端并联,所述电压积分器电压输出端与压控变阶分抗的电压控制端相联;所述变阶分抗
Figure FDA0003842990650000015
的阻抗函数
Figure FDA0003842990650000016
变阶分抗的运算阶μ与电压控制端的电压值uc有关,F(μ)称为变阶分抗的特征量,s是拉普拉斯变量;时间t从时刻t0至tn,所述电压积分器A内电压输出端的电压值
Figure FDA0003842990650000017
Ki为电压积分器A的比例系数。
2.根据权利要求1所述的一种磁控忆阶元,其特征在于,压控变阶分抗UF内变阶分抗
Figure FDA0003842990650000018
的运算阶μ(uc)=kuc,k为压控变阶分抗UF的控制系数。
CN201811266601.1A 2018-10-29 2018-10-29 磁控忆阶元 Active CN109271742B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811266601.1A CN109271742B (zh) 2018-10-29 2018-10-29 磁控忆阶元

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811266601.1A CN109271742B (zh) 2018-10-29 2018-10-29 磁控忆阶元

Publications (2)

Publication Number Publication Date
CN109271742A CN109271742A (zh) 2019-01-25
CN109271742B true CN109271742B (zh) 2022-11-08

Family

ID=65194434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811266601.1A Active CN109271742B (zh) 2018-10-29 2018-10-29 磁控忆阶元

Country Status (1)

Country Link
CN (1) CN109271742B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112884141B (zh) * 2021-04-16 2022-10-21 安徽大学 一种忆阻耦合Hindmarsh-Rose神经元电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919659A (en) * 1972-07-26 1975-11-11 Telecommunications Sa Device for amplifying the alternating component of a variable signal having a continuous component
JP2009146478A (ja) * 2007-12-12 2009-07-02 Sony Corp 記憶装置および情報再記録方法
CN105680819A (zh) * 2016-04-08 2016-06-15 蒲亦非 容性分忆抗元和感性分忆抗元滤波器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7273766B1 (en) * 2005-01-12 2007-09-25 Spansion Llc Variable density and variable persistent organic memory devices, methods, and fabrication
CN103646181B (zh) * 2013-12-20 2018-05-04 青岛理工大学 蠕滑型人工边坡稳定性系数与预警判据的确定方法
CN103942387A (zh) * 2014-04-16 2014-07-23 四川大学 一种基于变分数阶导数建立岩石蠕变本构模型的新方法
US10120967B2 (en) * 2014-07-25 2018-11-06 Plsense Ltd. Methods and apparatuses for SW programmable adaptive bias control for speed and yield improvement in the near/sub-threshold domain
CN104392080B (zh) * 2014-12-19 2017-07-11 山东大学 一种锂电池分数阶变阶等效电路模型及其辨识方法
CN107315347A (zh) * 2017-06-26 2017-11-03 南京工程学院 一种变阶分数阶微积分时域分析方法
CN108319797B (zh) * 2018-03-09 2019-08-20 武汉科技大学 一种分数阶忆阻器的等效电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919659A (en) * 1972-07-26 1975-11-11 Telecommunications Sa Device for amplifying the alternating component of a variable signal having a continuous component
JP2009146478A (ja) * 2007-12-12 2009-07-02 Sony Corp 記憶装置および情報再記録方法
CN105680819A (zh) * 2016-04-08 2016-06-15 蒲亦非 容性分忆抗元和感性分忆抗元滤波器

Also Published As

Publication number Publication date
CN109271742A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
Abdelouahab et al. Memfractance: a mathematical paradigm for circuit elements with memory
Yuan et al. A chaotic circuit constructed by a memristor, a memcapacitor and a meminductor
Mayergoyz et al. Basic electric circuit theory: A one-semester text
Fouda et al. Fractional-order memristor response under DC and periodic signals
CN108804840B (zh) 一种极简的浮地磁控忆阻器电路仿真模型
Fouda et al. Memristor and inverse memristor: Modeling, implementation and experiments
CN109271742B (zh) 磁控忆阶元
Shi et al. Window function for fractional‐order HP non‐linear memristor model
Smith et al. Electrical circuits: an introduction
CN109446647B (zh) 电压分数阶积分控制式忆阶元
Pu et al. Ladder scaling fracmemristor: A second emerging circuit structure of fractional-order memristor
Lu et al. Memristor based van der Pol oscillation circuit
Wang et al. Study of filter characteristics based on PWL memristor
CN109492283B (zh) 电流分数阶积分控制式忆阶元
CN109299572B (zh) 荷控忆阶元
Setoudeh et al. A new design and implementation of the floating-type charge-controlled memcapacitor emulator
Shi et al. Pinched Hysteresis Loop Characteristics of a Fractional-Order HP memristor
Lipiansky Electrical, electronics, and digital hardware essentials for scientists and engineers
CN109271703B (zh) 电流分数阶积分控制式忆阻器
CN109117590B (zh) 电压分数阶积分控制式忆阻器
Fouda et al. Series and parallel circuit models containing memristors and inverse memristors
Ergul Introduction to Electrical Circuit Analysis
Randrianantenaina et al. Functional emulator designs for a memristor model with programmable analog and digital platforms
Georgiou et al. Quantitative measure of hysteresis for Bernoulli memristors
Setoudeh et al. Analysis of a chaotic memristor based oscillator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant