CN109244510B - 一种基于未建模动态补偿的固体氧化物燃料电池控制方法 - Google Patents

一种基于未建模动态补偿的固体氧化物燃料电池控制方法 Download PDF

Info

Publication number
CN109244510B
CN109244510B CN201811122993.4A CN201811122993A CN109244510B CN 109244510 B CN109244510 B CN 109244510B CN 201811122993 A CN201811122993 A CN 201811122993A CN 109244510 B CN109244510 B CN 109244510B
Authority
CN
China
Prior art keywords
sofc
unmodeled
model
time
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811122993.4A
Other languages
English (en)
Other versions
CN109244510A (zh
Inventor
吴小娟
何玲
王君皓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201811122993.4A priority Critical patent/CN109244510B/zh
Publication of CN109244510A publication Critical patent/CN109244510A/zh
Application granted granted Critical
Publication of CN109244510B publication Critical patent/CN109244510B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)

Abstract

本发明公开了一种基于未建模动态补偿的固体氧化物燃料电池控制方法,先搭建基于未建模动态估计的固体氧化物燃料电池模型,再构建基于未建模动态补偿的非线性控制器,以迫使SOFC系统跟踪所需的电堆温度和电压,从而控制固体氧化物燃料电池;这样解决了在考虑SOFC系统未建模动力学的情况下,如何消除未建模动态对SOFC系统影响的问题,且具有较高的控制精度。

Description

一种基于未建模动态补偿的固体氧化物燃料电池控制方法
技术领域
本发明属于燃料电池控制技术领域,更为具体地讲,涉及一种基于未建模动态补偿的固体氧化物燃料电池控制方法。
背景技术
固体氧化物燃料电池(Solid oxide fuel cell,SOFC)是一种将化学能转化为电能的电化学装置。它具有零排放、余热可利用等优点,为了保证固体氧化物燃料电池的安全运行,人们提出了多种控制策略,将电池温度和电压控制在合理的范围内。
固体氧化物燃料电池系统的控制方法主要包括滑模控制、模糊控制、模型预测控制等等。通过上述控制方法,可以实现对系统燃料利用率、温度、功率等参考值的跟踪控制,从而保证系统安全稳定的运行。然而,上述控制方法主要基于所建立的数学模型来设计的。由于建模误差、建模简化或外部干扰的存在,建模过程中可能存在未建模的动态特性。在实际的SOFC系统中,应用这些忽略未建模动态的控制器可能会导致不满意的控制结果,有时甚至会使系统不稳定。
为了克服这一挑战,本发明提出了一种考虑SOFC系统未建模动态补偿的控制策略。首先建立SOFC系统的模型,包括已知的线性模型和未建模的非线性动态估计。然后提出一种基于未建模动态补偿的非线性控制器,以使SOFC系统能跟踪上所需的电堆温度和电压。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于未建模动态补偿的固体氧化物燃料电池控制方法,基于未建模动态补偿的非线性控制器,进行堆温度和电压跟踪,从而消除了未建模动态对SOFC系统的影响。。
为实现上述发明目的,本发明一种基于未建模动态补偿的固体氧化物燃料电池控制方法,其特征在于,包括以下步骤:
(1)、搭建基于未建模动态估计的SOFC模型;
(1.1)、对现有SOFC模型进行离散化:
V(k+1)=f1(T(k),V(k),Wf(k),Wa(k),I(k))
T(k+1)=f2(T(k),V(k),Wf(k),Wa(k),I(k))
其中,V(k)为k时刻时的电堆电压,T(k)为k时刻时的电堆温度,Wf(k)为k时刻时的SOFC的入口燃料流量,Wa(k)为k时刻时的SOFC的入口空气流量,I(k)为k时刻时的有界的随机干扰;f1(·)表示k时刻各参量与k+1时刻电压的函数映射关系,f2(·)表示k时刻各参量与k+1时刻温度的函数映射关系;
(1.2)、对上述SOFC离散模型进行线性化:
Figure GDA0002950904800000021
其中,
Figure GDA0002950904800000022
Figure GDA0002950904800000023
其中,D1~D15为常数,H1~H12为常数;V*(k+1)为下一时刻SOFC模型的输出电压,T*(k+1)为下一时刻时SOFC模型的输出温度,Wf0,Wa0,I0,T0和V0分别是燃料流量平衡点、空气流量平衡点、电流平衡点、温度平衡点及电压平衡点;z-1为一阶延迟环节;
(1.3)、建立下一时刻SOFC系统的输出与现有SOFC模型的输出之间的误差v(k+1);
Figure GDA0002950904800000024
其中,y(k+1)=[V(k+1) T(k+1)]T为k+1时刻模型输出电压和温度;y*(k+1)=[V*(k+1) T*(k+1)]为k+1时刻SOFC实际系统输出电压和温度;
(1.4)、利用BP神经网络估计未建模的SOFC动态特性:
Figure GDA0002950904800000031
其中,
Figure GDA0002950904800000032
为k+1时刻未建模动态的估计值,
Figure GDA0002950904800000033
为k+1时刻电堆电压估计值,
Figure GDA0002950904800000034
为k+1时刻的电堆温度估计值;zi为第i个输入变量;w1,ji是第i个输入层到第j个隐含层的权值,i=1,2,…,q,q为输入层层数,j=1,2,…,p,p为隐含层层数;w2,hj是第j个隐含层到第h个输出层的权值;b1,i是第i个输入层阈值;b2,h是第h个输出层阈值;
(1.5)、建立基于未建模动态估计的SOFC模型:
Figure GDA0002950904800000035
(2)、构建基于未建模动态补偿的非线性控制器;
(2.1)、构建SOFC系统的控制律:
Figure GDA0002950904800000036
其中,y(k)=[V(k)-V0 T(k)-T0]T;u(k)=[Wf(k)-Wf0 Wa(k)-Wa0]T;yr(k+1)=[Vr(k)-V0 Tr(k)-T0]T;Vr(k)是期望电压值;Tr(k)是期望温度值;K(z-1)、H(z-1)、R(z-1)和G(z-1)是一阶延迟环节z-1的矩阵多项式;
(2.2)、将控制律代入至SOFC系统模型得:
Figure GDA0002950904800000037
(2.3)、获取SOFC系统的控制律:
Figure GDA0002950904800000038
本发明的发明目的是这样实现的:
本发明一种基于未建模动态补偿的固体氧化物燃料电池控制方法,先搭建基于未建模动态估计的固体氧化物燃料电池模型,再构建基于未建模动态补偿的非线性控制器,以迫使SOFC系统跟踪所需的电堆温度和电压,从而控制固体氧化物燃料电池;这样解决了在考虑SOFC系统未建模动力学的情况下,如何消除未建模动态对SOFC系统影响的问题,且具有较高的控制精度。
附图说明
图1是基于未建模动态补偿的固体氧化物燃料电池控制方法流程图;
图2是实验数据与模型数据的比较图;
图3是BP神经网络对未建模动态的估计图;
图4是基于未建模动态补偿的控制器图;
图5是未建模动态影响下的SOFC响应图。
具体实施方式
下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。
实施例
图1是本发明基于未建模动态补偿的固体氧化物燃料电池控制方法流程图。
在本实施例中,如图1所示,本发明一种基于未建模动态补偿的固体氧化物燃料电池控制方法,主要包括两步:S1、搭建基于未建模动态估计的固体氧化物燃料电池模型,S2、构建基于未建模动态补偿的非线性控制器。
下面我们结合图1对本发明进行详细说明,具体包括以下步骤:
S1、搭建基于未建模动态估计的固体氧化物燃料电池模型;
S1.1、对现有固体氧化物燃料电池模型进行离散化:
V(k+1)=f1(T(k),V(k),Wf(k),Wa(k),I(k))
=0.9948V(k)-2.1277×102Wf(k)V(k)-3.4714×10-2I(k)-6.7523Wf(k)I(k)-2.9481×10-3I(k)V(k)+1.1222T(k)Wf(k)+0.1437Wa(k)T(k)-0.3392I(k)Wa(k)-28.2621V(k)Wa(k)
T(k+1)=f2(T(k),V(k),Wf(k),Wa(k),I(k))
=7.7813×10-2Wa(k)I(k)2-4.9834×10-2Wf(k)I(k)2+29.8089Wa(k)T(k)+29.4088Wf(k)T(k)-2.8393×10-2Wa(k)T(k)2-2.8014×10-2Wf(k)T(k)2+2.1257I(k)+2.8398×10-3I(k)T(k)-0.7727I(k)V(k)+1.0001T(k)
其中,V(k)为k时刻时的电堆电压,T(k)为k时刻时的电堆温度,Wf(k)为k时刻时的固体氧化物燃料电池的入口燃料流量,Wa(k)为k时刻时的固体氧化物燃料电池的入口空气流量,I(k)为k时刻时的有界的随机干扰;f1(·)表示k时刻各操作参量与k+1时刻电压输出值的函数映射关系,f2(·)表示k时刻各操作参量与k+1时刻温度输出值的函数映射关系;
S1.2、对上述固体氧化物燃料电池离散模型进行线性化:
Figure GDA0002950904800000051
其中,
Figure GDA0002950904800000052
Figure GDA0002950904800000053
其中,V*(k+1)为k+1时刻固体氧化物燃料电池模型的输出电压,T*(k+1)为k+1时刻固体氧化物燃料电池模型的输出温度,Wf0,Wa0,I0,T0和V0分别是燃料流量平衡点、空气流量平衡点、电流平衡点、温度平衡点及电压平衡点;z-1为一阶延迟环节;
S1.3、建立下一时刻SOFC系统的输出与固体氧化物燃料电池模型的输出之间的误差v(k+1);
SOFC系统的未建模动态是一个未知的非线性函数,定义为SOFC系统的实际输出与固体氧化物燃料电池模型输出之间的差,即:
Figure GDA0002950904800000061
其中,y(k+1)=[V(k+1) T(k+1)]T为SOFC系统实际输出电压和温度;y*(k+1)=[V*(k+1) T*(k+1)]为SOFC模型的输出电压和温度;
S1.4、利用BP神经网络估计未建模的固体氧化物燃料电池动态特性:
Figure GDA0002950904800000062
其中,
Figure GDA0002950904800000063
为下一时刻时未建模动态的估计值,
Figure GDA0002950904800000064
为下一时刻的电堆电压估计值,
Figure GDA0002950904800000065
为下一时刻的电堆温度估计值;zi为第i个输入变量;w1,ji是第i个输入层到第j个隐含层的权值,w2,hj是第j个隐含层到第h个输出层的权值;b1,i是第i个输入层阈值;b2,h是第h个输出层阈值;
S1.5、建立基于未建模动态估计的固体氧化物燃料电池模型:
Figure GDA0002950904800000066
S2、构建基于未建模动态补偿的非线性控制器;
S2.1、如图4所示,构建SOFC系统的控制律:
Figure GDA0002950904800000067
其中,y(k)=[V(k)-V0 T(k)-T0]T;u(k)=[Wf(k)-Wf0 Wa(k)-Wa0]T;yr(k+1)=[Vr(k)-V0 Tr(k)-T0]T;Vr(k)是期望电压值;Tr(k)是期望温度值;K(z-1)、H(z-1)、R(z-1)和G(z-1)是一阶延迟环节z-1的矩阵多项式;
S2.2、将控制律代入至SOFC系统模型得:
Figure GDA0002950904800000071
将控制律代入至SOFC系统模型时,为了消除未建模动态
Figure GDA0002950904800000072
对SOFC系统的影响,必须满足如下条件:
K(z-1)=I
H(z-1)=B(z-1)
此外,为了保证y(k+1)=yr(k+1),则应满足:R(z-1)=(1-z-1)A(z-1)+z-1G(z-1)且det[(1-z-1)A(z-1)+z-1G(z-1)]≠0;其中,det[·]表示求矩阵行列式的值;
S2.3、获取SOFC系统的最终控制律:
Figure GDA0002950904800000073
图2是实验数据与模型数据的比较图。
在实际的操作条件下,即电流和入口燃料流量呈阶梯变化,如图2中的(a)和图2中的(b)所示,而输出电压和温度分别在实际系统和仿真模型中获得,如图2中的(c)和图2中的(d)所示,其中,虚线代表实验数据,实线代表模型数据。
图3是BP神经网络对未建模动态的估计图。
将实际数据与模型数据之间的误差定义为未建模动态。利用BP神经网络估计未建模动态特性,如图3中的(a)和图3中的(b)所示。其中,虚线表示真实输出和模型输出的真实差异,实线表示BP估计值。BP估计值与实测值的均方误差分别为0.0019V和0.0411K。BP估计器的输出可以很好地表示SOFC系统的未建模动态特性。
图5是未建模动态影响下的SOFC响应图。
在本实施例中,图5中的(a)和中的(b)用BP估计给出了温度和电压的未建模动态特性。所建立的模型与实际系统的温差为-5.8K~6.5K,电压差为-0.145V~0.147V。所建立的模型与实际系统之间出现了很大的差异。利用所提出的非线性控制器,分别在图5中的(c)和中的(d)中给出了电压和堆栈温度的响应。控制目标电压和温度由实线绘制,实线分别设置为4.85V和1077K,虚线表示非线性控制器的温度和电压响应。从结果来看,当未建模动态对SOFC有影响时,采用基于未建模动态补偿的非线性控制器对SOFC进行控制,可以成功地将受控的温度和电压维持在它们的期望值。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (2)

1.一种基于未建模动态补偿的SOFC控制方法,其特征在于,包括以下步骤:
(1)、搭建基于未建模动态估计的SOFC模型;
(1.1)、对现有SOFC模型进行离散化:
V(k+1)=f1(T(k),V(k),Wf(k),Wa(k),I(k))
T(k+1)=f2(T(k),V(k),Wf(k),Wa(k),I(k))
其中,V(k)为k时刻时的电堆电压,T(k)为k时刻时的电堆温度,Wf(k)为k时刻时的SOFC的入口燃料流量,Wa(k)为k时刻时的SOFC的入口空气流量,I(k)为k时刻时的有界的随机干扰;f1(·)表示k时刻各参量与k+1时刻电压的函数映射关系,f2(·)表示k时刻各参量与k+1时刻温度的函数映射关系;
(1.2)、对上述SOFC离散模型进行线性化:
Figure FDA0002950904790000011
其中,
Figure FDA0002950904790000012
Figure FDA0002950904790000013
其中,D1~D15为常数,H1~H12为常数;V*(k+1)为下一时刻SOFC模型的输出电压,T*(k+1)为下一时刻时SOFC模型的输出温度,Wf0,Wa0,I0,T0和V0分别是燃料流量平衡点、空气流量平衡点、电流平衡点、温度平衡点及电压平衡点;z-1为一阶延迟环节;
(1.3)、建立下一时刻SOFC系统的输出与现有SOFC模型的输出之间的误差v(k+1);
Figure FDA0002950904790000021
其中,y(k+1)=[V(k+1) T(k+1)]T为k+1时刻模型输出电压和温度;y*(k+1)=[V*(k+1)T*(k+1)]为k+1时刻SOFC实际系统输出电压和温度;
(1.4)、利用BP神经网络估计未建模的SOFC动态特性:
Figure FDA0002950904790000022
其中,
Figure FDA0002950904790000023
为k+1时刻未建模动态的估计值,
Figure FDA0002950904790000024
为k+1时刻电堆电压估计值,
Figure FDA0002950904790000025
为k+1时刻的电堆温度估计值;zi为第i个输入变量;w1,ji是第i个输入层到第j个隐含层的权值,i=1,2,…,q,q为输入层层数,j=1,2,…,p,p为隐含层层数;w2,hj是第j个隐含层到第h个输出层的权值;b1,i是第i个输入层阈值;b2,h是第h个输出层阈值;
(1.5)、建立基于未建模动态估计的SOFC模型:
Figure FDA0002950904790000026
(2)、构建基于未建模动态补偿的非线性控制器;
(2.1)、构建SOFC系统的控制律:
Figure FDA0002950904790000027
其中,y(k)=[V(k)-V0 T(k)-T0]T;u(k)=[Wf(k)-Wf0 Wa(k)-Wa0]T;yr(k+1)=[Vr(k)-V0Tr(k)-T0]T;Vr(k)是期望电压值;Tr(k)是期望温度值;K(z-1)、H(z-1)、R(z-1)和G(z-1)是一阶延迟环节z-1的矩阵多项式;
(2.2)、将控制律代入至SOFC系统模型得:
Figure FDA0002950904790000031
(2.3)、获取SOFC系统的控制律:
Figure FDA0002950904790000032
2.根据权利要求1所述的基于未建模动态补偿的SOFC控制方法,其特征在于,所述步骤(2.2)中,将控制律代入至SOFC系统模型必须满足以下条件:
K(z-1)=I
H(z-1)=B(z-1)
R(z-1)=(1-z-1)A(z-1)+z-1G(z-1)且det[(1-z-1)A(z-1)+z-1G(z-1)]≠0;
其中,det[·]表示求矩阵行列式的值。
CN201811122993.4A 2018-09-26 2018-09-26 一种基于未建模动态补偿的固体氧化物燃料电池控制方法 Active CN109244510B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811122993.4A CN109244510B (zh) 2018-09-26 2018-09-26 一种基于未建模动态补偿的固体氧化物燃料电池控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811122993.4A CN109244510B (zh) 2018-09-26 2018-09-26 一种基于未建模动态补偿的固体氧化物燃料电池控制方法

Publications (2)

Publication Number Publication Date
CN109244510A CN109244510A (zh) 2019-01-18
CN109244510B true CN109244510B (zh) 2021-07-13

Family

ID=65057154

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811122993.4A Active CN109244510B (zh) 2018-09-26 2018-09-26 一种基于未建模动态补偿的固体氧化物燃料电池控制方法

Country Status (1)

Country Link
CN (1) CN109244510B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137547B (zh) * 2019-06-20 2022-04-26 华中科技大学鄂州工业技术研究院 带重整器的燃料电池系统的控制方法、装置及电子设备
CN114486714B (zh) * 2022-01-19 2023-11-10 杭州新坐标科技股份有限公司 一种燃料电池金属双极板的梯形电位加速测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399492A (zh) * 2013-08-07 2013-11-20 东南大学 一种固体氧化物燃料电池电压快速非线性预测控制方法
CN104009247A (zh) * 2014-05-04 2014-08-27 华中科技大学 一种固体氧化物燃料电池电堆温度分布估计方法
CN106295082A (zh) * 2016-09-27 2017-01-04 华中科技大学 一种平板式固体氧化物燃料电池的数值模拟方法
CN106407621A (zh) * 2016-11-21 2017-02-15 中博源仪征新能源科技有限公司 一种固体氧化物燃料电池二维有限元模型的建立方法
CN107991881A (zh) * 2017-12-20 2018-05-04 东南大学 一种基于多模型预测控制的固体氧化物燃料电池非线性抑制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399492A (zh) * 2013-08-07 2013-11-20 东南大学 一种固体氧化物燃料电池电压快速非线性预测控制方法
CN104009247A (zh) * 2014-05-04 2014-08-27 华中科技大学 一种固体氧化物燃料电池电堆温度分布估计方法
CN106295082A (zh) * 2016-09-27 2017-01-04 华中科技大学 一种平板式固体氧化物燃料电池的数值模拟方法
CN106407621A (zh) * 2016-11-21 2017-02-15 中博源仪征新能源科技有限公司 一种固体氧化物燃料电池二维有限元模型的建立方法
CN107991881A (zh) * 2017-12-20 2018-05-04 东南大学 一种基于多模型预测控制的固体氧化物燃料电池非线性抑制方法

Also Published As

Publication number Publication date
CN109244510A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
Hilairet et al. A passivity-based controller for coordination of converters in a fuel cell system
CN108681244B (zh) 基于多模型前馈的燃料电池阳极压力动态矩阵控制方法
CN106249599B (zh) 一种基于神经网络预测的网络化控制系统故障检测方法
CN109244510B (zh) 一种基于未建模动态补偿的固体氧化物燃料电池控制方法
Zheng et al. Event‐triggered control for a saturated nonlinear system with prescribed performance and finite‐time convergence
CN112034707B (zh) 无模型自适应控制的改进方法
Xing et al. Real-time adaptive parameter estimation for a polymer electrolyte membrane fuel cell
DE102016117366A1 (de) Einrichtungen zur schätzung der relativen feuchtigkeit für brennstoffzellenanschlüsse
Wu et al. Nonlinear modeling of a SOFC stack based on ANFIS identification
CN114447378B (zh) 一种质子交换膜燃料电池的参数优化方法
Jouin et al. Prognostics of PEM fuel cells under a combined heat and power profile
She et al. Multiobjective control of PEM fuel cell system with improved durability
CN114142498A (zh) 一种数据驱动的分布式储能自适应预测控制电压调节方法
CN113093553A (zh) 一种基于指令滤波扰动估计的自适应反步控制方法
CN108614431B (zh) 一种基于夹角的Hammerstein-Wiener系统多模型分解及控制方法
CN113067334A (zh) 基于神经网络的有源电力滤波器非线性预测控制方法
CN108445758A (zh) 一类具有网络随机时变时延的线性参数变化系统的h∞控制方法
CN111969596A (zh) 一种电器级负荷频率控制系统的负荷自适应校正响应方法
Rezazadeh et al. Proton exchange membrane fuel cell controlusing a predictive control based on neuralnetwork
CN104155876B (zh) 一种pid控制器的分离实现方法
CN108107717B (zh) 一种适用于量化多自主体系统的分布式控制方法
Haddad et al. Air-flow control in fuel cells using delay-based load governor and feedforward augmented dynamic inversion
Zhang et al. Adaptive decentralized sensor failure compensation control for nonlinear switched interconnected systems with average dwell time
CN113515066B (zh) 一种非线性多智能体系统动态事件触发控制方法
CN112034712A (zh) 一种基于事件触发的滑模容错控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant