CN109260764B - 一种超亲水/水下超疏油自清洁纸巾纤维膜的制备方法 - Google Patents

一种超亲水/水下超疏油自清洁纸巾纤维膜的制备方法 Download PDF

Info

Publication number
CN109260764B
CN109260764B CN201811085307.0A CN201811085307A CN109260764B CN 109260764 B CN109260764 B CN 109260764B CN 201811085307 A CN201811085307 A CN 201811085307A CN 109260764 B CN109260764 B CN 109260764B
Authority
CN
China
Prior art keywords
self
fiber membrane
super
paper towel
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811085307.0A
Other languages
English (en)
Other versions
CN109260764A (zh
Inventor
陈阳阳
谢阿田
戴江栋
崔久云
李春香
闫永胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201811085307.0A priority Critical patent/CN109260764B/zh
Publication of CN109260764A publication Critical patent/CN109260764A/zh
Application granted granted Critical
Publication of CN109260764B publication Critical patent/CN109260764B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paper (AREA)
  • Detergent Compositions (AREA)

Abstract

本发明属于环境功能材料制备技术领域,具体涉及一种超亲水/水下超疏油自清洁纸巾纤维膜的制备方法;具体步骤为:首先制备得到二氧化钛纳米线,加入去离子水中,超声、搅拌,形成二氧化钛悬浮液;然后,将纸巾加入到去离子水中,搅拌形成分散液,加入到二氧化钛悬浮液中,再加入三(羟甲基)氨基甲烷和多巴胺,搅拌,经过真空抽滤、真空干燥,得到自清洁纸巾纤维膜;本发明所制得的自清洁纸巾纤维膜结构稳定、分离效率高、抗污性和再生性强;本发明所用前驱体材料为纸巾,来源丰富、价格低廉;并且制备工艺简单、经济环保,应用前景广阔。

Description

一种超亲水/水下超疏油自清洁纸巾纤维膜的制备方法
技术领域
本发明属于环境功能材料制备技术领域,具体涉及一种超亲水/水下超疏油自清洁纸巾纤维膜的制备方法。
背景技术
不断增长的石油泄漏事件和工业含油废水的产生已经造成严重的生态危机,如石油漂浮在水面,会迅速扩散形成一层不透气的油膜会阻碍水体的复氧作用,导致水体缺氧,影响浮游生物生长,破坏生态平衡;而且,不可分解的废油还可能产生其他有毒物质,进一步污染生态环境,影响人类安全。传统的含油废水处理的方法主要有离心、沉淀、过滤和浮选,但是由于分离效率低,成本高和二次污染已经受到限制。因此,解决含油废水的分离问题是当务之急。
近年来,仿生特殊浸润性材料的发展为油水分离提供了有效的思路。特殊浸润性材料主要包括受荷叶、水稻叶启发的超疏水超亲油材料和受鱼鳞、贻贝启发的超亲水/水下超疏油材料。然而,超疏水超亲油材料表面容易被油污染或堵塞,甚至被油损坏,因此无法多次循环利用。考虑到上述情况,超亲水/水下超疏油材料在油水分离方面已经得到广泛的应用,其中包括经过亲水性物质改性的PVDF膜、海绵、不锈钢网膜等,这些膜材料表面允许水通过而排斥油,可以有效地防止油污染;但另一方面,虽然这些超亲水/水下超疏油材料具有抗污性能,却存在着成本高,毒性大的缺点,从而限制了它们的应用。同时,在长期油水分离过程中,膜表面将不可避免地被少量油污染而缩短使用寿命。因此,开发环保,无毒,低成本,具有超强自清洁膜材料具有重要意义。
发明内容
本发明的目的在于克服现有技术中的不足,本发明提供一种超亲水/水下超疏油自清洁纸巾纤维膜的制备方法,具体步骤如下:
(1)制备二氧化钛(TiO2)纳米线:首先,将二氧化碳P-25加入NaOH溶液,搅拌;然后,转移到聚四氟乙烯反应釜中,加热,自然冷却至室温,用去离子水洗涤至中性,浸入硝酸中,得到钛酸;最后,将钛酸在空气范围中进行热处理,获得TiO2纳米线;
(2)制备自清洁纸巾纤维膜:首先,将步骤(1)得到的TiO2纳米线加入去离子水中,超声、搅拌,形成TiO2悬浮液;然后,将纸巾加入到去离子水中,搅拌形成分散液,加入到TiO2悬浮液中,再加入三(羟甲基)氨基甲烷和多巴胺,搅拌,最后,经过真空抽滤、真空干燥,得到自清洁纸巾纤维膜。
优选的,步骤(1)中,所述二氧化钛P-25粉末与NaOH溶液的用量比为3g:100mL,NaOH溶液的浓度为10M。
优选的,步骤(1)中,所述加热温度为200℃,时间为18-22h。
优选的,步骤(1)中,所述硝酸的用量为50-150mL,浓度为0.1M。
优选的,步骤(1)中,所述热处理温度为500℃,升温速率为5℃/min,维持时间为3h。
优选的,步骤(2)中,所述TiO2纳米线与去离子水的用量比为0.02-0.06g:50mL。
优选的,步骤(2)中,所述纸巾与去离子水的用量比为0.1-0.5g:50mL。
优选的,步骤(2)中,所述纸巾、三(羟甲基)氨基甲烷和多巴胺的用量比为0.1-0.5g:0.1211g:0.2g。
优选的,步骤(2)中,所述超声时间为10min。
优选的,步骤(2)中,所述加入三(羟甲基)氨基甲烷和多巴胺后的搅拌时间为3-12h
优选的,步骤(2)中,所述真空干燥的温度为60℃,时间为6h。
本发明所用的基体为纸巾,所制得的自清洁纸巾纤维膜材料,具有超亲水/水下超疏油特性,分离效率高,性能稳定、抗污和再生利用性能好,可应用于环境污水处理。
本发明的有益效果在于:
(1)本发明制得的自清洁纸巾纤维膜水下油接触角大于150°,具有水下超疏油特性;并且在纸巾表面紧密的附有TiO2纳米线,与三维网络结构形成微纳米多级结构,有利于材料的超疏油性。
(2)本发明制得的自清洁纸巾纤维膜分离效率高,对各种油水混合物的分离效率可达99%以上。
(3)本发明制备的自清洁纸巾纤维膜性能稳定、抗污性强,在紫外光驱动下,经过80次油水分离循环,自清洁纸巾纤维膜依然保持超疏油的性质,表明自清洁纸巾纤维膜具有良好的稳定性和抗污性。
(4)本发明制备的自清洁纸巾纤维膜具有优异的再生性能,在经过80次油水分离后,自清洁纸巾纤维膜的分离效率没有下降,说明自清洁纸巾纤维膜具有优异的再生能力。
(5)本发明所用前驱体材料为纸巾,来源丰富、价格低廉;并且制备工艺简单易行、不需要大型昂贵仪器、经济环保。
附图说明
图1为原始纸巾纤维膜(a)和实施例2制备的自清洁纸巾纤维膜(b)的照片。
图2为实施例2制备的自清洁纸巾纤维膜的扫描电镜(SEM)图,其中(a)为1000倍的SEM图,(b)为3000倍的SEM图。
图3为实施例2制备自清洁纸巾纤维膜在空气中的水接触角图片(a),水中油接触角的图片(b)和膜表面水中油滴图片(c)。
图4为实施例2制备的自清洁纸巾纤维膜的实验过程,其中(a1)为己烷-水混合物分离前照片,(a2)为己烷-水混合物分离后照片,(b1)为二氯甲烷-水混合物分离前照片,(b2)为二氯甲烷-水混合物分离后照片。
图5为实施例2制备的自清洁纸巾纤维膜分离各种油水混合物的分离效率和水通量,其中A为二氯甲烷-水的混合物、B为石油醚-水的混合物、C为甲苯-水的混合物、D为大豆油-水的混合物、E为柴油-水的混合物、F为己烷-水的混合物。
图6为实施例2制备的自清洁纸巾纤维膜前20次油水分离的分离效率和水通量(a),前80次油水分离的水下油接触角(b),20~80次油水分离的分离效率和水通量(c)和80次油水分离后的SEM图(d)。
具体实施方式
为了阐明本发明的技术方案及技术目的,下面结合附图及具体实施例对本发明做进一步的介绍。
实施例1:
(1)首先,将3g的P-25粉末分散在100mL浓度为10M的NaOH溶液中,搅拌10min,然后,将混合溶液转移到聚四氟乙烯反应釜中并在烘箱中在加热18h。在自然冷却至室温后,将收集的产物用去离子水洗涤至中性,浸入50mL、0.1M的硝酸溶液中,干燥得到钛酸;最后,将钛酸在空气中热处理,温度为500℃,升温速率为5℃/min,维持时间为3h,获得TiO2纳米线。
(2)首先,将0.06g的TiO2纳米线分散在50mL去离子水中,超声10min,搅拌30min后形成悬浮液;同时,将0.5g纸巾加入到50mL去离子水中,搅拌30min,然后,将纸巾分散液倒入TiO2悬浮液中,同时将0.1211g三(羟甲基)氨基甲烷和0.2g多巴胺加入到混合物中,搅拌9h,真空过滤后,置于真空烘箱中60℃干燥6h,获得自清洁纸巾纤维膜材料。
实施例2:
(1)首先,将3g的P-25粉末分散在100mL浓度为10M的NaOH溶液中,搅拌10min,然后将混合溶液转移到聚四氟乙烯反应釜中并在烘箱中,加热20h,在自然冷却至室温后,将收集的产物用去离子水洗涤至中性;浸入100mL、0.1M的硝酸溶液中,得到钛酸;最后,将钛酸在空气中热处理,温度为500℃,升温速率为5℃/min,维持时间为3h,获得TiO2纳米线。
(2)将0.04g的TiO2纳米线分散在50mL去离子水中,超声10min、搅拌30min形成悬浮液;同时,将0.3g纸巾加入到50mL去离子水中,搅拌30min,然后,将纸巾分散液倒入TiO2悬浮液中,同时将0.1211g三(羟甲基)氨基甲烷和0.2g多巴胺加入到混合物中,搅拌6h,经真空过滤后,置于真空烘箱中60℃干燥6h,获得自清洁纸巾纤维膜材料。
实施例3:
(1)首先,将3g的P-25粉末分散在100mL浓度为10M的NaOH溶液中,搅拌10min,然后,将混合溶液转移到聚四氟乙烯反应釜中并在烘箱中,加热22h;在自然冷却至室温后,将收集的产物用去离子水洗涤至中性,随之将样品浸入150mL、0.1M硝酸中,得到钛酸;最后,将钛酸在空气中热处理,温度为500℃,升温速率为5℃/min,维持时间为3h,获得TiO2纳米线。
(2)将0.02g的TiO2纳米线分散在50mL去离子水超声10min、搅拌30min形成悬浮液,同时将0.1g纸巾加入到50mL去离子水中,搅拌30min,然后,将纸巾分散液倒入TiO2悬浮液中,同时将浓度0.1211g三(羟甲基)氨基甲烷和0.2g多巴胺加入到混合物中搅拌3h,经真空过滤后,将膜置于真空烘箱中60℃干燥6h,获得自清洁纸巾纤维膜材料。
图1中(a)和(b)分别为原始纸巾纤维膜和实施例2制备的自清洁纸巾纤维膜;原始纸巾纤维膜的制作过程为:将纸巾置于去离子水中搅拌之后,经过真空抽滤和真空干燥后,即得;从图(a)和(b)对比,可以看出(b)中自清洁纸巾纤维膜颜色发生改变,膜的基本结构没有改变,表明原始纸巾被成功改性。
图2中(a)和(b)分别为实施例2制备的自清洁纸巾纤维膜1000倍、3000倍的扫描电镜图;从图(a)可以看出自清洁纸巾纤维膜具有三维网络结构,纤维交织在一起;从(b)中可以看到自清洁纸巾纤维膜表面紧密的附有一层TiO2纳米线,与三维网络结构形成微纳米多级结构,有助于提高材料的粗糙结构,从而有利于材料超疏油性。
图3分别为实施例2制备的自清洁纸巾纤维膜的空气中水接触角、水中油接触角和水中油滴照片;从图(a)可以看到自清洁纸巾纤维膜的水接触角为0°,为超亲水性;从图(b)可以看到自清洁纸巾纤维膜的水下油接触角为156°±1°(>150°),表现出水下超疏油性;从图(c)可以看到在自清洁纸巾纤维膜表面油滴可以稳定存在并且近似为球形,进一步表明自清洁纸巾纤维膜具有水下超疏油性。
2、下面结合具体实施实例对本发明做进一步说明:
本发明中具体实施方案中分离性能评价按照下述方法进行:利用分离实验完成,自清洁纸巾纤维膜被水润湿,然后夹在两个直径为0.8cm的聚四氟乙烯法兰中形成油水分离装置。然后制备油水混合物:将15mL被苏丹III染色的油倒入15mL被甲基蓝(MB)染色的水中形成油水混合物。最后,通过分离装置将油水混合物完全分离,称量分离后水的量和分离之前水的量。选择己烷和二氯甲烷为代表。分离效率(η)由以下方程计算:
Figure BDA0001802958540000051
其中m0和m1分别是水的初始量和在时间t内渗透过膜的量,单位为(g)。
通过以下公式计算流体通量:
Figure BDA0001802958540000052
J为流体通量,单位为(L·m-2·h-1);V为水的渗透体积,单位为(L);S为膜的有效接触面积,单位为(m2);t为渗透时间,单位为(h)。
图4(a1)、(a2)、(b1)和(b2)为实施例2制备的自清洁纸巾纤维膜油水分离的实验过程,具体的(a1)为己烷-水混合物分离前照片,(a2)为己烷-水混合物分离后照片,(b1)为二氯甲烷-水混合物分离前照片,(b2)为二氯甲烷-水混合物分离后照片,表明自清洁纸巾纤维膜不仅可以分离轻油也可以分离重油;
图5为实施例2制备的自清洁纸巾纤维膜对不同油-水混合物的分离效率和水通量(A、B、C、D、E、F分别代表二氯甲烷-水、石油醚-水、甲苯-水、大豆油-水、柴油-水、己烷-水的混合物);表明自清洁纸巾纤维膜可以分离轻/重油-水混合物,并且对各种油水混合物有高的分离效率和较高的水通量。
图6为实施例2制备的自清洁纸巾纤维膜前20次油水分离的分离效率和水通量(a),前80次油水分离的水下油接触角(b),20-80次油水分离的分离效率和水通量(c)和80次油水分离后的SEM图(d);从(a)中可以看出自清洁纸巾纤维膜10~20次油水分离的分离效率和水通量逐渐下降,(b)、(c)和(d)可以看出分离效率和水通量逐渐下降的膜在紫外光驱动下恢复了水下超疏油的性能,同时分离效率和水通量也迅速恢复,至少经过80次油水分离循环,而且80次油水分离后自清洁纸巾纤维膜的表面结构没有改变,表明自清洁纸巾纤维膜在紫外光驱动下有优异的自清洁能力、高的稳定性和卓越的再生循环能力。

Claims (6)

1.一种能够在紫外光驱动下恢复分离性能的超亲水/水下超疏油自清洁纸巾纤维膜的制备方法,其特征在于,步骤如下:
(1)制备二氧化钛纳米线:首先,将二氧化碳P-25加入NaOH溶液,搅拌;所述二氧化钛P-25粉末与NaOH溶液的用量比为3g:100mL,NaOH溶液的浓度为10M;然后,转移到聚四氟乙烯反应釜中,加热,加热温度为200℃,时间为18-22h;加热后自然冷却至室温,用去离子水洗涤至中性,浸入硝酸中,得到钛酸;最后,将钛酸在空气范围中进行热处理,获得TiO2纳米线;所述热处理温度为500℃,升温速率为5℃/min,维持时间为3h;
(2)将步骤(1)制备的二氧化钛纳米线加入去离子水中,超声、搅拌,形成二氧化钛悬浮液;所述TiO2纳米线与去离子水的用量比为0.02-0.06g:50mL;然后,将纸巾加入到去离子水中,搅拌形成分散液,加入到二氧化钛悬浮液中,再加入三(羟甲基)氨基甲烷和多巴胺,搅拌,最后,经过真空抽滤、真空干燥,得到自清洁纸巾纤维膜;所述自清洁纸巾纤维膜的纸巾表面附有TiO2纳米线,与三维网络结构形成微纳米多级结构;所述纸巾、三(羟甲基)氨基甲烷和多巴胺的用量比为0.1-0.5g:0.1211g:0.2g;所述自清洁纸巾纤维膜在紫外光驱动下有自清洁能力、稳定性和再生循环能力;使用过程中分离效率和水通量逐渐下降的自清洁纸巾纤维膜在紫外光驱动下恢复了水下超疏油的性能,同时分离效率和水通量也迅速恢复;所述自清洁纸巾纤维膜可以经过80次油水分离循环使用,而且80次油水分离后自清洁纸巾纤维膜的表面结构没有改变。
2.根据权利要求1所述的一种能够在紫外光驱动下恢复分离性能的超亲水/水下超疏油自清洁纸巾纤维膜的制备方法,其特征在于,步骤(2)中,所述纸巾与去离子水的用量比为0.1-0.5g:50mL。
3.根据权利要求1所述的一种能够在紫外光驱动下恢复分离性能的超亲水/水下超疏油自清洁纸巾纤维膜的制备方法,其特征在于,步骤(2)中,所述超声时间为10min。
4.根据权利要求1所述的一种能够在紫外光驱动下恢复分离性能的超亲水/水下超疏油自清洁纸巾纤维膜的制备方法,其特征在于,步骤(2)中,所述加入三(羟甲基)氨基甲烷和多巴胺后的搅拌时间为3-12h。
5.根据权利要求1所述的一种能够在紫外光驱动下恢复分离性能的超亲水/ 水下超疏油自清洁纸巾纤维膜的制备方法,其特征在于,步骤(2)中,所述真空干燥的温度为60℃,时间为6h。
6.根据权利要求1~5任一所述的方法制备的能够在紫外光驱动下恢复分离性能的超亲水/水下超疏油自清洁纸巾纤维膜应用于含油水体中的油水分离。
CN201811085307.0A 2018-09-18 2018-09-18 一种超亲水/水下超疏油自清洁纸巾纤维膜的制备方法 Active CN109260764B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811085307.0A CN109260764B (zh) 2018-09-18 2018-09-18 一种超亲水/水下超疏油自清洁纸巾纤维膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811085307.0A CN109260764B (zh) 2018-09-18 2018-09-18 一种超亲水/水下超疏油自清洁纸巾纤维膜的制备方法

Publications (2)

Publication Number Publication Date
CN109260764A CN109260764A (zh) 2019-01-25
CN109260764B true CN109260764B (zh) 2021-05-25

Family

ID=65189322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811085307.0A Active CN109260764B (zh) 2018-09-18 2018-09-18 一种超亲水/水下超疏油自清洁纸巾纤维膜的制备方法

Country Status (1)

Country Link
CN (1) CN109260764B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114436366B (zh) * 2020-11-06 2023-04-07 中国石油天然气股份有限公司 油水分离装置及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225273A (zh) * 2011-04-27 2011-10-26 湖南师范大学 一种超疏水超亲油纸基分离材料的制备方法及应用
CN106731012A (zh) * 2016-12-22 2017-05-31 北京航空航天大学 一种超浸润二氧化钛纳米棒多孔膜的制备及其在乳液分离中的应用
CN107158959A (zh) * 2017-06-20 2017-09-15 天津大学 一种超亲水及水下超疏油多孔复合膜制备方法
CN107213801A (zh) * 2017-07-14 2017-09-29 中国科学院宁波材料技术与工程研究所 一种超亲水并且水下超疏油的陶瓷膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225273A (zh) * 2011-04-27 2011-10-26 湖南师范大学 一种超疏水超亲油纸基分离材料的制备方法及应用
CN106731012A (zh) * 2016-12-22 2017-05-31 北京航空航天大学 一种超浸润二氧化钛纳米棒多孔膜的制备及其在乳液分离中的应用
CN107158959A (zh) * 2017-06-20 2017-09-15 天津大学 一种超亲水及水下超疏油多孔复合膜制备方法
CN107213801A (zh) * 2017-07-14 2017-09-29 中国科学院宁波材料技术与工程研究所 一种超亲水并且水下超疏油的陶瓷膜及其制备方法

Also Published As

Publication number Publication date
CN109260764A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
Deng et al. Recent development of super-wettable materials and their applications in oil-water separation
Yin et al. A multifunctional and environmentally safe superhydrophobic membrane with superior oil/water separation, photocatalytic degradation and anti-biofouling performance
Bet-Moushoul et al. TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes
Liu et al. A robust and antibacterial superhydrophobic cotton fabric with sunlight-driven self-cleaning performance for oil/water separation
Zhang et al. A durable and high-flux composite coating nylon membrane for oil-water separation
CN110251994B (zh) 一种基于二维材料的按需油水分离膜及其制备方法
CN108771975B (zh) 一种超亲水/水下超疏油聚偏氟乙烯复合膜的制备方法及其应用
CN106110901B (zh) 一种抗菌防污油水分离材料及其制备方法
CN102974238A (zh) 一种利用生物制剂进行pva接枝的膜表面亲水改性方法
CN109925747B (zh) 一种紫外光照可控制超疏水-超亲水可逆转换的油水分离材料
CN114272766B (zh) 一种二维MXene基油水分离膜及其制备方法
CN102085459A (zh) 一种抗污染油水分离超滤膜的制备方法
CN113457474B (zh) 一种纳米纤维膜材料、制备方法及其应用
Liu et al. Bioinspired membranes for multi-phase liquid and molecule separation
CN108516607B (zh) 一种油水乳液分离方法及用于油水乳液分离的滤膜
CN107008161B (zh) 一种普鲁士蓝/羧甲基纤维素凝胶改性复合膜及制备方法和用途
CN109260764B (zh) 一种超亲水/水下超疏油自清洁纸巾纤维膜的制备方法
Yeh et al. Tunable nanostructured stainless-steel coating for high-selective and high-permeable separation membranes for oil/water emulsions
Zhang et al. A multifunctional composite membrane with photocatalytic, self-cleaning, oil/water separation and antibacterial properties
CN109675442A (zh) 一种超亲水/水下超疏油可见光驱动抗污性膜的制备方法
Cui et al. A Self-Cleaning TiO2 Bacterial Cellulose Super-Hydrophilic Underwater Super-Oleophobic Composite Membrane for Efficient Oil–Water Separation
CN108837711B (zh) 一种纳米粒子改性pvdf平板膜的制备方法及其应用
CN112604514A (zh) 一种超疏水聚偏氟乙烯油水分离复合膜及其制备方法和应用
Lv et al. In-situ growth hierarchical and superhydrophobic flower-like Cu3 (PO4) 2· 2H2O nanosheets based on copper mesh for efficient oil–water separation
Rahmanzadeh et al. C3N4-BiOBr/PVC photocatalytic submerged membrane for oil-in-water emulsion separation with visible light-driven self-cleaning performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant