CN109251747B - 一种Eu离子掺杂卤氧化铋半导体光学防伪材料 - Google Patents

一种Eu离子掺杂卤氧化铋半导体光学防伪材料 Download PDF

Info

Publication number
CN109251747B
CN109251747B CN201810975101.9A CN201810975101A CN109251747B CN 109251747 B CN109251747 B CN 109251747B CN 201810975101 A CN201810975101 A CN 201810975101A CN 109251747 B CN109251747 B CN 109251747B
Authority
CN
China
Prior art keywords
ion
counterfeiting
optical anti
ions
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810975101.9A
Other languages
English (en)
Other versions
CN109251747A (zh
Inventor
宋志国
胡锐
李永进
张庆福
邱建备
杨正文
徐祖元
张相周
周大成
尹兆益
杨勇
韩缙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201810975101.9A priority Critical patent/CN109251747B/zh
Publication of CN109251747A publication Critical patent/CN109251747A/zh
Application granted granted Critical
Publication of CN109251747B publication Critical patent/CN109251747B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium

Abstract

本发明涉及一种Eu离子掺杂卤氧化铋半导体光学防伪材料,属于光学防伪材料技术领域。本发明光学防伪材料的化学通式为Bi3‑xEuxO4M;其中x=0.001~0.3,M为元素F、Cl、Br的一种或多种。本发明提供的稀土Eu离子掺杂的卤氧化铋半导材料中的Eu3+发光特征对激发光波长、强度、温度具有超敏感的响应特性,且物理化学性质稳定,制备方法简单、原材料成本低;该材料有望作为高敏感光学防伪材料、紫外探测器,温度传感器器,光伏铁电材料,光机械材料传感材料到应用。

Description

一种Eu离子掺杂卤氧化铋半导体光学防伪材料
技术领域
本发明涉及一种Eu离子掺杂卤氧化铋半导体光学防伪材料,属于光学防伪材料技术领域。
背景技术
目前市场化的普通光学防伪材料,主要采用的稀土掺杂发光材料或者量子点材料作为油墨颜料。这些发光颜料作为印刷和打印油墨颜料的一部分,通过印刷和打印可以得到防伪标志。这些颜料,以Er3+掺杂的GdOS3为例。当采用肉眼不可见的紫外或者近红光作为激发光源时,可以发出源于Er明亮的可见光;当作为防伪标志时,在照射前后可以显示出明显的反差图案效果,以此达到明示防伪和目的。这类光学材料作为颜料具有发光效率高、易于识别的特点。但是这类材料当采用不同效果,例如波长、强度不同光源进行激发时,只能产生发光强度的改变。这种光学强度的变化对于肉眼识别相对显著,应用相对简单。但是缺乏更为可以利用仪器检测的显著和精细的特征变化。因此这类材料同时也存在对光学照射效果响应方式简单化,不精细、不敏感,导致防伪效果和原理较为简单,使得这类防伪材料易于仿制,存在防伪性的不高的缺点。
发明内容
本发明针对现有光学防伪材料易于仿制,防伪性的不高的缺点,提供一种Eu离子掺杂卤氧化铋半导体光学防伪材料,其化学通式为Bi3-xEuxO4M;其中x=0.001~0.3,M为元素F、Cl、Br的一种或多种。
与传统的稀土发光材料不同,以及类似结构的BiOCl半导体不同,Bi3-xEuxO4M(M =F,Cl或Br)半导体材料对光源强度、波长乃至辐照区域的温度具有敏感响应的特点;光源辐照通过光源强度、波长乃至辐照区域的温度可以使得半导体内部的载流子浓度、场强的因素实现可调控;另外一方面,Bi3-xEuxO4M(M = F,Cl或Br)半导体晶体具有非常合适的场强强度,Eu3+5D07F4等敏感跃迁具有非常灵敏的荧光分支比变化;当辐照光源的发生改变时,光源强度、波长乃至辐照区域的温度可以与基质中掺杂稀土Eu3+离子发生相互作用,不但可以促使 Eu3+的发光强度的发生变化,其敏感跃迁的荧光分支比的也会发生强烈改变;而且荧光分支比与照射条件之间实现高精细度的识别和相应,但并不能通过肉眼进行观察和识别,但可以利用光学设备进行检测,实现高端精密光学特征防伪。
本发明的光学防伪材料可以通过光源波长、强度以及环境温度实现高精光学响应;
本发明Eu离子掺杂卤氧化铋半导体光学防伪材料的制备方法,具体步骤如下:
(1)按照Bi离子、Eu离子和卤素离子的摩尔比为(3-x):x:1的比例称料,其中x=0.001~0.3,分别将硝酸铋、Eu(NO3)3、卤盐溶解于水、有机溶剂或水与有机溶剂的混合液中配制成硝酸铋溶液、Eu(NO3)3溶液和卤盐溶液;将硝酸铋溶液、Eu(NO3)3溶液和卤盐溶液混合均匀得到混合溶液,再采用盐酸、氨水或氢氧化钠调节pH值至2~10,然后加入带有聚四氟乙烯内衬的水热釜中,其中水热釜的装填度为0.4~0.8,匀速升温至110~250℃,反应2~24h;
(2)将步骤(1)所得反应产物用去离子水、乙醇洗涤,烘干;然后将烘干产物置于温度为200~800℃条件下热处理0.5~4h即得化学式为Bi3-xEuxO4M的稀土Eu3+离子掺杂卤氧化铋半导体发光材料。
所述步骤(1)中其中有机溶剂为乙醇或乙二醇,硝酸铋溶液的摩尔浓度为0.4~0.8mol/L,Eu(NO3)3溶液的摩尔浓度为0.4~0.8 mol/L,卤盐溶液的摩尔浓度为0.4~0.8 mol/L;
所述步骤(1)中卤盐为卤化钾、卤化钠或卤化铵。
本发明Eu离子掺杂卤氧化铋半导体光学防伪材料的另一种制备方法,具体步骤如下:
按照Bi离子、Eu离子和卤素离子的摩尔比为(3-x):x:1的比例,其中x=0.001~0.3,将BiOCl,氧化铋、Eu2O3、卤化铵研磨混合均匀,放置于坩埚中,在坩埚表面加盖并在温度为300~800℃条件下烧结1~6h,冷却至室温,然后用去离子水或者乙醇洗去多余的卤化铵,烘干后即得化学式为Bi3-xEuxO4M的稀土Eu3+离子掺杂卤氧化铋半导体发光材料。
本发明的有益效果是:
(1)本发明稀土Eu3+离子掺杂卤氧化铋半导体发光材料与现有的量子点和稀土离子掺杂光学防伪材料相比,当采用不同波段和不同激发强度的光源对材料进行照射时,材料中的稀土Eu3+离子不仅仅会改变发光强度,并且具有稀土离子指纹光谱特征的荧光分支比发生显著改变,在光源辐照情况下材料光学特征的改变更为精细和隐蔽,可以实现高精度的光学防伪,具有不易仿制的特征;
(2)与传统的稀土发光材料不同,以及类似结构的BiOCl半导体不同,本发明的Bi3-xEuxO4M(M = F,Cl或Br)半导体材料对光源强度、波长乃至辐照区域的温度具有敏感响应的特点;光源辐照通过光源强度、波长乃至辐照区域的温度可以使得半导体内部的载流子浓度、场强的因素实现可调控;另外一方面,Bi3-xEuxO4M(M = F,Cl或Br)半导体晶体具有非常合适的场强强度,Eu3+5D07F4等敏感跃迁具有非常灵敏的荧光分支比变化;当辐照光源的发生改变时,光源强度、波长乃至辐照区域的温度可以与基质中掺杂稀土Eu3+离子发生相互作用,不但可以促使 Eu3+的发光强度的发生变化,其敏感跃迁的荧光分支比的也会发生强烈改变;而且荧光分支比与照射条件之间实现高精细度的识别和相应,但并不能通过肉眼进行观察和识别,但可以利用光学设备进行检测,实现高端精密光学特征防伪。
附图说明
图1为实施例4固相法制备的Bi2.88Eu0.12O4Cl材料的X射线衍射图谱;
图2为实施例4不同波段激发下固相法制备的Bi2.88Eu0.12O4Cl材料的发射荧光光谱与激发波长关系图;
图3为实施例4不同光强激发下固相法制备的Bi2.88Eu0.12O4Cl材料的荧光分支比与激发波长关系图;
图4为实施例4不同光强激发下固相法制备的Bi2.88Eu0.12O4Cl材料的发射荧光光谱与激发波长关系图;
图5为实施例4不同波段激发下固相法制备的Bi2.88Eu0.12O4Cl纳米片的荧光分支比与激发波长关系图;
图6为对比例中不同波段激发下固相法制备的Bi0.96Eu0.04OCl材料的发射荧光光谱与激发波长关系图;
图7 对比例中不同波段激发下固相法制备的Bi0.96Eu0.04OCl材料的荧光分支比与激发波长关系图。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1:一种稀土Eu3+离子掺杂卤氧化铋半导体光学防伪材料Bi2.99Eu0.01O4F的制备方法,具体步骤如下:
(1)按照Bi离子、Eu离子和卤素离子(卤素离子为F离子)的摩尔比为2.99:0.01:1的比例称料,分别将硝酸铋(Bi(NO3)3.5H2O)、Eu(NO3)3、卤盐(卤盐为NH4F)溶解于水中,配制成硝酸铋溶液、Eu(NO3)3溶液和卤盐溶液;其中硝酸铋溶液的摩尔浓度为0.4mol/L,Eu(NO3)3溶液的摩尔浓度为0.6mol/L,卤盐溶液的摩尔浓度为0.5mol/L;用浓度为4mol/L的氨水调节pH值至10,然后加入带有聚四氟乙烯内衬的水热釜中,其中水热釜的装填度为0.8,匀速升温至120℃,反应12h;
(2)将步骤(1)所得反应产物用去离子水、乙醇洗涤,烘干;然后将烘干产物置于温度为200℃条件下热处理4h即得化学式为Bi2.99Eu0.01O4F的稀土Eu3+离子掺杂卤氧化铋半导体发光材料,该材料在激发光波长发生改变时Eu3+的荧光分支比会发生显著变化,具有精密光学防伪效果。
实施例2:一种稀土Eu3+离子掺杂卤氧化铋半导体光学防伪材料Bi2.95Eu00.5O4Br的制备方法,具体步骤如下:
(1)按照Bi离子、Eu离子和卤素离子(卤素离子为Br离子)的摩尔比为2.95:0.05:1的比例称料,分别将硝酸铋(Bi(NO3)3.5H2O)、Eu(NO3)3、卤盐(卤盐为NaBr)溶解于水中,配制成硝酸铋溶液、Eu(NO3)3溶液和卤盐溶液;其中硝酸铋溶液的摩尔浓度为0.5mol/L,Eu(NO3)3溶液的摩尔浓度为0.7mol/L,卤盐溶液的摩尔浓度为0.4mol/L;用浓度为0.5mol/L的氢氧化钠调节pH值至8,然后加入带有聚四氟乙烯内衬的水热釜中,其中水热釜的装填度为0.6,匀速升温至110℃,反应24h;
(2)将步骤(1)所得反应产物用去离子水、乙醇洗涤,烘干;然后将烘干产物置于温度为500℃条件下热处理2h即得化学式为Bi2.95Eu00.5O4Br的稀土Eu3+离子掺杂卤氧化铋半导体发光材料,该材料在激发光波长发生改变时Eu3+的荧光分支比会发生显著变化,具有精密光学防伪效果。
实施例3:一种稀土Eu3+离子掺杂卤氧化铋半导体光学防伪材料Bi2.7Eu0.3O4Cl0.5Br0.5的制备方法,具体步骤如下:
(1)按照Bi离子、Eu离子和卤素离子(卤素离子为Cl 离子和Br离子,Cl 离子和Br离子的摩尔比为1:1)的摩尔比为2.7:0.3:1的比例称料,分别将硝酸铋(Bi(NO3)3.5H2O)、Eu(NO3)3、卤盐(卤盐为KCl和KBr)溶解于水中,配制成硝酸铋溶液、Eu(NO3)3溶液和卤盐溶液;其中硝酸铋溶液的摩尔浓度为0.8mol/L,Eu(NO3)3溶液的摩尔浓度为0.5mol/L,卤盐溶液中KCl和KBr的总摩尔浓度为0.6mol/L;用浓度为2mol/L的氨水调节pH值至10,然后加入带有聚四氟乙烯内衬的水热釜中,其中水热釜的装填度为0.4,匀速升温至160℃,反应24h;
(2)将步骤(1)所得反应产物用去离子水、乙醇洗涤,烘干;然后将烘干产物置于温度为500℃条件下热处理2h即得化学式为Bi2.7Eu0.3O4Cl0.5Br0.5的稀土Eu3+离子掺杂卤氧化铋半导体发光材料,该材料在激发光波长发生改变时Eu3+的荧光分支比会发生显著变化,具有精密光学防伪效果。
实施例4:一种稀土Eu3+离子掺杂卤氧化铋半导体光学防伪材料Bi2.88Eu0.12O4Cl的制备方法,具体步骤如下:
按照Bi离子、Eu离子和卤素离子(卤素离子为Cl离子)的摩尔比为2.88:0.12:1的比例,将BiOCl,氧化铋、Eu2O3、氯化铵研磨混合均匀,放置于坩埚中,在坩埚表面加盖并在温度为700℃条件下烧结6h,冷却至室温,然后用去离子水洗去多余的氯化铵,烘干后即得化学式为Bi2.88Eu0.12O4Cl的稀土Eu3+离子掺杂卤氧化铋半导体发光材料;
本实施例所得化学式为Bi2.88Eu0.12O4Cl的稀土Eu3+离子掺杂卤氧化铋半导体发光材料的X射线衍射图谱如图1所示,从图1可知,稀土Eu3+离子掺杂卤氧化铋半导体发光材料衍射峰位置和相对强度与标准卡片基本吻合,说明Bi2.88Eu0.12O4Cl为纯的相结构;此外,材料的衍射峰尖锐且强度较高,说明结晶度较高、结晶质量好;
本实施例所得化学式为Bi2.88Eu0.12O4Cl的稀土Eu3+离子掺杂卤氧化铋半导体发光材料在不同波段激发下的发射荧光光谱见图2;本实施例所得化学式为Bi2.88Eu0.12O4Cl的稀土Eu3+离子掺杂卤氧化铋半导体发光材料在不同波段激发下的荧光分支比与激发波长关系图如图3所示,本实施例所得化学式为Bi2.88Eu0.12O4Cl的稀土Eu3+离子掺杂卤氧化铋半导体发光材料在不同光强激发下的发射荧光光谱见图4;本实施例所得化学式为Bi2.88Eu0.12O4Cl的稀土Eu3+离子掺杂卤氧化铋半导体发光材料在不同光强激发下的荧光分支比与激发波长关系图如图5所示,从图2~5中可知,本实施例Bi2.88Eu0.12O4Cl的荧光分支比发生显著改变;在光源辐照情况下材料光学特征的改变更为精细和隐蔽,可以实现高精度的光学防伪;
与传统的稀土发光材料不同,以及类似结构的BiOCl半导体不同,本实施例Bi2.88Eu0.12O4Cl半导体材料对光源强度、波长乃至辐照区域的温度具有敏感响应的特点;光源辐照通过光源强度、波长乃至辐照区域的温度可以使得半导体内部的载流子浓度、场强的因素实现可调控;本实施例Bi2.88Eu0.12O4Cl半导体材料晶体具有非常合适的场强强度,Eu3+5D07F4等敏感跃迁具有非常灵敏的荧光分支比变化,当辐照光源的发生改变时,光源强度、波长乃至辐照区域的温度可以与基质中掺杂稀土Eu3+离子发生相互作用,不但可以促使 Eu3+的发光强度发生变化,其敏感跃迁的荧光分支比的也会发生强烈改变,荧光分支比与照射条件之间实现高精细度的识别和相应,但并不能通过肉眼进行观察和识别,但可以利用光学设备进行检测,实现高端精密光学特征防伪;
本实施例所得化学式为Bi2.88Eu0.12O4Cl的稀土Eu3+离子掺杂卤氧化铋半导体发光材料在光照射下波长发生改变时Eu3+的荧光分支比会发生显著变化,具有精密的光学防伪效果。
实施例5:一种稀土Eu3+离子掺杂卤氧化铋半导体光学防伪材料Bi2.88Eu0.12O4Cl的制备方法,具体步骤如下:
(1)按照Bi离子、Eu离子和卤素离子(卤素离子为Cl 离子)的摩尔比为2.88:0.12:1的比例称料,分别将硝酸铋(Bi(NO3)3.5H2O)、Eu(NO3)3、卤盐(卤盐为KCl)溶解于水中,配制成硝酸铋溶液、Eu(NO3)3溶液和卤盐溶液;其中硝酸铋溶液的摩尔浓度为0.8mol/L,Eu(NO3)3溶液的摩尔浓度为0.7mol/L,卤盐溶液的摩尔浓度为0.8mol/L;用浓度为2mol/L的氨水调节pH值至10,然后加入带有聚四氟乙烯内衬的水热釜中,其中水热釜的装填度为0.4,匀速升温至160℃,反应24h;
(2)将步骤(1)所得反应产物用去离子水、乙醇洗涤,烘干;然后将烘干产物置于温度为500℃条件下热处理2h即得化学式为Bi2.88Eu0.12O4Cl的稀土Eu3+离子掺杂卤氧化铋半导体发光材料;本实施例的Bi2.88Eu0.12O4Cl在激发光波长发生改变时Eu3+的荧光分支比会发生显著变化,具有精密光学防伪效果。
对比例:稀土Eu3+离子掺杂具有类似结构的氯氧化铋半导体光学材料化学式为Bi0.96Eu00.4OCl,制备方法如下:
按照Bi离子、Eu离子和卤素离子(卤素离子为Cl离子)的摩尔比为0.96:0.04:1的比例,将氧化铋、Eu2O3、氯化铵研磨混合均匀,放置于坩埚中,在坩埚表面加盖并在温度为700℃条件下烧结6h,冷却至室温,然后用去离子水洗去多余的氯化铵,烘干后即得化学式为Bi0.96Eu00.4OCl的稀土Eu3+离子掺杂卤氧化铋半导体发光材料;
本对比例的化学式为Bi0.96Eu00.4OCl的稀土Eu3+离子掺杂卤氧化铋半导体发光材料在不同波段激发下的发射荧光光谱如图6所示,本对比例的化学式为Bi0.96Eu00.4OCl的稀土Eu3+离子掺杂卤氧化铋半导体发光材料在不同波段激发下的荧光分支比与激发波长关系图如图7所示,从图6~7中可知,该材料晶体场强过大,不会出现Eu3+ 位于704nm的荧光粉,由于在激发光波长发生改变时Eu3+的荧光分支不会出现变化,因此不具备具有精密的光学防伪效果。

Claims (3)

1.一种Eu离子掺杂卤氧化铋半导体光学防伪材料的制备方法,其特征在于,Eu离子掺杂卤氧化铋半导体光学防伪材料的化学通式为Bi3-xEuxO4M;其中x=0.001~0.3,M为元素F、Cl、Br的一种或多种;
制备方法的具体步骤如下:
(1)按照Bi离子、Eu离子和卤素离子的摩尔比为(3-x):x:1的比例称料,其中x=0.001~0.3,分别将硝酸铋、Eu(NO3)3、卤盐溶解于水、有机溶剂或水与有机溶剂的混合液中配制成硝酸铋溶液、Eu(NO3)3溶液和卤盐溶液;将硝酸铋溶液、Eu(NO3)3溶液和卤盐溶液混合均匀得到混合溶液,再采用盐酸、氨水或氢氧化钠调节pH值至2~10,然后加入带有聚四氟乙烯内衬的水热釜中,其中水热釜的装填度为0.4~0.8,匀速升温至110~250℃,反应2~24h;
(2)将步骤(1)所得反应产物用去离子水、乙醇洗涤,烘干;然后将烘干产物置于温度为200~800℃条件下热处理0.5~4h即得化学式为Bi3-xEuxO4M的稀土Eu3+离子掺杂卤氧化铋半导体发光材料。
2.根据权利要求1所述Eu离子掺杂卤氧化铋半导体光学防伪材料的制备方法,其特征在于:步骤(1)中其中有机溶剂为乙醇或乙二醇,硝酸铋溶液的摩尔浓度为0.4~0.8 mol/L,Eu(NO3)3溶液的摩尔浓度为0.4~0.8 mol/L,卤盐溶液的摩尔浓度为0.4~0.8 mol/L。
3.根据权利要求1所述Eu离子掺杂卤氧化铋半导体光学防伪材料的制备方法,其特征在于:步骤(1)中卤盐为卤化钾、卤化钠或卤化铵。
CN201810975101.9A 2018-08-24 2018-08-24 一种Eu离子掺杂卤氧化铋半导体光学防伪材料 Active CN109251747B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810975101.9A CN109251747B (zh) 2018-08-24 2018-08-24 一种Eu离子掺杂卤氧化铋半导体光学防伪材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810975101.9A CN109251747B (zh) 2018-08-24 2018-08-24 一种Eu离子掺杂卤氧化铋半导体光学防伪材料

Publications (2)

Publication Number Publication Date
CN109251747A CN109251747A (zh) 2019-01-22
CN109251747B true CN109251747B (zh) 2021-07-16

Family

ID=65049677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810975101.9A Active CN109251747B (zh) 2018-08-24 2018-08-24 一种Eu离子掺杂卤氧化铋半导体光学防伪材料

Country Status (1)

Country Link
CN (1) CN109251747B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111476333B (zh) * 2020-04-02 2023-06-13 齐鲁工业大学 基于Ln-MOF多色异质结微型智能响应光子防伪条形码材料、器件及制备与应用
CN113755170B (zh) * 2021-10-11 2023-09-15 江西乾照光电有限公司 一种稀土离子掺杂硅酸铋上转换发光材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421511B (zh) * 2013-08-30 2015-05-20 昆明理工大学 一种稀土离子掺杂的卤氧化铋发光材料及其制备方法
CN106975498A (zh) * 2017-05-08 2017-07-25 昆明理工大学 一种近红外光催化剂BiOCl或BiOBr的制备方法及其应用
CN107629794A (zh) * 2017-09-11 2018-01-26 苏州美纳福健康科技有限公司 一种铕离子Eu3+激活的铋基发光材料、制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421511B (zh) * 2013-08-30 2015-05-20 昆明理工大学 一种稀土离子掺杂的卤氧化铋发光材料及其制备方法
CN106975498A (zh) * 2017-05-08 2017-07-25 昆明理工大学 一种近红外光催化剂BiOCl或BiOBr的制备方法及其应用
CN107629794A (zh) * 2017-09-11 2018-01-26 苏州美纳福健康科技有限公司 一种铕离子Eu3+激活的铋基发光材料、制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Red long lasting phosphorescence of Eu3+ doped BiOCl semiconducting polycrystals;ZHOU Yuting等;《JOURNAL OF RARE EARTHS》;20161202;第34卷(第12期);第1188-1192页 *

Also Published As

Publication number Publication date
CN109251747A (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
Wu et al. Long afterglow phosphorescent materials
Du et al. Ultra-high sensitivity of multicolor Sm 3+-doped LiSrVO 4 phosphors for contactless optical thermometers
Xue et al. Designing ultra-highly efficient Mn2+-activated Zn2GeO4 green-emitting persistent phosphors toward versatile applications
EP2663611A1 (en) Mn-activated hexafluorosilicates for led applications
Liu et al. An ultraviolet excitation anti-counterfeiting material of Sb 3+ doped Cs 2 ZrCl 6 vacancy-ordered double perovskite
Cao et al. Photo-luminescent properties and synthesis of Ca3Al4ZnO10: Mn4+ deep red-emitting phosphor
CN109971479A (zh) 一种稀土离子掺杂卤氧化铋上转换发光材料及其制备方法
CN109251747B (zh) 一种Eu离子掺杂卤氧化铋半导体光学防伪材料
Rajkumar et al. A highly intense double perovskite BaSrYZrO5. 5: Eu3+ phosphor for latent fingerprint and security ink applications
Yadav et al. Recent progress on optical properties of double perovskite phosphors
Song et al. Long-lived photon upconversion phosphorescence in RbCaF3: Mn2+, Yb3+ and the dynamic color separation effect
CN110885682A (zh) 镓酸盐长余辉荧光粉材料及其制备方法
Song et al. X-ray-irradiation-induced discoloration and persistent radioluminescence for reversible dual-mode imaging and detection applications
Guanghuan et al. Preparation and luminescent properties of CaAl2O4: Eu3+, R+ (R= Li, Na, K) phosphors
Rao et al. Bi 3+ and Sm 3+ co-doped Cs 2 AgInCl 6 perovskite microcrystals with co-enhancement of fluorescence emission
Švančárek et al. Photoluminescence of (ZnO) XZ (SiO2) Y:(MnO) Z green phosphors prepared by direct thermal synthesis: The effect of ZnO/SiO2 ratio and Mn2+ concentration on luminescence
CN111849469B (zh) 一种激发波长依赖的多色长余辉发光材料及其制备方法和应用
Wang et al. Multimodal and Multicolor Anti-counterfeiting Realized in CaCd2Ga2Ge3O12 with a Single Activator of Mn2+
US20210009897A1 (en) Method of preparing mechanoluminescent material and composite material containing it
Jiang Luminescent properties of Zn2GeO4: Mn2+ phosphors synthesized by using different manganese sources
CN113061432B (zh) 一种高稳定性多功能白磷钙石型荧光粉的制备方法及应用
Wu et al. An Al 3+-incorporated Ca 2 LuNbO 6: Mn 4+ oxide phosphor with dramatic deep-red and far-red emission bands
Rajendran et al. Phosphor-Converting LED for Broadband IR
Mushtaq et al. Persistent luminescent nanophosphors for applications in cancer theranostics, biomedical, imaging and security
Tang et al. Ethylene glycol associated facile preparation and luminescent behaviors of RE (RE= Sm3+, Dy3+) ions activated NaLuF4 nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant