CN109252101A - 一种提高无取向硅钢磁性能的方法 - Google Patents

一种提高无取向硅钢磁性能的方法 Download PDF

Info

Publication number
CN109252101A
CN109252101A CN201811299307.0A CN201811299307A CN109252101A CN 109252101 A CN109252101 A CN 109252101A CN 201811299307 A CN201811299307 A CN 201811299307A CN 109252101 A CN109252101 A CN 109252101A
Authority
CN
China
Prior art keywords
silicon steel
magnetic property
temperature
orientation silicon
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811299307.0A
Other languages
English (en)
Other versions
CN109252101B (zh
Inventor
刘海涛
陈冬梅
王超
安灵子
刘光军
王国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201811299307.0A priority Critical patent/CN109252101B/zh
Publication of CN109252101A publication Critical patent/CN109252101A/zh
Application granted granted Critical
Publication of CN109252101B publication Critical patent/CN109252101B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Abstract

一种提高无取向硅钢磁性能的方法,于包括以下步骤:(1)冶炼钢水,成分含Si 0.2~1.5%,Al 0.1~0.6%,Mn 0.1~0.7%,P≤0.2%,S≤0.003%,N≤0.003%,C≤0.005%,Sb 0~0.15%,Sn 0~0.15%,其余为Fe;钢水连铸制成连铸坯;(2)加热到1100~1200℃并保温1~2h,然后进行热轧,控制终轧温度在(Ar1-120)~(Ar1-70)℃,其中Ar1为γ/α相变温度;热轧后卷取;(3)开卷后酸洗再冷轧;(4)在保护气氛中进行退火处理,随炉冷却至400~500℃后空冷,涂覆绝缘膜。本发明冷轧前晶粒尺寸达到90~150μm,经过冷轧与退火后,成品板不利织构显著降低,有利织构提高,使无取向硅钢磁性能得到大幅度提升。

Description

一种提高无取向硅钢磁性能的方法
技术领域
本发明属于无取向电工钢制造技术领域,特别涉及一种提高无取向硅钢磁性能的方法。
背景技术
无取向硅钢是一种软磁材料,是磁性材料中用量最大的一种合金材料,在电力、电子和军事工业中占有非常重要的地位;无取向硅钢主要用于制造变压器,压缩机,电动机铁芯等,是电力工程、电机制造、家用电器等工业必不可少的重要材料。
随着电力行业的迅速发展,能源短缺和环境污染等问题日益突出,国家对电力设备的要求越来越高;因此,机电产品需朝着小型化、高精度化、高效率化方向发展,用普通冷轧硅钢片制造的铁芯已难以满足要求,迫切需要开发出低铁损、高磁通密度的冷轧无取向系列硅钢产品;目前,提高磁性能的方法主要有提纯钢液、添加微合金元素、采用常化工艺和中间退火工艺等;但这些技术往往导致成本增加,因此迫切需要一种制造成本涨幅不大且能提高无取向硅钢磁性能的技术。
发明内容
针对现有无取向硅钢板制备技术存在的上述问题,本发明提供一种提高无取向硅钢磁性能的方法,根据钢的相变温度控制终轧温度,进而调控热轧板内部的组织状态,以获得较低的形变储能,经高温卷取获得粗大的晶粒;由于组织、织构具有遗传性,所以,成品板的有利织构强度提高、不利织构强度降低,成品板的晶粒尺寸及磁性能都显著提高。
本发明的方法包括以下步骤:
(1)按设定化学成分冶炼钢水,其成分按质量百分比含Si 0.2~1.5%,Al 0.1~0.6%,Mn 0.1~0.7%,P≤0.2%,S≤0.003%,N≤0.003%,C≤0.005%,Sb 0~0.15%,Sn0~0.15%,其余为Fe和不可避免的杂质;将上述成分的钢水经连铸机制成连铸坯,厚度为200~250mm;
(2)将连铸坯加热到1100~1200℃并保温1~2h,然后进行热轧,控制终轧温度为T,且T=(Ar1-120)~(Ar1-70)℃,其中Ar1为γ/α相变温度,单位℃;热轧完成后卷取,卷取后空冷至室温,得到厚度为2.5~3.0mm的热轧卷;其中Ar1的计算公式为:Ar1=872℃+1000(11*[Si]-14*[Mn]+21*[Al]+24*[P]),[Si]、[Mn]、[Al]、[P]分别为Si、Mn、Al、P的质量百分数;
(3)将热轧卷开卷后酸洗,再冷轧制成厚度0.5mm的冷轧板;
(4)将冷轧板在保护气氛中进行退火处理,退火温度800~890℃,时间1~5min,然后随炉冷却至400~500℃,空冷至室温;最后涂覆绝缘膜,得到无取向硅钢成品板。
上述的步骤(2)中卷取温度为700~750℃。
上述的步骤(4)中保护气氛为N2和H2混合气氛,其中H2的体积百分比为10~80%。
上述的无取向电工钢的磁性能为:B50=1.783~1.799T,P1.5/50≤5.0W/Kg。
上述的热轧卷的平均晶粒尺寸90~150μm。
上述的热轧卷的未再结晶组织体积分数5~25%。
本发明采用终轧温度与γ/α相变温度Ar1相配合的方法,使热轧板中未再结晶组织体积分数在5~25%范围内,获得较低的形变储能;热轧板内较低的形变储能在高温卷取时有利于促进形变诱导晶界迁移,获得粗大的晶粒;一方面,这种粗大的晶粒在随后的冷轧过程中获得的累积变形储存能较少,抑制了不利γ(<111>∥ND)织构的发展;另一方面这种粗大的晶粒在冷轧时易形成大量的晶内剪切带,在退火时有利于促进λ(<001>//ND)和Goss({110}<001>)织构的发展;又因为组织、织构具有遗传性,经冷轧和退火后,退火板晶粒尺寸较大,有利织构组分增强,不利织构组分减弱,磁性能得到提高。
与现有技术相比,本发明的有益效果为:
通过控制热轧板内未再结晶组织的体积分数来获得较低的形变储能,结合高温卷取来获得粗大的晶粒。粗大的晶粒在随后的冷轧退火过程中有利于抑制不利的γ织构的发展;现有普通无取向硅钢(钢中Si含量低于1.5%)冷轧前晶粒尺寸大概为40~70μm,本发明冷轧前晶粒尺寸达到90~150μm,晶粒尺寸明显增大;由于组织、织构具有遗传性,经过冷轧与退火后,成品板不利织构显著降低,有利织构提高,并且晶粒尺寸也明显增大,从而使无取向硅钢磁性能得到大幅度提升。
附图说明
图1为本发明的提高无取向硅钢磁性能的方法流程示意图;
图2为本发明实施例1中的热轧卷的金相组织图;
图3为本发明实施例1中的热轧卷的织构的ODF截面图;
图4为本发明对比例2中的热轧卷的金相组织图;
图5为本发明对比例2中的热轧卷的织构的ODF截面图。
具体实施方式
本发明实施例中金相组织观测采用的设备型号为Leica金相显微镜。
本发明实施例中织构观测采用的设备型号为Bruker D8Discover型X射线衍射仪。
本发明实施例中检测磁性能采用的设备型号为MATS-2010M硅钢磁性能测量装置。
以下为本发明优选实施例。
实施例1
流程如图1所示;
按设定化学成分冶炼钢水,其成分按质量百分比含Si 0.31%,Al 0.52%,Mn0.31%,P 0.18%,S 0.0019%,N 0.0014%,C 0.0018%,Sn 0.05%,其余为Fe和不可避免的杂质;将上述成分的钢水经连铸机制成连铸坯,厚度220mm;
将连铸坯加热到1100℃并保温1.5h,然后进行热轧,Ar1的计算公式为:Ar1=872℃+1000(11*[Si]-14*[Mn]+21*[Al]+24*[P])=1015.1℃,且终轧温度T=(Ar1-120)~(Ar1-70)℃=895.1~945.1℃,实际终轧温度为910℃;热轧完成后卷取,卷取温度为750℃,卷取后空冷至室温,得到厚度为2.6mm的热轧卷;热轧卷的平均晶粒尺寸100μm;热轧卷的未再结晶组织体积分数18.5%;热轧卷的金相组织如图2所示,的ODF截面图如图3所示,有利织构较强,不利织构很弱,几乎没有,织构强点在{100}<001>,f(g)为8.1;
将热轧卷开卷后酸洗,再冷轧制成厚度0.5mm的冷轧板;
将冷轧板在保护气氛中进行退火处理,保护气氛为N2和H2混合气氛,其中H2的体积百分比为60%,退火温度850℃,时间4min,然后随炉冷却至400~500℃之间,空冷至室温;最后涂覆绝缘膜,得到无取向硅钢成品板,磁性能为:B50=1.797T,P1.5/50=4.89W/Kg。
实施例2
方法同实施例1,不同点在于:
(1)钢水成分按质量百分比含Si 0.36%,Al 0.32%,Mn 0.24%,P 0.16%,S0.0015%,N 0.0021%,C 0.0022%,Sb 0.1%;连铸坯厚度230mm;
(2)连铸坯加热到1150℃并保温1h后进行热轧,Ar1的计算公式为:Ar1=872℃+1000(11*[Si]-14*[Mn]+21*[Al]+24*[P])=983.6℃,终轧温度=(Ar1-120)~(Ar1-70)℃=863.6~913.6℃,实际终轧温度为870℃;卷取温度为730℃,得到厚度为2.7mm的热轧卷;热轧卷的平均晶粒尺寸135μm;热轧卷的未再结晶组织体积分数23.7%;
(3)保护气氛中H2的体积百分比为30%,退火温度890℃,时间1min,无取向硅钢成品板的磁性能为:B50=1.798T,P1.5/50=4.82W/Kg。
实施例3
方法同实施例1,不同点在于:
(1)钢水成分按质量百分比含Si 0.55%,Al 0.14%,Mn 0.46%,P 0.13%,S0.0012%,N 0.0012%,C 0.0037%,Sn 0.1%;连铸坯厚度为210mm;
(2)连铸坯加热到1200℃并保温1h后进行热轧,Ar1的计算公式为:Ar1=872℃+1000(11*[Si]-14*[Mn]+21*[Al]+24*[P])=928.7℃,终轧温度=(Ar1-120)~(Ar1-70)℃=808.7~858.7℃;实际终轧温度为830℃;卷取温度为720℃,得到厚度为2.8mm的热轧卷;热轧卷的平均晶粒尺寸124μm;热轧卷的未再结晶组织体积分数8.1%;
(3)保护气氛中H2的体积百分比为50%,退火温度830℃,时间5min,无取向硅钢成品板的磁性能为:B50=1.793T,P1.5/50=4.73W/Kg。
实施例4
方法同实施例1,不同点在于:
(1)钢水成分按质量百分比含Si 1.05%,Al 0.19%,Mn 0.14%,P 0.085%,S0.0023%,N 0.0018%,C 0.0041%,Sn 0.07%;连铸坯厚度250mm;
(2)连铸坯加热到1200℃并保温2h后进行热轧,Ar1的计算公式为:Ar1=872℃+1000(11*[Si]-14*[Mn]+21*[Al]+24*[P])=1028.2℃,终轧温度=(Ar1-120)~(Ar1-70)℃=908.2~958.2℃;实际终轧温度为925℃;卷取温度为730℃,得到厚度为2.8mm的热轧卷;热轧卷的平均晶粒尺寸热轧卷的未再结晶组织体积分数16.7%;
(3)保护气氛中H2的体积百分比为35%,退火温度870℃,时间3min,无取向硅钢成品板的磁性能为:B50=1.785T,P1.5/50=4.41W/Kg。
实施例5
方法同实施例1,不同点在于:
(1)钢水成分按质量百分比含Si 0.40%,Al 0.25%,Mn 0.19%,P 0.11%,S0.0018%,N 0.0015%,C 0.0014%,Sb 0.15%;连铸坯厚度240mm;
(2)连铸坯加热到1120℃并保温1.5h后进行热轧,Ar1的计算公式为:Ar1=872℃+1000(11*[Si]-14*[Mn]+21*[Al]+24*[P])=968.3℃,终轧温度=(Ar1-120)~(Ar1-70)℃=848.3~898.3℃;选用的终轧温度为870℃;卷取温度为750℃,得到厚度为2.7mm的热轧卷;热轧卷的平均晶粒尺寸116μm;热轧卷的未再结晶组织体积分数12.8%;
(3)保护气氛中H2的体积百分比为20%,退火温度820℃,时间5min,无取向硅钢成品板的磁性能为:B50=1.795T,P1.5/50=4.79W/Kg。
对比例1
方法同实施例1,不同点在于:
(1)实际终轧温度为870℃,不在(Ar1-120)~(Ar1-70)℃即895.1~945.1℃℃范围内,热轧板内部未再结晶晶粒的体积分数为45.5%;
(2)最终获得的无取向硅钢板的磁感应强度B50=1.759T,铁损P1.5/50=5.35W/Kg。
对比例2
方法同实施例1,不同点在于:
(1)实际终轧温度为990℃,不在(Ar1-120)~(Ar1-70)℃即895.1~945.1℃范围内,热轧板内部未再结晶晶粒的体积分数为0%;
(2)热轧板卷的金相组织如图4所示,平均晶粒尺寸为69μm,的ODF截面图如图5所示,有利的{100}面织构明显减弱,织构强点在{100}<001>,f(g)降为5.8;
(3)最终获得的无取向硅钢板的磁感应强度B50=1.769T,铁损P1.5/50=5.16W/Kg。
对比例3
方法同实施例5,不同点在于:
(1)实际终轧温度为820℃,不在(Ar1-120)~(Ar1-70)℃即848.3~898.3℃范围内,热轧板内部未再结晶晶粒的体积分数为58.2%;
(2)最终获得的无取向硅钢板的磁感应强度B50=1.754T,铁损P1.5/50=5.29W/Kg。
对比例4
方法同实施例5,不同点在于:
(1)实际终轧温度为940℃,不在(Ar1-120)~(Ar1-70)℃即848.3~898.3℃范围内,热轧板内部未再结晶晶粒的体积分数为0%;
(2)最终获得的无取向硅钢板的磁感应强度B50=1.766T,铁损P1.5/50=5.03W/Kg。
对比例5
方法同实施例5,不同点在于:
(1)热轧板不进行高温卷取处理,直接冷轧;
(2)最终获得的无取向硅钢板的磁感应强度B50=1.750T,铁损P1.5/50=5.60W/Kg。
上述的实施例的终轧温度均在(Ar1-120)~(Ar1-70)℃范围内,热轧板中未再结晶组织体积分数也在5~25%范围内。又因为卷取温度较高,在700~750℃范围内,所以,最终得到的成品板铁损较低,磁感较高。
上述的对比例1、2、3、4的终轧温度不在(Ar1-120)~(Ar1-70)℃范围内,导致热轧板中未再结晶组织体积分数不在5~25%范围内,最终得到的成品板磁性能劣化;对比例5的终轧温度在(Ar1-120)~(Ar1-70)℃范围内,热轧板中未再结晶组织体积分数也在5~25%范围内,但由于没有进行高温卷取,最终得到的成品板磁性能也劣化。

Claims (6)

1.一种提高无取向硅钢磁性能的方法,其特征在于包括以下步骤:
(1)按设定化学成分冶炼钢水,其成分按质量百分比含Si 0.2~1.5%,Al 0.1~0.6%,Mn 0.1~0.7%,P≤0.2%,S≤0.003%,N≤0.003%,C≤0.005%,Sb 0~0.15%,Sn0~0.15%,其余为Fe和不可避免的杂质;将上述成分的钢水经连铸机制成连铸坯,厚度为200~250mm;
(2)将连铸坯加热到1100~1200℃并保温1~2h,然后进行热轧,控制终轧温度为T,且T=(Ar1-120)~(Ar1-70)℃,其中Ar1为γ/α相变温度,单位℃;热轧完成后卷取,卷取后空冷至室温,得到厚度为2.5~3.0mm的热轧卷;其中Ar1的计算公式为:Ar1=872℃+1000(11*[Si]-14*[Mn]+21*[Al]+24*[P]),[Si]、[Mn]、[Al]、[P]分别为Si、Mn、Al、P的质量百分数;
(3)将热轧卷开卷后酸洗,再冷轧制成厚度0.5mm的冷轧板;
(4)将冷轧板在保护气氛中进行退火处理,退火温度800~890℃,时间1~5min,然后随炉冷却至400~500℃,空冷至室温;最后涂覆绝缘膜,得到无取向硅钢成品板。
2.根据权利要求1所述的一种提高无取向硅钢磁性能的方法,其特征在于步骤(2)中卷取温度为700~750℃。
3.根据权利要求1所述的一种提高无取向硅钢磁性能的方法,其特征在于步骤(4)中保护气氛为N2和H2混合气氛,其中H2的体积百分比为10~80%。
4.根据权利要求1所述的一种提高无取向硅钢磁性能的方法,其特征在于所述的无取向电工钢的磁性能为:B50=1.783~1.799T,P1.5/50≤5.0W/Kg。
5.根据权利要求1所述的一种提高无取向硅钢磁性能的方法,其特征在于所述的热轧卷的平均晶粒尺寸90~150μm。
6.根据权利要求1所述的一种提高无取向硅钢磁性能的方法,其特征在于所述的热轧卷的未再结晶组织体积分数5~25%。
CN201811299307.0A 2018-11-02 2018-11-02 一种提高无取向硅钢磁性能的方法 Active CN109252101B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811299307.0A CN109252101B (zh) 2018-11-02 2018-11-02 一种提高无取向硅钢磁性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811299307.0A CN109252101B (zh) 2018-11-02 2018-11-02 一种提高无取向硅钢磁性能的方法

Publications (2)

Publication Number Publication Date
CN109252101A true CN109252101A (zh) 2019-01-22
CN109252101B CN109252101B (zh) 2020-04-28

Family

ID=65044714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811299307.0A Active CN109252101B (zh) 2018-11-02 2018-11-02 一种提高无取向硅钢磁性能的方法

Country Status (1)

Country Link
CN (1) CN109252101B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270123A (zh) * 2020-02-17 2020-06-12 本钢板材股份有限公司 一种优化无取向硅钢电磁性能的方法及无取向硅钢
CN112143974A (zh) * 2020-09-27 2020-12-29 江苏省沙钢钢铁研究院有限公司 无取向硅钢的生产方法以及无取向硅钢
CN112143963A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢板及其连续退火方法
CN112143961A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢板及其连续退火方法
CN112143964A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种极低铁损的无取向电工钢板及其连续退火工艺
CN113403455A (zh) * 2021-06-17 2021-09-17 张家港扬子江冷轧板有限公司 无取向硅钢的生产方法
CN113403537A (zh) * 2021-06-17 2021-09-17 江苏省沙钢钢铁研究院有限公司 无取向硅钢及其生产方法
CN115652204A (zh) * 2022-11-01 2023-01-31 包头钢铁(集团)有限责任公司 一种实验室含Sn高效无取向硅钢热轧钢板及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101967602A (zh) * 2010-10-19 2011-02-09 东北大学 一种无取向硅钢薄带及其制备方法
CN104451372A (zh) * 2014-11-26 2015-03-25 东北大学 一种高磁感高硅无取向硅钢板及其制备方法
CN108486453A (zh) * 2018-03-27 2018-09-04 东北大学 一种低铁损高磁感无取向硅钢板的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101967602A (zh) * 2010-10-19 2011-02-09 东北大学 一种无取向硅钢薄带及其制备方法
CN104451372A (zh) * 2014-11-26 2015-03-25 东北大学 一种高磁感高硅无取向硅钢板及其制备方法
CN108486453A (zh) * 2018-03-27 2018-09-04 东北大学 一种低铁损高磁感无取向硅钢板的制备方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143963A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢板及其连续退火方法
CN112143961A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢板及其连续退火方法
CN112143964A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种极低铁损的无取向电工钢板及其连续退火工艺
CN111270123A (zh) * 2020-02-17 2020-06-12 本钢板材股份有限公司 一种优化无取向硅钢电磁性能的方法及无取向硅钢
CN112143974A (zh) * 2020-09-27 2020-12-29 江苏省沙钢钢铁研究院有限公司 无取向硅钢的生产方法以及无取向硅钢
CN112143974B (zh) * 2020-09-27 2021-10-22 江苏省沙钢钢铁研究院有限公司 无取向硅钢的生产方法以及无取向硅钢
CN113403455A (zh) * 2021-06-17 2021-09-17 张家港扬子江冷轧板有限公司 无取向硅钢的生产方法
CN113403537A (zh) * 2021-06-17 2021-09-17 江苏省沙钢钢铁研究院有限公司 无取向硅钢及其生产方法
CN113403537B (zh) * 2021-06-17 2023-01-31 江苏省沙钢钢铁研究院有限公司 无取向硅钢及其生产方法
CN113403455B (zh) * 2021-06-17 2024-03-19 张家港扬子江冷轧板有限公司 无取向硅钢的生产方法
CN115652204A (zh) * 2022-11-01 2023-01-31 包头钢铁(集团)有限责任公司 一种实验室含Sn高效无取向硅钢热轧钢板及其制备方法
CN115652204B (zh) * 2022-11-01 2023-11-28 包头钢铁(集团)有限责任公司 一种实验室含Sn高效无取向硅钢热轧钢板及其制备方法

Also Published As

Publication number Publication date
CN109252101B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN109252101A (zh) 一种提高无取向硅钢磁性能的方法
CN105950960B (zh) 电动汽车驱动电机用无取向硅钢及其制备方法
CN103667879B (zh) 磁性能和机械性能优良的无取向电工钢及生产方法
US9816152B2 (en) Manufacture method of high-efficiency non-oriented silicon steel with excellent magnetic performance
CN109252102A (zh) 一种提高低硅无取向硅钢磁性能的方法
CN109112268A (zh) 一种改善无取向硅钢磁性能的方法
CN108486453A (zh) 一种低铁损高磁感无取向硅钢板的制备方法
CN102925793B (zh) 一种磁感≥1.8t的无取向电工钢及其生产方法
CN104480386B (zh) 高速电机用0.2mm厚无取向硅钢及生产方法
CN108286021A (zh) 一种高磁感无取向硅钢板的制备方法
JP2006501361A5 (zh)
CN107075647A (zh) 生产含锡非晶粒取向的硅钢板的方法、所得的钢板及其用途
CN103388106A (zh) 一种高磁感低铁损无取向电工钢板及其制造方法
CN107723591A (zh) 一种新能源汽车驱动电机用冷轧无取向电工钢及其生产方法
CN110106447A (zh) 一种高磁感无取向电工钢及其制备方法
BR112020003655A2 (pt) aço laminado a frio, aço de laminagem e método para fabricar aço laminado a frio
JP2008127659A (ja) 異方性の小さい無方向性電磁鋼板
MX2014008493A (es) Procesamiento de acero electrico sin un recocido intermedio de post-laminacion en frio.
CN104294185B (zh) 一种高效电机用无取向电工钢及生产方法
JP2008156741A (ja) 高磁束密度無方向性電磁鋼板の製造方法
CN110777299A (zh) 一种含Ce高磁感无取向硅钢及制备方法
CN101348852A (zh) 一种低温板坯加热生产取向电工钢的方法
WO1993013231A1 (en) Non-oriented electromagnetic steel sheet having very good magnetic characteristics and method of manufacturing the same
CN104164618B (zh) 快速冷却控制双辊薄带连铸低硅无取向硅钢磁性能的方法
JP3483265B2 (ja) 磁束密度が高くかつ鉄損が低い無方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant