CN109239400A - 一体式石英双振梁加速度计及制备方法 - Google Patents

一体式石英双振梁加速度计及制备方法 Download PDF

Info

Publication number
CN109239400A
CN109239400A CN201811339689.5A CN201811339689A CN109239400A CN 109239400 A CN109239400 A CN 109239400A CN 201811339689 A CN201811339689 A CN 201811339689A CN 109239400 A CN109239400 A CN 109239400A
Authority
CN
China
Prior art keywords
electrode
quartz
mass block
mask
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811339689.5A
Other languages
English (en)
Other versions
CN109239400B (zh
Inventor
张照云
刘显学
唐彬
李枚
彭勃
许蔚
熊壮
苏伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronic Engineering of CAEP
Original Assignee
Institute of Electronic Engineering of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronic Engineering of CAEP filed Critical Institute of Electronic Engineering of CAEP
Priority to CN201811339689.5A priority Critical patent/CN109239400B/zh
Publication of CN109239400A publication Critical patent/CN109239400A/zh
Application granted granted Critical
Publication of CN109239400B publication Critical patent/CN109239400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明公开了一种一体式石英双振梁加速度计及制备方法,该一体式石英双振梁加速度计包括:一体成型的装配区、挠性梁、振梁、质量块及金属电极,质量块通过挠性梁及振梁连接于装配区;振梁包括第一直梁及第二直梁,第一直梁及第二直梁并列设置,第一直梁及第二直梁的一端连接于装配区,另一端连接于质量块,金属电极设置第一直梁及第二直梁上,第一直梁及第二直梁上的金属电极的极性相反;挠性梁包括两个连接梁,两个连接梁位于振梁的两侧,挠性梁的一端连接于装配区,另一端连接于质量块。该一体式石英双振梁加速度计一体成型,相比分体式具有结构紧凑、免装配、易加工的特点,另外采用双振梁,可以避免真空封装,在使用中更加稳定可靠。

Description

一体式石英双振梁加速度计及制备方法
技术领域
本发明涉及微电子机械系统,具体涉及一种一体式石英双振梁加速度计及制备方法。
背景技术
石英振梁加速度计是一种利用石英振梁的力-频特性敏感惯性力的MEMS惯性传感器,具有直接数字输出、偏置稳定性好、刻度因数稳定性好、量程设计灵活等优点,可广泛用于战术导弹姿态控制、惯性导航,地球资源勘探等领域,有着重要的军用价值和名用价值。
目前的石英振梁加速度计主要分为一体式和分体式,分体式结构典型代表为Honeywell公司的RBA500,由石英双梁振梁与金属质量块组成,需精密装配,面临不同材料热失配以及胶老化的问题,长期稳定性和可靠性较差。一体式结构以法国ONERA设计的结构为典型代表,振梁与质量结构全部由石英材料组成,具有结构紧凑,一体成型的优点,但采用单振梁,需要真空封装,使用中真空度的改变会影响器件的性能。
发明内容
本发明的目的是提供一种一体式石英双振梁加速度计及制备方法,该一体式石英双振梁加速度计一体成型,相比分体式具有结构紧凑、免装配、易加工的特点,另外采用双振梁,可以避免真空封装,在使用中更加稳定可靠。
为了实现上述目的,根据本发明的一方面提供了一种一体式石英双振梁加速度计包括:一体成型的装配区、挠性梁、振梁、质量块及金属电极,所述质量块通过所述挠性梁及所述振梁连接于所述装配区;
其中,所述振梁包括第一直梁及第二直梁,所述第一直梁及所述第二直梁并列设置,所述第一直梁及所述第二直梁的一端连接于所述装配区,另一端连接于所述质量块,所述金属电极设置所述第一直梁及所述第二直梁上,所述第一直梁及所述第二直梁上的金属电极的极性相反;
其中,所述挠性梁包括两个连接梁,两个连接梁位于所述振梁的两侧,所述挠性梁的一端连接于所述装配区,另一端连接于所述质量块。
优选地,所述装配区及所述质量块为凹字形,所述凹字形的缺口为凹陷区,所述质量块位于所述装配区的凹陷区内,所述质量块的凹陷区朝向所述质量块的凹陷区。
优选地,所述装配区与所述质量块中线处于一条直线上,使所述一体式石英双振梁加速度计呈轴对称结构。
优选地,所述振梁的一端连接于所述质量块的凹陷区,另一端连接于所述装配区,所述第一直梁与所述第二直梁以质量块的中线为轴线对称设置。
优选地,所述挠性梁的一端连接于所述质量块为凹字形的突出部,另一端连接于所述装配区,两个所述连接梁以所述装配区的中线为轴线对称设置在所述振梁的两侧。
优选地,所述挠性梁及振梁的厚度相同,所述挠性梁及振梁的厚度小于所述装配区及所述质量块的厚度。
优选地,所述挠性梁的一端连接于所述装配区的下表面,另一端连接于所述质量块的下表面,所述振梁的一端连接于所述装配区的上表面,另一端连接于所述质量块的上表面。
优选地,所述金属电极包括第一电极、第二电极及引线;
其中,所述第一电极包括第一左电极、第一中电极、第一右电极;所述第二电极包括第二左电极、第二中电极、第二右电极;所述引线包括第一引线及第二引线;
其中,所述第一电极设置在所述第一直梁上,所述第二电极设置在所述第二直梁上;
其中,所述第一左电极位于所述第一中电极左侧,所述第一右电极位于所述第一中电极右侧;所述第二左电极位于所述第二中电极左侧,所述第二右电极位于所述第二中电极右侧;
其中,所述第一左电极连接于所述第一右电极,而后连接于所述第二中电极,所述第二左电极连接于所述第二右电极,而后连接于所述第一中电极;
其中,所述第一引线连接于所述第一左电极,所述第二引线连接于所述第一中电极及所述第二右电极。
根据本发明的另一方面提供了一种一体式石英双振梁加速度计的制备方法,所述制备方法包括:
1)切割获取石英基片;
2)在所述石英基片的上下表面溅射掩模;
3)通过标定掩模去除区域,贯穿腐蚀去除所述振梁、质量块及所述挠性梁侧壁的晶棱;
4)通过标定掩模去除区域,部分腐蚀,削减所述振梁及所述挠性梁的厚度;
5)在所述振梁上铺设金属电极。获取一体式石英双振梁加速度计。
优选地,所述制备方法包括:
1)原始材料采用双抛Z切石英单晶,获取厚度为400μm-600μm厚度的石英基片;
2)在所述石英基片的表面依次溅射铬和金,在所述石英基片的上下表面形成石英腐蚀金属掩膜;
3)通过双面涂胶及曝光在所述铬金掩模上显露第一掩模去除区域;
4)去除第一掩模去除区域上的铬金掩模,并去除光刻胶;
5)通过腐蚀液在第一掩模去除区域上双面腐蚀贯穿所述石英基片,去除所述振梁、质量块及所述挠性梁侧壁的晶棱;
6)通过双面喷胶及曝光在所述铬金属掩模上显露第二掩模去除区域;
7)去除第二掩模去除区域上的铬金掩模,并去除光刻胶;
8)通过腐蚀液在第二掩模去除区域上单面部分腐蚀所述石英基片,使得所述振梁及所述挠性梁的厚度为所需要的厚度。
9)去除石英基片上的石英腐蚀金属掩膜,在所述振梁上溅射金属电极。
本发明的有益效果在于:
1)本发明的一体式石英双振梁加速度计一体成型,相比分体式具有结构紧凑、免装配、易加工的特点。
2)本发明的一体式石英双振梁加速度计采用双振梁,可以避免真空封装,在使用中更加稳定可靠。
3)通过本发明的制备方法能够使一体式石英双振梁加速度计的规格得到准确控制,使一体式石英双振梁加速度计使用更为方便,测量更为准确。
附图说明
图1示出了根据本发明的一个实施例一体式石英双振梁加速度计的示意性结构图;
图2示出了根据本发明的一个实施例一体式石英双振梁加速度计的电机分布示意图;
图3示出了根据本发明的一个实施例金属电极的示意性结构图;
图4a-图4h示出了根据本发明的一个实施例一体式石英双振梁加速度计的制备工艺流程图;
图5示出了根据本发明的一个实施例石英基片贯穿腐蚀示意图;
图6示出了根据本发明的一个实施例石英基片部分腐蚀示意图。
其中:
1-装配区,2-挠性梁,3-振梁,4-质量块,5-第一电极,6-第二电极,7-引线;
501-第一中电极,502-第一左电极,503-第一右电极,601-第二中电极,602-第二左电极,603-第二右电极,701-第一引线,702-第二引线。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。在不冲突的情况下,本发明中的实施方式及实施方式中的特征可以相互任意组合。
根据本发明的一方面提供了一种一体式石英双振梁加速度计,该一体式石英双振梁加速度计包括:一体成型的装配区、挠性梁、振梁、质量块及金属电极,所述质量块通过所述挠性梁及所述振梁连接于所述装配区;
其中,所述振梁包括第一直梁及第二直梁,所述第一直梁及所述第二直梁并列设置,所述第一直梁及所述第二直梁的一端连接于所述装配区,另一端连接于所述质量块,所述金属电极设置所述第一直梁及所述第二直梁上,所述第一直梁及所述第二直梁上的金属电极的极性相反;
其中,所述挠性梁包括两个连接梁,两个连接梁位于所述振梁的两侧,所述挠性梁的一端连接于所述装配区,另一端连接于所述质量块。
具体地,使用时,第一直梁及第二直梁电极极性相反,在驱动电压的作用下振梁起振,导致振梁在X轴方向弯曲振动,每对振梁的两根直梁在振动时振动方向相反,可以抵消作用到装配区的转接板上的力,获得高的Q值,不需要真空封装。当加速度作用时,本发明的一体式石英双振梁加速度计敏感到Z轴方向的加速度变化,通过质量块将加速度转化为惯性力,由于石英晶体的力-频特性,振梁的固有频率会发生变化,当振梁受到压应力时,固有频率增大,当振梁受到拉应力时,固有频率减小,从而根据频率的变化获得加速度的大小。另外,也可以将两个加速度计组合成一个差分形式的加速度计,即一个加速度计的一对振梁受到压应力,另外一个加速度计的振梁受到拉应力,通过检测两个加速度计的频差信号,就可以实现加速度计敏感轴方向加速度的检测。
具体地,该发明采用双振梁,且为同一种材料,一体成型,相比当前分体式石英双振梁加速度计,不需要精密装配,具有结构紧凑、免装配、易加工的特点,且可以避免不同材料之间的热失配效应以及胶老化的缺点,相比当前的一体式结构,采用双振梁,可以避免真空封装的问题,在使用中更加稳定可靠。
进一步地,所述装配区及所述质量块为凹字形,所述凹字形的缺口为凹陷区,所述质量块位于所述装配区的凹陷区内,所述质量块的凹陷区朝向所述质量块的凹陷区。
进一步地,所述装配区与所述质量块中线处于一条直线上,使所述一体式石英双振梁加速度计呈轴对称结构。
进一步地,所述振梁的一端连接于所述质量块的凹陷区,另一端连接于所述装配区,所述第一直梁与所述第二直梁以质量块的中线为轴线对称设置。
进一步地,所述挠性梁的一端连接于所述质量块为凹字形的突出部,另一端连接于所述装配区,两个所述连接梁以所述装配区的中线为轴线对称设置在所述振梁的两侧。
进一步地,所述挠性梁及振梁的厚度相同,所述挠性梁及振梁的厚度小于所述装配区及所述质量块的厚度。
进一步地,所述挠性梁的一端连接于所述装配区的下表面,另一端连接于所述质量块的下表面,所述振梁的一端连接于所述装配区的上表面,另一端连接于所述质量块的上表面。
进一步地,所述金属电极包括第一电极、第二电极及引线;
其中,所述第一电极包括第一左电极、第一中电极、第一右电极;所述第二电极包括第二左电极、第二中电极、第二右电极;所述引线包括第一引线及第二引线;
其中,所述第一电极设置在所述第一直梁上,所述第二电极设置在所述第二直梁上;
其中,所述第一左电极位于所述第一中电极左侧,所述第一右电极位于所述第一中电极右侧;所述第二左电极位于所述第二中电极左侧,所述第二右电极位于所述第二中电极右侧;
其中,所述第一左电极连接于所述第一右电极,而后连接于所述第二中电极,所述第二左电极连接于所述第二右电极,而后连接于所述第一中电极;
其中,所述第一引线连接于所述第一左电极,所述第二引线连接于所述第一中电极及所述第二右电极。
根据本发明的另一方面提供了一种一体式石英双振梁加速度计的制备方法,该制备方法包括:
1)切割获取石英基片;
2)在所述石英基片的上下表面溅射掩模;
3)通过标定掩模去除区域,贯穿腐蚀去除所述振梁、质量块及所述挠性梁侧壁的晶棱;
4)通过标定掩模去除区域,部分腐蚀,削减所述振梁及所述挠性梁的厚度;
5)在所述振梁上铺设金属电极,获取一体式石英双振梁加速度计。
进一步地,所述制备方法包括:
1)原始材料采用双抛Z切石英单晶,获取厚度为400μm-600μm厚度的石英基片;
2)在所述石英基片的表面依次溅射铬和金,在所述石英基片的上下表面形成石英腐蚀金属掩膜;
3)通过双面涂胶及曝光在所述铬金掩模上显露第一掩模去除区域;
4)去除第一掩模去除区域上的铬金掩模,并去除光刻胶;
5)通过腐蚀液在第一掩模去除区域上双面腐蚀贯穿所述石英基片,去除所述振梁、质量块及所述挠性梁侧壁的晶棱;
6)通过双面喷胶及曝光在所述铬金属掩模上显露第二掩模去除区域;
7)去除第二掩模去除区域上的铬金掩模,并去除光刻胶;
8)通过腐蚀液在第二掩模去除区域上单面部分腐蚀所述石英基片,使得所述振梁及所述挠性梁的厚度为所需要的厚度。
9)去除石英基片上的石英腐蚀金属掩膜,在所述振梁上溅射金属电极。
具体地,腐蚀液可以为HF溶液或氟化氢铵溶液,石英腐蚀掩膜也可选择利用多晶硅掩膜。
具体地,通过腐蚀液在第二掩模去除区域上单面部分腐蚀所述石英基片,使得所述振梁及所述挠性梁的厚度为80-200μm。
实施例
图1示出了根据本发明的一个实施例一体式石英双振梁加速度计的示意性结构图;图2示出了根据本发明的一个实施例一体式石英双振梁加速度计的电机分布示意图;图3示出了根据本发明的一个实施例金属电极的示意性结构图;图4a-图4h示出了根据本发明的一个实施例一体式石英双振梁加速度计的制备工艺流程图;图5示出了根据本发明的一个实施例石英基片贯穿腐蚀示意图;图6示出了根据本发明的一个实施例石英基片部分腐蚀示意图。
如图1-图6所示,
该一体式石英双振梁加速度计包括:一体成型的装配区1、挠性梁2、振梁3、质量块4及金属电极,所述质量块4通过所述挠性梁2及所述振梁3连接于所述装配区4;
其中,所述振梁3包括第一直梁及第二直梁,所述第一直梁及所述第二直梁并列设置,所述第一直梁及所述第二直梁的一端连接于所述装配区1,另一端连接于所述质量块4,所述金属电极设置所述第一直梁及所述第二直梁上,所述第一直梁及所述第二直梁上的金属电极的极性相反;
其中,所述挠性梁2包括两个连接梁,两个连接梁位于所述振梁3的两侧,所述挠性梁的一端连接于所述装配区1,另一端连接于所述质量块4。
进一步地,所述装配区1及所述质量块4为凹字形,所述凹字形的缺口为凹陷区,所述质量块4位于所述装配区1的凹陷区内,所述质量块4的凹陷区朝向所述装配区1的凹陷区。
进一步地,所述装配区1与所述质量块4中线处于一条直线上,使所述一体式石英双振梁加速度计呈轴对称结构。
进一步地,所述振梁3的一端连接于所述质量块4的凹陷区,另一端连接于所述装配区1,述第一直梁与所述第二直梁以质量块4的中线为轴线对称设置。
进一步地,所述挠性梁2的一端连接于所述质量块4为凹字形的突出部,另一端连接于所述装配区1,两个所述连接梁以所述装配区的1中线为轴线对称设置在所述振梁3的两侧。
进一步地,所述挠性梁2及振梁3的厚度相同,所述挠性梁2及振梁3的厚度小于所述装配区1及所述质量块4的厚度。
进一步地,所述挠性梁2的一端连接于所述装配区1的下表面,另一端连接于所述质量块4的下表面,所述振梁3的一端连接于所述装配区1的上表面,另一端连接于所述质量块4的上表面。
进一步地,所述金属电极包括第一电极5、第二电极6及引线7;
其中,所述第一电极5包括第一左电极502、第一中电极501、第一右电极503;所述第二电极6包括第二左电极602、第二中电极601、第二右电极603;所述引线7包括第一引线701及第二引线702;
其中,所述第一电极5设置在所述第一直梁上,所述第二电极6设置在所述第二直梁上;
其中,所述第一左电极502位于所述第一中电极501左侧,所述第一右电极503位于所述第一中电极501右侧;所述第二左电极602位于所述第二中电极601左侧,所述第二右电极603位于所述第二中电极601右侧;
其中,所述第一左电极502连接于所述第一右电极503,而后连接于所述第二中电极601,所述第二左电极602连接于所述第二右电极603,而后连接于所述第一中电极501;
其中,所述第一引线连701接于所述第一左电极502,所述第二引线702连接于所述第一中电极501及所述第二右电极603。
该一体式石英双振梁加速度计的制备方法为:
1)原始材料采用双抛Z切石英单晶,获取厚度为400μm-600μm厚度的石英基片;
2)在所述石英基片的表面依次溅射铬和金,在所述石英基片的上下表面形成石英腐蚀金属掩膜;
3)通过双面涂胶及曝光在所述铬金掩模上显露第一掩模去除区域;
4)去除第一掩模去除区域上的铬金掩模,并去除光刻胶;
5)通过腐蚀液在第一掩模去除区域上双面腐蚀贯穿所述石英基片,去除所述振梁、质量块及所述挠性梁侧壁的晶棱;
6)通过双面喷胶及曝光在所述铬金属掩模上显露第二掩模去除区域;
7)去除第二掩模去除区域上的铬金掩模,并去除光刻胶;
8)通过腐蚀液在第二掩模去除区域上单面部分腐蚀所述石英基片,使得所述振梁及所述挠性梁的厚度为所需要的厚度。
9)去除石英基片上的石英腐蚀金属掩膜,在所述振梁上溅射金属电极。
具体地,通过腐蚀液在第二掩模去除区域上单面部分腐蚀所述石英基片,使得所述振梁及所述挠性梁的厚度为100μm。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种一体式石英双振梁加速度计,其特征在于,该一体式石英双振梁加速度计包括:一体成型的装配区、挠性梁、振梁、质量块及金属电极,所述质量块通过所述挠性梁及所述振梁连接于所述装配区;
其中,所述振梁包括第一直梁及第二直梁,所述第一直梁及所述第二直梁并列设置,所述第一直梁及所述第二直梁的一端连接于所述装配区,另一端连接于所述质量块,所述金属电极设置所述第一直梁及所述第二直梁上,所述第一直梁及所述第二直梁上的金属电极的极性相反;
其中,所述挠性梁包括两个连接梁,两个连接梁位于所述振梁的两侧,所述挠性梁的一端连接于所述装配区,另一端连接于所述质量块。
2.根据权利要求1所述的一体式石英双振梁加速度计,其特征在于,所述装配区及所述质量块为凹字形,所述凹字形的缺口为凹陷区,所述质量块位于所述装配区的凹陷区内,所述质量块的凹陷区朝向所述装配区的凹陷区。
3.根据权利要求2所述的一体式石英双振梁加速度计,其特征在于,所述装配区与所述质量块中线处于一条直线上,使所述一体式石英双振梁加速度计呈轴对称结构。
4.根据权利要求2所述的一体式石英双振梁加速度计,其特征在于,所述振梁的一端连接于所述质量块的凹陷区,另一端连接于所述装配区,所述第一直梁与所述第二直梁以质量块的中线为轴线对称设置。
5.根据权利要求2所述的一体式石英双振梁加速度计,其特征在于,所述挠性梁的一端连接于所述质量块为凹字形的突出部,另一端连接于所述装配区,两个所述连接梁以所述装配区的中线为轴线对称设置在所述振梁的两侧。
6.根据权利要求1所述的一体式石英双振梁加速度计,其特征在于,所述挠性梁及振梁的厚度相同,所述挠性梁及振梁的厚度小于所述装配区及所述质量块的厚度。
7.根据权利要求6所述的一体式石英双振梁加速度计,其特征在于,所述挠性梁的一端连接于所述装配区的下表面,另一端连接于所述质量块的下表面,所述振梁的一端连接于所述装配区的上表面,另一端连接于所述质量块的上表面。
8.根据权利要求1所述的一体式石英双振梁加速度计,其特征在于,所述金属电极包括第一电极、第二电极及引线;
其中,所述第一电极包括第一左电极、第一中电极、第一右电极;所述第二电极包括第二左电极、第二中电极、第二右电极;所述引线包括第一引线及第二引线;
其中,所述第一电极设置在所述第一直梁上,所述第二电极设置在所述第二直梁上;
其中,所述第一左电极位于所述第一中电极左侧,所述第一右电极位于所述第一中电极右侧;所述第二左电极位于所述第二中电极左侧,所述第二右电极位于所述第二中电极右侧;
其中,所述第一左电极连接于所述第一右电极,而后连接于所述第二中电极,所述第二左电极连接于所述第二右电极,而后连接于所述第一中电极;
其中,所述第一引线连接于所述第一左电极,所述第二引线连接于所述第一中电极及所述第二右电极。
9.一种权利要求1-8中任意一项所述一体式石英双振梁加速度计的制备方法,其特征在于,所述制备方法包括:
1)切割获取石英基片;
2)在所述石英基片的上下表面溅射掩模;
3)通过标定掩模去除区域,贯穿腐蚀去除所述振梁、所述质量块及所述挠性梁侧壁的晶棱;
4)通过标定掩模去除区域,部分腐蚀,削减所述振梁及所述挠性梁的厚度;
5)在所述振梁上铺设金属电极,获取一体式石英双振梁加速度计。
10.根据权利要求9所述的制备方法,其特征在于,所述制备方法包括:
1)原始材料采用双抛Z切石英单晶,获取厚度为400μm-600μm厚度的石英基片;
2)在所述石英基片的表面依次溅射铬和金,在所述石英基片的上下表面形成石英腐蚀金属掩膜;
3)通过双面涂胶及曝光在所述铬金掩模上显露第一掩模去除区域;
4)去除第一掩模去除区域上的铬金掩模,并去除光刻胶;
5)通过腐蚀液在第一掩模去除区域上双面腐蚀贯穿所述石英基片,去除所述振梁、质量块及所述挠性梁侧壁的晶棱;
6)通过双面喷胶及曝光在所述铬金属掩模上显露第二掩模去除区域;
7)去除第二掩模去除区域上的铬金掩模,并去除光刻胶;
8)通过腐蚀液在第二掩模去除区域上单面部分腐蚀所述石英基片,使得所述振梁及所述挠性梁的厚度为所需要的厚度;
9)去除石英基片上的石英腐蚀金属掩膜,在所述振梁上溅射金属电极。
CN201811339689.5A 2018-11-12 2018-11-12 一体式石英双振梁加速度计及制备方法 Active CN109239400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811339689.5A CN109239400B (zh) 2018-11-12 2018-11-12 一体式石英双振梁加速度计及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811339689.5A CN109239400B (zh) 2018-11-12 2018-11-12 一体式石英双振梁加速度计及制备方法

Publications (2)

Publication Number Publication Date
CN109239400A true CN109239400A (zh) 2019-01-18
CN109239400B CN109239400B (zh) 2024-02-09

Family

ID=65078109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811339689.5A Active CN109239400B (zh) 2018-11-12 2018-11-12 一体式石英双振梁加速度计及制备方法

Country Status (1)

Country Link
CN (1) CN109239400B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111943131A (zh) * 2020-07-15 2020-11-17 北京自动化控制设备研究所 一体化石英振梁侧面电极的加工方法
CN112362907A (zh) * 2020-10-31 2021-02-12 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 一种振梁加速度计芯片结构及制作方法
CN116374947A (zh) * 2023-06-02 2023-07-04 中国工程物理研究院电子工程研究所 一种熔石英悬臂梁-质量块结构及其加工方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334901A (en) * 1993-04-30 1994-08-02 Alliedsignal Inc. Vibrating beam accelerometer
US5605598A (en) * 1990-10-17 1997-02-25 The Charles Stark Draper Laboratory Inc. Monolithic micromechanical vibrating beam accelerometer with trimmable resonant frequency
US6450032B1 (en) * 2000-03-14 2002-09-17 Pressure Systems, Inc. Vibrating beam force sensor having improved producibility
US20090241665A1 (en) * 2008-03-27 2009-10-01 Honeywell International Inc. Vibrating beam accelerometer with improved performance in vibration environments
CN102721831A (zh) * 2012-05-29 2012-10-10 北京航空航天大学 基于折叠梁结构的一体差动式石英振梁加速度计
CN103116037A (zh) * 2013-01-21 2013-05-22 东南大学 石英振梁加速度计及其制作方法
CN103760382A (zh) * 2014-01-16 2014-04-30 中国工程物理研究院电子工程研究所 一种静电刚度式硅微谐振加速度传感器芯片
CN103901227A (zh) * 2014-04-02 2014-07-02 清华大学 硅微谐振式加速度计
CN105866470A (zh) * 2016-05-05 2016-08-17 中国工程物理研究院电子工程研究所 一种一体式石英双振梁加速度计
CN208953556U (zh) * 2018-11-12 2019-06-07 中国工程物理研究院电子工程研究所 一体式石英双振梁加速度计

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605598A (en) * 1990-10-17 1997-02-25 The Charles Stark Draper Laboratory Inc. Monolithic micromechanical vibrating beam accelerometer with trimmable resonant frequency
US5334901A (en) * 1993-04-30 1994-08-02 Alliedsignal Inc. Vibrating beam accelerometer
US6450032B1 (en) * 2000-03-14 2002-09-17 Pressure Systems, Inc. Vibrating beam force sensor having improved producibility
US20090241665A1 (en) * 2008-03-27 2009-10-01 Honeywell International Inc. Vibrating beam accelerometer with improved performance in vibration environments
CN102721831A (zh) * 2012-05-29 2012-10-10 北京航空航天大学 基于折叠梁结构的一体差动式石英振梁加速度计
CN103116037A (zh) * 2013-01-21 2013-05-22 东南大学 石英振梁加速度计及其制作方法
CN103760382A (zh) * 2014-01-16 2014-04-30 中国工程物理研究院电子工程研究所 一种静电刚度式硅微谐振加速度传感器芯片
CN103901227A (zh) * 2014-04-02 2014-07-02 清华大学 硅微谐振式加速度计
CN105866470A (zh) * 2016-05-05 2016-08-17 中国工程物理研究院电子工程研究所 一种一体式石英双振梁加速度计
CN208953556U (zh) * 2018-11-12 2019-06-07 中国工程物理研究院电子工程研究所 一体式石英双振梁加速度计

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
史杰 等: "新型石英振梁加速度计机械耦合研究", 《红外与激光工程》, vol. 42, no. 2, pages 426 - 430 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111943131A (zh) * 2020-07-15 2020-11-17 北京自动化控制设备研究所 一体化石英振梁侧面电极的加工方法
CN111943131B (zh) * 2020-07-15 2023-09-12 北京自动化控制设备研究所 一体化石英振梁侧面电极的加工方法
CN112362907A (zh) * 2020-10-31 2021-02-12 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 一种振梁加速度计芯片结构及制作方法
CN116374947A (zh) * 2023-06-02 2023-07-04 中国工程物理研究院电子工程研究所 一种熔石英悬臂梁-质量块结构及其加工方法
CN116374947B (zh) * 2023-06-02 2023-08-25 中国工程物理研究院电子工程研究所 一种熔石英悬臂梁-质量块结构及其加工方法

Also Published As

Publication number Publication date
CN109239400B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
US6105427A (en) Micro-mechanical semiconductor accelerometer
CN102495234B (zh) 一种双面对称弹性梁结构电容式微加速度传感器及方法
CN109239400A (zh) 一体式石英双振梁加速度计及制备方法
US10900995B2 (en) Tri-axial MEMS accelerometer
US9828242B2 (en) Accelerometer and its fabrication technique
CN109254170A (zh) 一体式石英双振梁加速度计及制备方法
CN106841683B (zh) 石英摆式加速度计及其制备方法
US9557346B2 (en) Accelerometer and its fabrication technique
CN105866470A (zh) 一种一体式石英双振梁加速度计
JP3293194B2 (ja) 力学量センサ
CN107827077A (zh) 一种压阻式mems温度传感器及其制作方法
US20040035206A1 (en) Microelectromechanical sensors having reduced signal bias errors and methods of manufacturing the same
CN105182003B (zh) 具有缓冲结构的扭摆式差分电容加速度计及制备方法
CN208953556U (zh) 一体式石英双振梁加速度计
CN208953557U (zh) 一体式石英双振梁加速度计
JP3346379B2 (ja) 角速度センサおよびその製造方法
CN207007876U (zh) 石英摆式加速度计
CN108955995A (zh) 基于金刚石薄膜的快速响应的海水压力传感器及制备方法
CN108827523A (zh) 一种基于金刚石薄膜的海水压力传感器及其制备方法
JP3567052B2 (ja) 半導体のマイクロマシニング方法
JP4362739B2 (ja) 振動型角速度センサ
Liang et al. Molecular electronic transducer based tilting sensors
JPH01216269A (ja) 半導体加速度センサ
CN104730288A (zh) 一种单轴压电加速度计
JPS60113105A (ja) 振動式角速度計

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant