CN108516607B - 一种油水乳液分离方法及用于油水乳液分离的滤膜 - Google Patents

一种油水乳液分离方法及用于油水乳液分离的滤膜 Download PDF

Info

Publication number
CN108516607B
CN108516607B CN201810270156.XA CN201810270156A CN108516607B CN 108516607 B CN108516607 B CN 108516607B CN 201810270156 A CN201810270156 A CN 201810270156A CN 108516607 B CN108516607 B CN 108516607B
Authority
CN
China
Prior art keywords
cellulose
oil
filter membrane
composite nano
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810270156.XA
Other languages
English (en)
Other versions
CN108516607A (zh
Inventor
常春雨
詹慧
陶荣军
张俐娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU Institute OF WUHAN UNIVERSITY
Original Assignee
SUZHOU Institute OF WUHAN UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU Institute OF WUHAN UNIVERSITY filed Critical SUZHOU Institute OF WUHAN UNIVERSITY
Priority to CN201810270156.XA priority Critical patent/CN108516607B/zh
Publication of CN108516607A publication Critical patent/CN108516607A/zh
Application granted granted Critical
Publication of CN108516607B publication Critical patent/CN108516607B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/08Thickening liquid suspensions by filtration
    • B01D17/085Thickening liquid suspensions by filtration with membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明公开一种油水乳液分离方法及紫外响应自清洁型复合纳米纤维素油水分离滤膜。采用由纳米纤维素及二氧化钛复合而成的复合纳米纤维素油水分离滤膜进行分离。本发明简单易行、成本低、无毒性,且基于二氧化钛纳米晶体的紫外亲水响应性以及自清洁功能,经过一定波长的紫外光处理后,不仅可以有效提升油水乳液分离效率,还能自动恢复被污染滤膜的浸润性。

Description

一种油水乳液分离方法及用于油水乳液分离的滤膜
技术领域
本发明涉及一种油水乳液分离方法及紫外响应自清洁型复合纳米纤维素油水分离滤膜,属于化学化工、高分子功能材料领域。
背景技术
含油废水是常见的环境污染源之一,严重威胁着人类的健康和社会的发展。无论是水处理还是油类回收都需要对含油废水进行有效分离。对于这些油水废液,传统的处理方法主要有:重力分离、离心、过滤、浮选以及电化学的方法等。通过结合物理、化学、生物等各方面的方法可以解决大多数分离需求。然而,由于这些方法往往会局限于较低的分离效率,较高的能耗以及容易造成二次污染等问题。且这些方法只能有效分离浮油和分散油,而乳化油处于稳定状态且油滴粒径较小(小于10μm)很难被有效分离。常用的化学凝聚、电解、电磁吸附等处理乳化油的方法存在耗能高、耗时长、工艺复杂等问题。因此当务之急是寻找一种高效优质的分离方法。常见的分离膜是合成的高分子(如聚偏二氟乙烯、聚碳酸酯)滤膜和陶瓷膜。合成高分子分离膜通常需要使用有害的试剂和凝聚剂来实现相转变,制备工艺复杂,而陶瓷膜质量大,难处理,需要修饰改性,制备成本高。
纤维素纳米纤维具有高结晶度、高强度及高比表面积等特性,加之具有轻质、生物相容性及可降解性,其在造纸、建筑、食品、电子产品、医学等众多领域具有极大的应用前景。常见纤维素纳米纤维制备方法有机械法,化学法及生物处理法等。本应用中纳米纤维素制备过程能耗低,得率高,所得纳米纤维长径比大,在水中能稳定分散而不聚集。二氧化钛(TiO2)是一种半导体材料,具有成本低、无污染、对人体无毒害和热稳定性好等特点。以TiO2为主体材料制备的薄膜具有优良的光催化性、亲水性和稳定的化学性能,这使其在诸多领域有着巨大的用途。在纳米纤维素上原位生长二氧化钛纳米晶体,操作简单、成本低且污染小。综合二者的优势,制得的滤膜在油水乳液分离、及有机污染物的紫外自清洁方面有潜在应用价值。
发明内容
本发明为克服现有技术的不足,提供一种油水乳液分离方法及紫外响应自清洁型复合纳米纤维素油水分离滤膜。
本发明的技术方案可以通过以下技术措施来实现:
一种油水乳液分离方法,采用复合纳米纤维素滤膜进行分离,所述滤膜由纳米纤维素及二氧化钛复合而成。
优选地,采用复合纳米纤维素滤膜进行油水乳液分离之前,对其进行紫外光照处理,可提高复合纳米纤维素滤膜的流通量。
优选地,采用复合纳米纤维素滤膜进行油水乳液分离之后,滤膜因污染失去亲水性和水下超疏油性,再次对其进行紫外光照处理,可恢复复合纳米纤维素滤膜的浸润性。
优选地,所述复合纳米纤维素滤膜的制备方法如下:
步骤一:将纤维素分散于硫酸溶液中,在机械搅拌下进行反应6h;
步骤二:离心3~4次后,在沉淀物中加入蒸馏水稀释,对水透析至溶液呈中性,即得到纳米纤维素溶液;
步骤三:向所得纳米纤维素溶液中加入硫酸氧钛,在70℃下持续反应4.5h,水解得到的二氧化钛原位生长在纳米纤维素上,得到复合纳米纤维素水分散液;
步骤四:将复合纳米纤维素水分散液进行减压抽滤,干燥成膜,得到复合纳米纤维素滤膜。
优选地,所述复合纳米纤维素滤膜中纳米纤维素的含量为20%~80%。
优选地,所述纤维素的来源包括棉纤维素、木浆纤维素、海藻纤维素、海鞘纤维素、细菌纤维素。
优选地,步骤四作为减压抽滤基底的滤膜孔径为0.22μm。
一种紫外响应自清洁型复合纳米纤维素油水分离滤膜,采用上述的方法制备得到。
所述紫外响应自清洁型复合纳米纤维素油水分离滤膜的厚度可通过调节单位面积上复合的纳米纤维素水分散液用量来控制。
与已有技术相比较,本发明具有创新如下:
本发明所述复合纳米纤维素滤膜在空气中亲水,且水下疏油,在纤维素上原位生长纳米级二氧化钛可增加其粗糙度,将亲水的性质与粗糙表面结合,有利于油水乳液的分离。
由于二氧化钛具有紫外响应性,在紫外光照射后,二氧化钛的亲水性增强,有利于水的通过,提高滤膜油水乳液分离的流通量。
滤膜被油酸等一类有机物污染后,原有的亲水性及水下疏油性后受到影响,通过二氧化钛的紫外催化特性,有利于这类有机物分解成易挥发的小分子,如油酸可能分解成碳链较短的小分子,甚至是二氧化碳和水分子,从而使滤膜恢复其本身的浸润性。
本发明以天然高分子纤维素为原料,可循环再生,具有生物降解性。通过原位生长二氧化钛纳米晶体于纳米纤维素上,得到复合的纳米纤维素水分散液,直接减压过滤成膜,制备过程简单、快速、方便、低成本、无污染。此外,通过一定波长的紫外光照射处理,不仅可以有效提升油水乳液分离效率,还能自动恢复被有机污染物污染的滤膜的浸润性。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制。
图1是本发明实施例1所得紫外响应自清洁型复合纳米纤维素油水分离滤膜的扫描电镜图;
图2是本发明实施例4中紫外响应自清洁型复合纳米纤维素油水分离滤膜在大豆油乳液中的接触角测试结果,其中:(a)为紫外光照射之前水中油接触角和(b)为照射紫外光4小时后的水中油接触角;
图3是本发明实施例6中紫外响应自清洁型复合纳米纤维素油水分离滤膜分离十六烷乳液的实物前后对比图,其中(a)为分离前微米级十六烷乳液(浑浊状),(b)为分离后的收集的滤液(澄清状);
图4是本发明实施例6中十六烷乳液分离前后的粒径对比图,其中(a)为分离前微米级十六烷乳液,(b)为分离后的收集的滤液;
图5是本发明实施例5中紫外响应自清洁型复合纳米纤维素油水分离滤膜的接触角变化情况,其中(a)为空气中水的接触角、经油酸污染后的以及照射紫外后的接触角。(b)为水下油的接触角、经油酸污染后的以及照射紫外后的接触角。
具体实施方式
以下实施例进一步说明本发明的内容,但不应该理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或者条件所作的修改或替换,均属于本发明的范围。若未特别声明,实施例中所用的技术手段为本领域人员所熟知的常规手段。
实施例1
当复合的纳米纤维素水分散液中二氧化钛含量为25%时,用孔径为0.22μm普通滤膜,抽滤制成0.72g m-2的复合纳米纤维素膜。用该膜进行纯水流通量测试,流通量为5603.88±788.42L·m-2·h-1·MPa-1
实施例2
当复合的纳米纤维素水分散液中二氧化钛含量为50%时,用孔径为0.22μm普通滤膜,抽滤制成0.72g m-2的复合纳米纤维素膜。用该膜进行纯水流通量测试,流通量为11252.66±718.39L·m-2·h-1·MPa-1
实施例3
将复合的纳米纤维素水分散液,其中二氧化钛含量为50%,用孔径为0.22μm普通滤膜,抽滤制成0.72g m-2的复合纳米纤维素膜。用该膜进行油水乳液分离测试,分离微米级大豆油乳液,大豆油与水质量比为1:2000,该膜有利于破乳,有效截留乳化油滴,达到油水分离目的。该滤膜的分离效率为99.48±0.03%,流通量为572.26±31.36L·m-2·h-1·MPa-1
实施例4
将复合的纳米纤维素水分散液,其中二氧化钛含量为50%,用孔径为0.22μm普通滤膜,抽滤制成0.72g m-2的复合纳米纤维素膜。经365nm紫外照射4小时后,用该膜进行油水乳液分离测试,分离微米级大豆油乳液,大豆油与水质量比为1:2000,该膜有利于破乳,有效截留乳化油滴,达到油水分离目的。,该滤膜的分离效率为99.52±0.02%,流通量为1887.37±195.38L·m-2·h-1·MPa-1
实施例5
将复合的纳米纤维素水分散液,用孔径为0.22μm普通滤膜,抽滤制成2.88g m-2的复合纳米纤维素膜。测试该膜在空气中水的接触角为0°,经油酸污染后接触角变为59.5°±1.2°,经365nm紫外照射处理后接触角又恢复为0°。
实施例6
将复合的纳米纤维素水分散液,用孔径为0.22μm普通滤膜,抽滤制成2.88g m-2的复合纳米纤维素膜。油的种类为十六烷,测试该膜在水下油的接触角为138.6°±1.6°,经油酸污染后接触角变为83.4°±1.1°,经365nm紫外照射处理后接触角又恢复为122.8°±1.4°。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (4)

1.一种油水乳液分离方法,其特征在于,采用复合纳米纤维素滤膜进行分离,所述复合纳米纤维素滤膜由纳米纤维素及二氧化钛复合而成;采用复合纳米纤维素滤膜进行油水乳液分离之前,对其进行紫外光照处理;采用复合纳米纤维素滤膜进行油水乳液分离之后,对其进行紫外光照处理;
所述复合纳米纤维素滤膜的制备方法如下:
步骤一:将纤维素分散于硫酸溶液中,在机械搅拌下进行反应6h;
步骤二:离心3~4次后,在沉淀物中加入蒸馏水稀释,对水透析至溶液呈中性,即得到纳米纤维素溶液;
步骤三:向所得纳米纤维素溶液中加入硫酸氧钛,水解得到的二氧化钛原位生长在纳米纤维素上,得到复合纳米纤维素水分散液;
步骤四:将复合纳米纤维素水分散液进行减压抽滤,干燥成膜,得到复合纳米纤维素滤膜。
2.根据权利要求1所述的方法,其特征在于,所述复合纳米纤维素滤膜中纳米纤维素的含量为20%~80%。
3.根据权利要求1所述的方法,其特征在于,所述纤维素的来源包括棉纤维素、木浆纤维素、海藻纤维素、海鞘纤维素、细菌纤维素。
4.根据权利要求1所述的方法,其特征在于,步骤四作为减压抽滤基底的滤膜孔径为0.22μm。
CN201810270156.XA 2018-03-29 2018-03-29 一种油水乳液分离方法及用于油水乳液分离的滤膜 Active CN108516607B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810270156.XA CN108516607B (zh) 2018-03-29 2018-03-29 一种油水乳液分离方法及用于油水乳液分离的滤膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810270156.XA CN108516607B (zh) 2018-03-29 2018-03-29 一种油水乳液分离方法及用于油水乳液分离的滤膜

Publications (2)

Publication Number Publication Date
CN108516607A CN108516607A (zh) 2018-09-11
CN108516607B true CN108516607B (zh) 2021-07-20

Family

ID=63431177

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810270156.XA Active CN108516607B (zh) 2018-03-29 2018-03-29 一种油水乳液分离方法及用于油水乳液分离的滤膜

Country Status (1)

Country Link
CN (1) CN108516607B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109675442A (zh) * 2019-01-11 2019-04-26 江苏大学 一种超亲水/水下超疏油可见光驱动抗污性膜的制备方法
CN110960993B (zh) * 2019-10-31 2021-05-04 武汉大学 一种基于喷墨打印的全纤维素分离滤膜的制备方法及应用
CN112717472B (zh) * 2021-02-23 2022-07-22 江苏科技大学 一种桑纤维复合立体油水分离膜的制备方法
CN115364694A (zh) * 2022-09-14 2022-11-22 常州大学 一种ZCS-TiO2为材料制备细菌纤维素多功能膜的方法以及在油水分离中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006042876A1 (de) * 2006-09-13 2008-03-27 Schott Ag Asymmetrische Membran, umfassend eine anorganische Funktionsbeschichtung, zur Verwendung als Umkehrosmosemembran, Verfahren zu deren Herstellung und deren Verwendung
CN101745430A (zh) * 2009-12-15 2010-06-23 武汉大学 具有光催化活性的纤维素复合材料及其制备方法和应用
CN105536567A (zh) * 2015-12-25 2016-05-04 武汉大学 一种海鞘纳米纤维素超滤膜及其制备方法和应用
CN106031863A (zh) * 2015-03-18 2016-10-19 中国科学院过程工程研究所 一种吸附分离复合纤维膜、制备方法及其用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006042876A1 (de) * 2006-09-13 2008-03-27 Schott Ag Asymmetrische Membran, umfassend eine anorganische Funktionsbeschichtung, zur Verwendung als Umkehrosmosemembran, Verfahren zu deren Herstellung und deren Verwendung
CN101745430A (zh) * 2009-12-15 2010-06-23 武汉大学 具有光催化活性的纤维素复合材料及其制备方法和应用
CN106031863A (zh) * 2015-03-18 2016-10-19 中国科学院过程工程研究所 一种吸附分离复合纤维膜、制备方法及其用途
CN105536567A (zh) * 2015-12-25 2016-05-04 武汉大学 一种海鞘纳米纤维素超滤膜及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
二氧化钛亲水性技术现状;王洪梅等;《环境科学动态》;20030228;参见第一段 *

Also Published As

Publication number Publication date
CN108516607A (zh) 2018-09-11

Similar Documents

Publication Publication Date Title
CN108516607B (zh) 一种油水乳液分离方法及用于油水乳液分离的滤膜
Wahid et al. Designing of bacterial cellulose-based superhydrophilic/underwater superoleophobic membrane for oil/water separation
Pervez et al. A critical review on nanomaterials membrane bioreactor (NMs-MBR) for wastewater treatment
Ahmed et al. Strategies to improve membrane performance in wastewater treatment
Gopi et al. Chitin nanowhisker–Inspired electrospun PVDF membrane for enhanced oil-water separation
Zhuang et al. Gluconacetobacter xylinus synthesized biocellulose nanofiber membranes with superhydrophilic and superoleophobic underwater properties for the high-efficiency separation of oil/water emulsions
Zhang et al. A facile TiO 2/PVDF composite membrane synthesis and their application in water purification
Hu et al. Janus hollow fiber membranes with functionalized outer surfaces for continuous demulsification and separation of oil-in-water emulsions
Zulkefli et al. Recent mitigation strategies on membrane fouling for oily wastewater treatment
Bhat et al. Nanocomposite membrane for environmental remediation
CN113457474B (zh) 一种纳米纤维膜材料、制备方法及其应用
Adam et al. Influence of the natural zeolite particle size toward the ammonia adsorption activity in ceramic hollow fiber membrane
Suryanto et al. Properties of bacterial cellulose acetate nanocomposite with TiO2 nanoparticle and graphene reinforcement
Chong et al. Nanohybrid membrane in algal-membrane photoreactor: Microalgae cultivation and wastewater polishing
Li et al. Further modification of oil–water separation membrane based on chitosan and titanium dioxide
CN110922300A (zh) 一种醇类回收方法及装置
Zhou et al. Anti-fouling PVDF membranes incorporating photocatalytic biochar-TiO2 composite for lignin recycle
CN113023708B (zh) 一种从生物质燃烧烟尘中分离提取碳点及其功能化的方法
Dahiya et al. Separation of bacteria Kocuria rhizophila from fermentation broth by cross-flow microfiltration using inexpensive tubular ceramic membrane
Alias et al. Polymeric/ceramic membranes for water reuse
Mukherjee et al. Development of graphene oxide/chitosan composite membrane on ceramic support for atrazine remediation by MBR process
Bigogno et al. Integrated treatment of mining dam wastewater with quaternized chitosan and PAN/HPMC/AgNO 3 nanostructured hydrophylic membranes
CN109260764B (zh) 一种超亲水/水下超疏油自清洁纸巾纤维膜的制备方法
Saud et al. Date Palm Tree Leaf-Derived Cellulose Nanocrystal Incorporated Thin-Film Composite forward Osmosis Membranes for Produced Water Treatment
Yasin et al. Membrane Technology for Groundwater Purification: A review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant